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Abstract
Domain walls in magnets, vortex lattices in superconductors, contact lines at depinning, and
many other systems can be modeled as an elastic system subject to quenched disorder. The
ensuing field theory possesses a well-controlled perturbative expansion around its upper
critical dimension. Contrary to standard field theory, the renormalization group (RG) flow
involves a function, the disorder correlator Δ(w), and is therefore termed the functional RG.
Δ(w) is a physical observable, the auto-correlation function of the center of mass of the elastic
manifold. In this review, we give a pedagogical introduction into its phenomenology and
techniques. This allows us to treat both equilibrium (statics), and depinning (dynamics).
Building on these techniques, avalanche observables are accessible: distributions of size,
duration, and velocity, as well as the spatial and temporal shape. Various equivalences between
disordered elastic manifolds, and sandpile models exist: an elastic string driven at a point and
the Oslo model; disordered elastic manifolds and Manna sandpiles; charge density waves and
Abelian sandpiles or loop-erased random walks. Each of the mappings between these systems
requires specific techniques, which we develop, including modeling of discrete stochastic
systems via coarse-grained stochastic equations of motion, super-symmetry techniques, and
cellular automata. Stronger than quadratic nearest-neighbor interactions lead to directed
percolation, and non-linear surface growth with additional Kardar–Parisi–Zhang (KPZ) terms.
On the other hand, KPZ without disorder can be mapped back to disordered elastic manifolds,
either on the directed polymer for its steady state, or a single particle for its decay. Other topics
covered are the relation between functional RG and replica symmetry breaking, and
random-field magnets. Emphasis is given to numerical and experimental tests of the theory.
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Foreword

This review grew out of lectures the author gave in the ICTP
master program at ENS Paris. While the beginning of each
section is elementary, later parts are more specialized and can
be skipped at first reading. Beginners wishing to enter the sub-
ject are encouraged to start reading section 1 (introduction),
sections 2.1–2.13 (equilibrium/statics), and sections 3.1–3.4
(depinning/dynamics). An introduction to avalanches is given
in sections 4.1–4.3, 4.5–4.10. The remaining sections are
more specialized: sandpile models and anisotropic depin-
ning are treated in sections 5 and 6. An introduction to
the Kardar–Parisi–Zhang (KPZ) equation and its relation to
disordered elastic systems is given in section 7. Section 8
discusses links between a class of theories encompassing
loop-erased random walks (LERWs), charge density waves
(CDWs), Abelian sandpiles, and n-component φ4 theory with
n = −2, linked by supermathematics. Further developments
and ideas are collected in section 9. The appendix A contains
useful basic tools.

1. Disordered elastic manifolds: phenomenology

1.1. Introduction

Statistical mechanics is by now a rather mature branch of
physics. For pure systems like a ferromagnet, it allows one to
calculate with precision details as the behavior of the specific
heat on approaching the Curie point. We know that it diverges
as a function of the distance in temperature to the Curie tem-
perature, we know that this divergence has the form of a power-
law, we can calculate the exponent, and we can do this with at
least 3 digits of accuracy using the perturbative RG [1–8], and
even more precisely with the newly developed conformal boot-
strap [9–11]. Best of all, these findings are in excellent agree-
ment with the most precise simulations [12–14], and experi-
ments [15]. This is a true success story of statistical physics.
On the other hand, in nature no system is really pure, i.e. with-
out at least some disorder (‘dirt’). As experiments (and theory)
suggest, a little bit of disorder does not change much. Other-
wise experiments on the specific heat of helium1 would not so
extraordinarily well confirm theoretical predictions. But what
happens for strong disorder? By this we mean that disorder
dominates over entropy, so effectively the system is at zero
temperature. Then already the question: ‘what is the ground
state?’ is no longer simple. This goes hand in hand with the
appearance of metastable states. States, which in energy are
close to the ground-state, but which in configuration-space
may be far apart. Any relaxational dynamics will take an enor-
mous time to find the correct ground state, and may fail alto-
gether, as can be seen in computer simulations as well as in
experiments, particularly in glasses [17]. This means that our
way of thinking, taught in the treatment of pure systems, has to
be adapted to account for disorder. We will see that in contrast

1 Even though there is some tension between values obtained in a space-shuttle
experiment [15] on one side, and simulations [16] and the conformal bootstrap
[11] on the other hand.

to pure systems, whose universal large-scale properties can be
‘modeled by few parameters’, disordered systems demand to
model the whole disorder-correlation function (in contrast to
its first few moments). We show how universality nevertheless
emerges.

