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We study unzipping of a complementary RNA-DNA helix applied to an external force. The force-force
correlations are measured, and compared to predictions from an exact solution of a 1-d toy model, as well as
field theory based on functional renormalization. Within error bars, the agreement is excellent.

I. INTRODUCTION

The amount of biological data is growing steadily, reaching
about 2.5× 1016 Bytes in 2015 [1], roughly on equal footage
with other domains as astronomy, youtube and Twitter. An
important question is what can be learned from these data,
and what cannot? Depending on their specialisation, scien-
tists usually ask different, and seemingly unrelated questions.
Here we study peeling of a complementary RNA-DNA double
strand, using a sequence obtained from ribosomal RNA. As
shown on Fig. 1, at one end the double helix is attached with
its both strands to a bead, whereas on the other end only the
DNA-strand is. Pulling on the beads with an optical tweezer
[2] the RNA strand peels off. What is measured is the force-
extension curve, of which an example is given on Fig. 2.

Rather complementary questions can now be asked:

(i) What can one learn about the specific biological sys-
tem?

(ii) Are there observables which are independent of the cho-
sen nucleotide sequence, thus universal?

(iii) How does understanding the universal signal help to
analyse the biological system? What limitations does
it impose?

The first question is at the origin and design of the experiment
[3–5]. We choose the RNA-sequence from the large subunit
of the ribosome.

Consider the force-extension curve on Fig. 2. Apply-
ing no force, the RNA-DNA double strand is in an equili-
brated coiled state, with its end-to-end distance being roughly
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FIG. 1: Peeling of a RNA-DNA double strand. The RNA sequence
is from subunit 23S of the ribosome in E. Coli, prolonged to attach
the beads (with a much larger radius than drawn here). The DNA
sequence is its complement. The beads are drawn about 10 times
smaller than in the experiment.

0.8µm. Since the beads are sitting in an optical trap, their
distance, or more specifically the distance w between the
two minima of the trap, is the control parameter. Increasing
w, the RNA-DNA double strand gets stretched, which is re-
flected in an increase in the measured force F . Finally part
of the RNA sequence peels off [7], leading to a first drop
in the force-extension curve. Increasing w further leads to
more force drops resulting in an almost constant force. This
plateau regime is marked in red on Fig. 2. Increasing w fur-
ther, peeling can no longer reduce the force, and the latter in-
creases again, eventually leading to the breakage of the DNA
molecule (not shown here). If instead of w the applied force
F were controled, as in experiments with magnetic tweezers
[8, 9], a phase transition at Fc could be observed between a
closed and open state [10].

The aim of this letter is to analyse the force fluctuations on
the plateau, i.e. the saw-tooth shaped signal on top of the crit-
ical force. This kind of signal is frequent in nature, and at
the heart of the so-called depinning transition: It arises in a
plethora of situations: Barkhausen noise in magnets [11, 12]
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FIG. 2: A sample force-extension curve. For the data-analysis we
only use the last part of the curve, the plateau (in red). On this
plateau, the force fluctuates around its critical value of about 60pN.
The extension w starts at 3µm, which is the sum of the unstretched
molecule plus twice the radius of the beads (2×1µm). The effective
stiffnessm2 in Eq. (1) is estimated from the slope of the green dashed
lines as m2 = 55 ± 5pN/µm at the beginning of the plateau, which
remains at least approximately correct at the end of the plateau. The
driving velocity is about 7nm/s, corresponding to 42 nucleotides/s
as in the cell [6].
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(audible as the rustle in old-style telephones), depinning of a
contactline [13] (the line where coffee and air meet in a cup,
or drops on a windshield), earthquakes [14], vortices in high-
temperature superconductors [15], to name a few. The largest
such system on earth is the movement of tectonic plates in
the outer crust of the earth, where the resulting force drops
are earthquakes. The smallest system the authors are aware
of is the unzipping experiment studied here. Yet, all these
systems have a very similar phenomenology: In each case,
a control parameter w is increased, leading to an increase
in tension of the elastic object, released via a succession of
force drops. Being omnipresent, many theoretical models and
mechanisms have been proposed for this depinning transi-
tion, starting from the chaos induced in the Burridge-Knopoff
model of 1967 [16], over toy models for magnets [17, 18], to
sophisticated field theoretic work using functional RG [19–
24]. Today it is understood that the minimal ingredients are

(i) a random force (the disorder),

(ii) an elastic coupling to an external control parameter,

(iii) an overdamped dynamics.

In the experiment considered here, the random force comes
from the seemingly random RNA sequence of the ribosome
[37]. The elastic coupling to an external control parameter is
given by the bead attached to the ends of the strands sitting
in the harmonic trap at a given distance w. Finally, an over-
damped dynamics is typical for small systems immersed into
a solvent, where inertia plays a negligible role.