Experimental realizations of strongly disordered systems
are glasses, or more specifically spin-glasses, vortex-glasses,
electron-glasses and structural glasses [17–25]. Furthermore
random-field (RF) magnets [26–39], and last not least elas-
tic systems subject to disorder, sometimes termed disordered
elastic systems or disordered elastic manifolds [40–54], on
which we focus below.

What is our current understanding of disordered systems?
There are a few exact solutions, mostly for idealized or toy
systems [55], there are phenomenological approaches (like
the droplet-model [56], section 2.21), and there is a mean-
field (MF) approximation, involving a method called replica-
symmetry breaking (RSB) [57]. This method predicts the
properties of infinitely connected systems, as e.g. the Sherring-
ton–Kirkpatrick (SK) model [58, 59]. The solution proposed
in 1979 by Parisi [60] is parameterized by a function q(x),
where x ‘lives between replica indices 0 and 1’. Today we
have a much better understanding of this solution [61–63],
and many features can be proven rigorously [64–67]. The
most notable feature is the presence of an extensive number
of ground states arranged in a hierarchic way (ultrametricity).
On the other hand, this solution is inappropriate for systems in
which each degree of freedom is coupled only to its neighbors,
as is e.g. the case in short-ranged magnetic systems.

While the RSB method mentioned above is intellectually
challenging and rewarding, its complexity makes intuition dif-
ficult, and performing a field theoretic expansion around this
MF solution has proven too challenging a task. RF models,
which can be recast in a φ4-type theory are seemingly more
tractable, but still the non-linearity of the φ4-interaction makes
progress difficult. What one would like to have is a field the-
ory which in absence of disorder is as simple as possible. The
simplest such system certainly is a non-interacting, Gaussian,
i.e. free theory, to which one could then add disorder. Actu-
ally, experimental systems of this type are abundant: magnetic
domain walls in presence of disorder a.k.a. Barkhausen noise
[68–70], a contact line wetting a disordered substrate [71],
fracture in brittle heterogeneous systems [72–74], or earth-
quakes [75] are good examples for elastic systems subject to
quenched disorder. They have a quite different phenomenol-
ogy from MF models, with notably a single ground state. Ask-
ing questions about this ground state, or more generally the
probability measure at a given temperature, is termed equi-
librium. It supposes that if external parameters change, they
change so slowly that the system has enough time to explore
the full phase space (ergodicity), and find the ground state.

In the opposite limit, notably if there are no thermal fluc-
tuations at all, is depinning: increasing an external applied
field yields jumps in the center-of-mass of the system (the
total magnetization in a magnet). These jumps are termed
shocks or avalanches. While one can show that the sequence
of avalanches is deterministic given a specific disorder (see
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below), we are more interested in typical behavior, i.e. an aver-
age over disorder. The latter average can often be obtained by
watching the system for an extended time; one says that the
system is self-averaging2.

In these lectures combined with a review, I aim at explaining
the field theory behind these phenomena. All key ingredients
are in addition derived analytically in well-chosen toy mod-
els. Theoretically most exciting are the connections between
seemingly unrelated models. Finally, all main theoretical con-
cepts are checked in experiments. While the field theory has
been developed for more than thirty years, no comprehensive
and pedagogical introduction is yet available. It is my aim to
close this gap. Despite the more than 700 references included
in this review, I am aware of omissions. My apologies to all col-
leagues whose work is not covered in depth. Luckily, some of
them have written reviews or lectures themselves, and we refer
the reader to [19, 77–83] for complementary presentations.

1.2. Physical realizations, model and observables

Before developing the theory to treat elastic systems in a disor-
dered environment, let us give some physical realizations. The
simplest one is an Ising magnet. Imposing boundary conditions
with all spins up at the upper and all spins down at the lower
boundary (see figure 1), at low temperatures, a domain wall
separates a region with spins up from a region with spins down.
In a pure system at temperature T = 0, this domain wall is flat.
Disorder can deform the domain wall, making it eventually
rough. Figure 1 shows, how the domain wall is described by a
displacement field u(�x). Two types of disorder are common:

(a) RB disorder, where the bonds between neighboring sites
are random. On a course-grained level this also represents
missing spins. The correlations of the random potential
are short-ranged.

(b) RF disorder, i.e. coupling of the spins to an external ran-
dom magnetic field. This disorder is ‘long-ranged’, as
the random potential is the sum over the RFs below the
domain wall, i.e. effectively has the statistics of a ran-
dom walk (RW). Taking a derivative of the potential, one
obtains short-ranged correlated random forces.

Another example is the contact line of a liquid (water, isobu-
tanol, or liquid helium), wetting a rough (ideally scale-free)
substrate, see figure 2. Here, elasticity becomes long-ranged,
see equation (15) below.

A realization with a two-parameter displacement field
�u(x, y, z) is the deformation of a vortex lattice, see figure 3: the
position of each vortex is deformed from the three-dimensional
vector �x = (x, y, z) to �x + �u(�x), with �u ∈ R

2 (its z-component
is 0). Irradiating the sample produces line defects. They allow
experimentalists to realize [44]

2 In contrast to disordered elastic manifolds, some disordered systems such
as long-range spin glasses are not self-averaging, which leads to replica-
symmetry breaking and a hierarchic organization of states, see [76] for a
review, and section 2.20 for a discussion in our context. The presence of a
finite correlation length as given in equations (34), (307) and (312) insures
self-averaging.

(c) generic long-range (LR) correlated disorder. The most
extreme example are

(d) random forces with the statistics of a RW. This model,
the Brownian force model (BFM) of section 4.5, plays
an important role as its center-of-mass motion advances
as a single degree of freedom, known as the Alessandro,
Beatrice, Bertotti and Montorsi (ABBM) or MF model
(section 4.3), often used to describe avalanches.

Another example are CDWs, first predicted by Peierls [86]:
they can spontaneously form in certain semiconductor devices,
where a uniform charge density is unstable toward a super-
lattice in which the underlying lattice is periodically deformed,
and the charge density of the globally neutral device becomes
[87–90]

ρ(�x) = ρ0 cos(�k�x). (1)

Adding disorder, the latter locally deforms the phase, modify-
ing the charge density to

ρ (�x, u(�x)) = ρ0 cos
(
�k�x + 2πu(�x)

)
. (2)

As the charge density is invariant under u(�x) → u(�x) + 1, we
find another disorder class,

(e) random periodic (RP) disorder.

All these models have in common that they can be described
by a displacement field

�x ∈ R
d → �u(�x) ∈ R

N . (3)

For simplicity, we suppress the vector notation wherever pos-
sible, and mostly consider N = 1. After some initial coarse-
graining, the energy H = Hel +Hconf +Hdis consists of three
parts: the elastic energy

Hel[u] =
∫

dd x
1
2
[∇u(x)]2, (4)

the confining potential

Hconf[u] =
∫

ddx
m2

2
[u(x) − w]2, (5)

and the disorder

Hdis[u] =
∫

dd x V (x, u(x)) . (6)

In order to proceed, we need to specify the correlations of
disorder. Suppose that fluctuations of u scale as〈

[u(x) − u(y)]2
〉
∼ |x − y|2ζ . (7)

Notations are such that 〈. . .〉 denotes thermal averages, i.e.
averages of an observable using the weight e−βH , properly
normalized by the partition function Z =

〈
e−βH〉. At zero

temperature, this reduces to the contribution of a single state,
the ground state. Overbars denote the average over disorder.
This defines a roughness-exponent ζ. Starting from a disorder
correlator

V(x, u)V(x′, u′) = R(u − u′) f (x − x′) (8)

5
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Figure 1. An Ising magnet with up (‘+’) and down (‘−’) spins at low temperatures forms a domain wall described by a function u(x) (right).
Reproduced with permission from [42]. Two types of disorder are observed: missing spins, weakening the effective nearest-neighbor
interactions (‘random-bond (RB) disorder’), and frozen in magnetic moments aligning its immediate neighbor (‘RF disorder’), indicated by
thick ± signs. An experiment on a thin cobalt film (left). Reprinted figure with permission from [84], Copyright (1998) by the American
Physical Society; with kind permission of the authors.