II. THEORY

The measured force can be expressed as [38]

F = m2(w − u) , (1)

where w is the distance of the second trap from the first one,
and u the position of the second bead, s.t. w − u = 0 if the
beads are sitting in the minima of the traps. This corresponds
to an energy E = m2

2 (w−u)2 where m2 is the strength of the
trap and the elasticity of the partially unzipped double strand,
taken in series. What is measured in the experiment is the
force given in Eq. (1). More interesting to us than its mean
〈F 〉 ≡ Fc ≈ 60pN are its correlations, i.e. the connected
expectations

∆(w,w′) := 〈F (w)F (w′)〉c (2)
≡
〈[
F (w)− 〈F (w)〉

][
F (w′)− 〈F (w′)〉

]〉
.

Here w and w′ are two distinct positions of the trap (two dif-
ferent values of w in Fig. 2). Two remarks are in order: First,
〈F (w)〉 should not depend on w, and equal the plateau value
shown on Fig. 2, i.e. 〈F (w)〉 ' Fc. Since the effective trap-
ping strength consists not only of the strength of the trap but
also of the elastic modulus of the strands on which one pulls,
it gets lowered while the molecule opens; for this reason we
subtract the measured 〈F (w)〉 instead of its mean. Second,

∆(w,w′) only depends on the difference w − w′. The result-
ing function is ∆(w − w′). It also appears for the depinning
of higher-dimensional elastic objects of dimension d, as e.g. a
magnetic domain wall in a bulk magnet (d = 2), or a contact
line (d = 1). Then F (w) is the force acting on the center of
mass. These systems are governed by an equation of motion
for the domain wall or line u, parameterized by an internal
d-dimensional coordinate x and time t,

∂tu(x, t) = ∇2u(x, t) +m2 [w − u(x, t)] + F
(
x, u(x, t)

)
.

(3)
Then [25–27]

∆(w − w′) :=
1

Ld
〈F (w)F (w′)〉c , (4)

where L is the linear size of the system, and Ld its vol-
ume. Despite the complexity of the problem, analytical meth-
ods have been devised to obtain ∆(w) from first principles
[19, 20, 23, 27]. These methods are based on a field theory
for the equation of motion (3). Field theory is a central tool in
theoretical physics [28], with applications ranging from el-
ementary particle physics [29] to the fluctuations observed
around the critical point in liquid-gas transitions [30]. In all
these cases, a set of flow equations for a finite number of cou-
pling constants is derived. These methods fail for disordered
systems as those given by Eq. (3). A way out was found by
realizing that the flow for the coupling constants has to be gen-
eralized to flow equations for a function. This is known as the
functional renormalization group (FRG). The flow-equations
take the form

∂`∆(w) = − d2

dw2

1

2
[∆(w)−∆(0)]

2
+ ... (5)

where the omitted terms are higher-order corrections (techni-
cally higher-loop terms [22–24, 28]), equivalent to an expan-
sion in ε = 4 − d (with d the dimension of the object). What
came as a surprise was the realization that ∆(w) appearing
in Eq. (5), when integrated from a microscopic scale to the
length scale ` ≡ 1/m is the disorder-force correlator mea-
sured via Eq. (4) [25–27]. Measuring ∆(w) is thus a key test
[13, 31, 32] for the field theory of disordered systems. The
solution to Eq. (5) (leading order in the expansion parameter
ε) reads

∆(w) = A∆FT(w/ρ) , (6)

∆FT(x) = −W
(
− exp

(
−x

2

2 −1
))

, (7)

where A and ρ are non-universal constants, and the product-
log W (z) is the principal solution for w in z = wew. Field
theory also applies to the experiment described above, which
has (internal) dimension d = 0 (the single degree of freedom
is the number of the last unpeeled monomer). While the ex-
pansion parameter ε = 4 is rather large, we are in the fortunate
position to have an alternative solution [33], namely for a par-
ticle dragged through a disordered force landscape as given
by Eq. (3), dropping the non-existing index x there. What re-
mains to be specified is the distribution of forces F . Since the
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FIG. 3: Force-extension curves restricted to the plateau region for
one of our batches with 47 data sets. Curves are randomly displaced
for better visualization.

microscopic forces can be thought of as sums of random vari-
ables (neighboring monomers act together to generate these
random forces), and assuming the central-limit theorem ap-
plies, forces are Gauss-distributed (with assumed variance 1),
which in the terminology of [33] leads to the Gumbell univer-
sality class of extreme-value statistics, with correlator

∆(w) = m4ρ2
m∆Gumbell(w/ρm) , (8)

∆Gumbell(x) :=
x2

2
+ Li2

(
1− e|x|

)
+
π2

6
, (9)

ρm =
1

m2
√

2 ln(m−2)
. (10)

III. DATA-ANALYSIS

We measure the force-extension curve in an RNA-
DNA-unzipping experiment [3–5], retaining from the force-
extension curve shown on Fig. 2 only the plateau part (in red).
This experiment was repeated 163 times. From one of the
batches with 47 data sets, we show the retained plateaux on
Fig. 3. In order to minimize statistical errors, we measure the
combination ∆(0)−∆(w) = 1

2

〈
[F (u+ w)− F (u)]2

〉c
. This

average is more stable experimentally, since there seems to be
a small drift in the data (visible on Fig. 3); the latter may be
induced by a slightly diminishing effective stiffness m2 while
opening the strands, even though this effect is not visible on
Fig. 2.

On figure 4, we show the combination ∆(0) − ∆(w) as
defined by Eq. (4), for each of the force-extension curves of
Fig. 3, with the shaded colors identical to those of Fig. 3.
Strong statistical fluctuations are visible. Their mean, in solid
grey, is compared to three theoretical curves: The leading-
order field theory result (7) (black dot-dashed line), the Gum-
bell result (8) (blue, dashed), and an exponentially decaying
function (red, dotted). There are two unknown scales, equiv-
alent to a rescaling of w and ∆. Since the slope at the origin
can be measured precisely, we rescale all functions to have

w[µm]

∆(0) − ∆(w) [pN2]

FIG. 4: Estimation of ∆(0) − ∆(w) from one of our batches with
47 datasets, compared to three theoretical curves: pure exponential
decay (red), 1-loop FRG (black dot-dashed), and toy model (blue
dashed).

the same slope [39]. The remaining parameter is the behavior
of ∆(0) − ∆(w) for large w, which is adjusted visually. In
dotted gray we show our estimates of the absolute error bars,
obtained by resampling, as explained in appendix A.

The result (of these partial data) favors the theoretical pre-
diction (8), while the estimated error bars are seemingly rather
large. The reason for the latter is that the main statistical fluc-
tuations come from the amplitude multiplying ∆(w). Indeed,
rescaling this amplitude to one in each of our resampled sam-
ples, and measuring the remaining statistical error, results in
a much smaller error estimate. This is presented on our final
curve on Fig. 5, where we now give the function ∆(w) di-
rectly, using all our data. The errors are given by the green
shaded region. The agreement of the theory and the exper-
imental data is excellent, better than expected from the sin-
gle measurements of Fig. 4. This strongly indicates that the
universal physics behind the depinning transition is robust.
One surprise to us was that thermal fluctuations, which are
non-neglible, do not spoil the result, as theory even predicts
a rounding of the cusp [27], a feature we clearly do not see.
However thermal fluctuations are visible leading to an addi-
tional constant term for ∆(w) at w = 0, but not for w > 0, of
amplitude 0.055pN2, and which has been subtracted in Fig. 4.
It would on Fig. 5 shift up the first point ∆(0). This ther-
mal noise is seemingly noise of the beads hit by the water
molecules, and not noise for the effective degree of freedom u
in Eq. (3).

IV. INTERPRETATION AND CONCLUSION

Our final result for ∆(w), given by the grey solid line on
Fig. 5, is in remarkable agreement with the analytical result
(8). What does this mean? Consider again Fig. 2, where
one notes that the force grows linearly, interrupted by sud-
den drops of size δF . One can show [34] that the derivative
of the function ∆(w) at the origin is related to a moment ratio
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FIG. 5: Measurements of ∆(w) (in grey), with 1−σ error bars (green
shaded), compared to three theoretical curves: pure exponential de-
cay (dotted red), 1-loop FRG (black dot-dashed), and toy model (blue
dashed). Inset: theoretical curves with the data subtracted (same
color code). The blue curve is the closest to the data.

of force drops [40]

|∆′(0+)| = m2δFm , δFm =

〈
δF 2

〉
2 〈δF 〉

. (11)

Our experiments yieldm2 = 55±5 pN/µm (see Fig. 1) lead-
ing to δFm = 0.43 ± 0.05 pN, and to a correlation length
ξ = 0.055 ± 0.005µm ' 186 base pairs. This is roughly
consistent with the 9 force drops identifiable on figure 2. The
driving velocity was varied from 5 to 7 nm/s, where no sta-
tistically significant difference could be observed for ∆(w).

These measurements indicate a serious challenge for un-
zipping experiments using optical tweezers: As force-force
correlations decay on a scale of about 200 bases, which is
about 1/15 of the length of the ribosomal RNA, events can
be resolved with a resolution of about 200 nucleotides. As

Eq. (10) shows, this resolution is higher when the stiffnessm2

is higher. The key to a high resolution is thus a well-aligned
trap: If the trap is not optimally aligned, showing the critical
force at a say 20% smaller value, the resolution suffers ac-
cording to Eqs. (8)-(10) by approximately the same amount.
Another possibility to increase the stiffness is to use shorter
constructions.