Figure 2. A contact line for the wetting of a disordered substrate by glycerine [85]. Experimental setup (left). The disorder consists of
randomly deposited islands of chromium, appearing as bright spots (top right), with a correlation length of about 10 μm. Temporal evolution
of the retreating contact-line (bottom right). Note the different scales parallel and perpendicular to the contact-line. Credit: Etienne Rolley
with permission.

with both R(u) and f (x) vanishing at large distances, for each
rescaling in the RG-procedure by λ in the x-direction one
rescales by λζ in the u-direction. As long as ζ < 1, this even-
tually reduces f (x) to a δ-distribution, whereas the structure of
R(u) may remain visible. We therefore choose as our starting
correlations for the disorder

V(x, u)V(x′, u′) :=R(u − u′)δd(x − x′). (9)

As we do not consider higher cumulants of the disorder,
this implicitly assumes that the distribution of the disorder is
Gaussian3.

There are a couple of useful observables. We already men-
tioned the roughness-exponent ζ. The second is the renormal-
ized (effective) disorder R(u).

3 For the concept of cumulants see e.g. [91].

Noting by F(x, u) := − ∂uV(x, u) the disorder forces, the
corresponding force–force correlator can be written as

〈F(x, u)F(x′, u′)〉 = Δ(u − u′)δd(x − x′). (10)

Since 〈F(x, u)F(x′, u′)〉 = ∂u∂u′V(x, u)V(x′, u′) = −R′′(u −
u′)δd(x − x′), we identify

Δ(u) = −R′′(u). (11)

1.3. Long-range elasticity (contact line of a fluid, fracture,
earthquakes, magnets with dipolar interactions)

There are several relevant experimental systems for which the
elasticity is different from equation (4). This mostly happens
when the elasticity of a lower-dimensional subsystem is medi-
ated by the surrounding bulk. The simplest such example is a

6
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Figure 3. A vortex lattice is described by a deformation of a lattice
point (x, y, z) to (x, y, z) + �u(x, y, z). Shown is a cartoon of a single
layer, i.e. fixed z. The vortex lines continue perpendicular to the
drawing (figure from [42]).

contact line [92] in a coffee mug or water bottle, i.e. the line
where coffee, cup and air meet. A laboratory example is shown
in figure 2. For fracture this was introduced in [93].

Consider a liquid with height h(x, y), defined in the half-
space x � 0 (see figure 4). Its elastic energy is surface-tension
times surface-area, i.e.

Hliquid
el [h] = γ

∫
y

∫
x>0

√
1 + [∇h(x, y)]2


 const. +
∫

y

∫
x>0

γ

2
[∇h(x, y)]2. (12)

We wish to express this as a function of the height
u(y) := h(0, y) on the boundary at x = 0. A minimum energy
configuration satisfies

0 =
δHliquid

el [h]
δh(x, y)

= −γ∇2h(x, y). (13)

This is achieved by the ansatz

h(x, y) =
∫

dk
2π

ũ(k)eiky−|k|x , (14)

which decays to zero at large x. On the boundary at x = 0 this
is the standard Fourier transform of the height u(y). Integrating
by parts, the elastic energy as a function of ũ(k) becomes with
the help of equation (13)

Hliquid
el [u] =

∫
y

∫
x�0

γ

2
[∇h(x, y)]2

=
γ

2

[∫
y

∫
x�0

∇
(

h(x, y)∇h(x, y)

)
−h(x, y)∇2h(x, y)

]
= −γ

2

∫
y
h(x, y)∂xh(x, y)

∣∣∣∣
x=0

=
γ

2

∫
dk
2π

|k|ũ(k)ũ(−k). (15)

In generalization of equation (15) one can write

Hα
el[u] =

1
2

∫
ddk

(2π)d
|k|αũ(k)ũ(−k). (16)

Figure 4. The coordinate system for a vertical wall. The air/liquid
interface becomes flat for large x. The height h(x, y) is along the
z-direction.

For α = 2, this is equivalent to the local interaction of
equation (4). Forα < 2, the interaction is non-local in position
space,

Hα
el[u] =

Aα
d

2

∫
dd�x

∫
dd�y

[
u(�x) − u(�y)

]2

|�x −�y|d+α
, (17a)

Aα
d = −2α−1Γ( d+α

2 )

π
d
2 Γ(−α

2 )
. (17b)

For d = α = 1 this yields

Hα=1
el [h] =

1
4π

∫
dx

∫
dy

[u(x) − u(y)]2

|x − y|2 . (18)

Note that for α→ 2, Ad ∼ (2 − α), reducing the LR kernel to
the short-range one.