On the theoretical side, both formulas (7) and (8) are ob-
tained at depinning, i.e. out-of-equilibrium, and not in ther-
mal equilibrium, where the corresponding curves look rather
different, with one zero-crossing and a vanishing integral
[22, 24, 27, 35]. While the sequence used in the experiments is
extracted from ribosomal RNA, thus is not random, the mea-
sured function ∆(w) agrees to a good precision with the re-
sult obtained for a random sequence. Also note that the cho-
sen system maximises the force differences, and thus the mea-
sured signal ∆(w), as the two possible parings CG and AT/AU
have different binding energies, and appear almost in the same
proportion [3].

A surprising feature is that while thermal fluctuations are
clearly visible in the experiment, they do not lead to a round-
ing of the cusp, contrary to expectations in the literature
[27, 36]. The measured ∆(w) can be compared to the same
signal measured for the depinning of a contact line [13], or nu-
merical simulations for magnetic domain walls at equilibrium
[31] or a string at depinning [32]. The latter are well approxi-
mated by the field-theoretical result, obtained in an expansion
in d = 4− ε. This expansion works best for d close to d = 4,
but can be extrapolated down to d = 1 [32], using the field
theory results of [22, 23], and in principle down to d = 0, the
case considered here [41]. Using the exact result of Eq. (8)
avoids errors due to the expansion. Comparing these studies
with our experiment, a clear dependence on the dimension is
observed.
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Appendices – Supplementary Material

Appendix A: Data analysis and error-estimates

Protocal and error-estimates: Define for a data-set Di, with
i = 1, ..., n and n the total number of force-extension curves,
the set-average

Ni(w) :=
∑
u∈Di

(A1)

Qi(w) :=
1

Ni(w)

∑
u∈Di

[
F (u+ w)− F (u)

]2
(A2)

Mi(w) :=
1

Ni(w)

∑
u∈Di

[
F (u+ w)− F (u)

]
(A3)

Qc
i (w) := Qi(w)−Mi(w)2 (A4)

The above sums run over all values u, for which exists a pair
F (u+ w) and F (u); Ni(w) is the number of such pairs. Our
best estimate for the force-force correlator then is〈[

F (u+ w)− F (u)
]2〉c

=

∑
iQ

c
i (w)Ni(w)∑
iNi(w)

. (A5)

The fluctuations of the data shown on Fig. 4 are very large,
making error-estimates difficult. We used a statistical resam-
pling technique: Randomly divide all datasets Di into two
parts, P1 and P2. Define

NP1
(w) :=

∑
i∈P1

Ni(w) , (A6)

Qc
P1

(w) :=
1

NP1
(w)

∑
i∈P1

Qc
i (w)Ni(w) . (A7)

A similar definition holds for P2. Then for each w measure
the variance of the partial means Qc

P1
(w) and Qc

P2
(w). Fi-

nally, average over all partitions Πi, {1, ..., n} → P1,P2. In
practice, it is enough to take Np = 100 random partitions.
The error estimate then is

σ2(w) :=
1

Np

∑
Πi

〈
1

2

2∑
k=1

[
Qc
Pk(Πi)

(w)−Qc(w)
]2〉

(A8)

Np :=
∑
Πi

(A9)

We can also define the set of all 2Np partial means,

A(w) :=
⋃
Πi

⋃
k=1,2

Qc
Pk(Πi)

(w) . (A10)

We find that our analysis is consistent, with

var
(
A(w)

)
≈ σ2(w) . (A11)

These error estimates are absolute errors, presented on Fig. 4.
To obtain the error estimate given on Fig. 5, the partial means
(A10) where rescaled such that their w-integrals equal the w-
integral over all samples. This takes out amplitude fluctua-
tions, reducing the errors to errors of the shape.

Appendix B: Check on test data

We generated test data according to the following proto-
col: For each real data set, sample an Ornstein-Uhlenbeck
process of the same length, with mean Fm = Fc, variance
∆(0), and correlation length ξ as measured. This is achieved
by the stochastic process

F (w + δw) = F (w) + ζ(w)

√
∆(0)

ξ
+
Fm − F (w)

ξ
, (B1)

〈ζ(w)ζ(w′)〉 = δw,w′ . (B2)

This gives a first set of test data. For a second set,
we add an additional white noise in the x-direction, with
δx ∈ {−1, 0, 1}, in units of the resolution of the measuring
mashine. For a third set, we added a Gauss-distribution of
mean zero and width 1 to the force signal. By construction,
these test-data are exponentially correlated

〈F (w)F (w′)〉c = ∆(0)e−|w−w
′|/ξ , (B3)

with additional noise for sets 2 and 3. They should thus ap-
proach the red dotted curve of Fig. 5. This is indeed observed,
with an appropriate estimate for the error bars.
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