Equation (12) is an approximation, as higher-order terms
are neglected. The latter can be generated efficiently [94], and
may change the physics of the system [95]. When the contact
angle is different from the inclination of the wall, the elastic
energy is further modified [96].

The theory we develop below works for arbitrary (posi-
tive) α, with α = 2 for standard short-ranged elasticity, and
α = 1 for (standard) long-ranged elasticity. Apart from con-
tact lines, long-ranged elasticity with α = 1 appears for a d-
dimensional elastic object (a surface), where the elastic inter-
actions are mediated by a bulk material of higher dimension
D > d. Important examples are the displacement of tectonic
plates relevant to describe earthquakes (d = 2, D = 3) [75, 80,
97] and fracture (d = 1, D = 2 or D = 3) [73, 74].

For magnetic domain walls (d = 2) with dipolar interac-
tions, the interactions are also long-ranged. The elastic kernel
is given by [98] (page 6357)

Hel[u] = γ

∫
d2�r1

∫
d2�r2

∂x1 u(�r1)∂x2 u(�r2)
|�r1 −�r2|

,

�r1 = (x1, y1), �r2 = (x2, y2). (19)
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In Fourier space, this reads

Hel[u] =
γ

2π

∫
d2�k ũ(�k)ũ(−�k)

k2
x

|�k|
. (20)

1.4. Flory estimates and bounds

Above, we distinguished four types of disorder, resulting in
four different universality classes:

(a) RB disorder: short-range correlated potential–potential
correlations, i.e. a short-range correlated R(u).

(b) RF disorder: a short-range correlated force–force corre-
lator Δ(u) := − R′′(u). As the name says, this disorder is
relevant for RF systems where the disorder potential is the
sum over all magnetic fields below a domain wall.

(c) Generic LR correlated disorder: R(u) ∼ |u|−γ .
(d) RP disorder: relevant when the disorder couples to a

phase, as e.g. in CDWs. R(u) = R(u + 1), supposing that
u is periodic with period 1.

To get an idea how large the roughness ζ becomes in these
situations, one compares the contributions of elastic energy
and disorder, and demands that they scale in the same way.
This estimate has first been used by Flory [99] for self-avoiding
polymers, and is therefore called the Flory estimate4. Despite
the fact that Flory estimates are conceptually crude, they often
give a decent approximation. For RB disorder, this gives for
an N-component field u:

∫
x u|∇|αu ∼

∫
x

√
VV , or Ld−αu2 ∼

Ld
√

L−du−N , i.e. u ∼ Lζ with

ζRB
Flory =

2α− d
4 + N

α→2
=

4 − d
4 + N

. (21)

For RF disorder Δ(u) = −R′′(u) is short-ranged, and

ζRF
Flory =

2α− d
2 + N

α→2
=

4 − d
2 + N

. (22)

For generic LR correlated disorder

ζLR
Flory =

2α− d
4 + γ

α→2
=

4 − d
4 + γ

. (23)

For RP disorder the field u cannot be rescaled or one would
break periodicity, and thus

ζRP = 0 (24)

exactly. We will see below in section 2.5 that these estimates
are a decent approximation, and even exact for RF at N = 1,
or for LR disorder.

1.5. Replica trick and basic perturbation theory

In disordered systems, a particular configuration strongly
depends on the disorder, and therefore statements about a spe-
cific configuration are in general meaningless. What one needs
to calculate are averages, of the form (‘gs’ denotes the ground
state)

4 For disordered systems this type of argument was employed by Harris [100]
and Imry and Ma [101], and the reader will find reference to them as well.

O[u] :=

〈
O[u]e−H[u]/T

〉〈
e−H[u]/T

〉
T→0
−−→O[ugs]e−H[ugs]/T

e−H[ugs]/T ≡ O[ugs]. (25)

Note that division by the partition function Z =
〈
e−H[u]/T

〉
is

crucial. This is particularly pronounced in the limit of T →
0, where Z → e−H[ugs]/T diverges or vanishes when T → 0,
except if by chance H[ugs] = 0. Thus the denominator cannot
be replaced by its mean. This is a difficult situation: while inte-
ger powers Zn, with n ∈ N can be obtained by using n copies
or replicas of the system, 1/Z cannot. On the other hand, we
observe that, independent of n,

O[u] =

〈
O[u]e−H[u]/T

〉
Zn−1

Zn
. (26)

The replica-trick [102, 103] 5 consists in doing the calcula-
tions for arbitrary n. This is possible in perturbation theory, as
results there are polynomials in n. It may become troublesome
for exact solutions (notably leading to RSB [57]). Knowing
the dependence on n, the idea is to set n → 0 at the end of the
calculation, thus eliminating the denominator,

O[u] = lim
n→0

〈
O[u]e−H[u]/T

〉
Zn−1. (27)

Since thermal averages over distinct replicas factorize, we
write their joint measure as

〈
O[u]e−H[u]/T

〉
Zn−1 =

〈
O[u1]

n∏
a=1

e−H[ua]/T

〉

=
〈
O[u1]e−

∑n
a=1 H[ua]/T

〉
=
〈
O[u1]e−

1
T

∑n
a=1 Hel[ua]+Hconf[ua]+Hdis[ua]

〉
. (28)

Note that in the second equality we have exchanged thermal
and disorder averages. We also allowed for different posi-
tions w of the parabola for the different replicas, denoted wa.6

Finally, we assume for simplicity of presentation that O[u]
does not explicitly depend on the disorder. Since only the last
term in the exponential depends on V(x, u), and since V(x, u)
is Gauss distributed,

5 It is not quite clear who ‘invented’ the replica trick. In [102] Brout stresses
that ln Z has to be averaged over disorder, not Z. Brout considers a clus-
ter expansion for a quenched disordered system, organizing his expansion in
powers of n, equivalent to a cumulant expansion, or sums over independent
replicas, concepts we use below.
6 The partition function for each of these replicas may be different. The
formalism takes this into account.
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e−
1
T

∑n
a=1 Hdis[ua] = exp

(
− 1

T

∫
x

∑
a

V(x, ua(x))

)

= exp

(
1

2T2

∫
x

∫
y

n∑
a,b=1

V(x, ua(x))V(y, ub(y))

)

= exp

(
1

2T2

∫
x

n∑
a,b=1

R (ua(x) − ub(x))

)
.

(29)

In the second step we used that V is Gaussian; in the last step
we used the correlator (9).

To summarize: to evaluate the expectation of an observ-
able, we take averages with measure e−Srep[u] and replica
Hamiltonian or action

Srep[u] :=
1
T

n∑
a=1

∫
x

{
1
2

[∇ua(x)]2 +
m2

2
[ua(x) − wa]2

}

− 1
2T2

∫
x

n∑
a,b=1

R
(

ua(x) − ub(x)
)
. (30)

Note that each replica sum comes with a factor of 1/T. If the
disorder had a third cumulant, this would appear as a triple
replica sum, and a factor3,5 of 1/T3.

Let us now turn to perturbation theory. The free propagator,
constructed from the first line of equation (30), and indicated
by the index ‘0’, is (first in Fourier, than in real space)

〈ũa(−k)ũb(k)〉0 = TδabC̃(k), (31)

〈ua(x)ub(y)〉0 = TδabC(x − y). (32)

Noting C(x − y) the Fourier transform of C̃(k), and Sd =
2πd/2/Γ(d/2) the area of the d-sphere, we have

C̃(k) =
1

k2 + m2
, (33a)

C(x) =
∫

ddk
(2π)d

eikx

k2 + m2


 1
(d − 2)Sd

|x|2−d for x → 0. (33b)

On the other hand, for large x, the correlation function decays
exponentially ∼e−m|x|, which we associate with a correlation
length

ξ =
1
m
. (34)

Equation (33a) allows us to calculate expectation values in the
full theory. As an example consider

〈[u(x) − w1]〉w1
〈[u(z) − w2]〉w2

c

≡ 〈[u1(x) − w1][u2(z) − w2]〉Srep

= −
∫

y
C(x − y)C(z − y)R′′(w1 − w2) + . . . (35)

Let us clarify the notations: firstly, 〈[u(x) − w1]〉w1
is the ther-

mal average of u(x) − w1, obtained by evaluating the path
integral for a fixed disorder configuration V , at a position
of the parabola given by w1. This procedure is repeated for
〈[u(z) − w2]〉w2

, with the same V , and parabola position w2.
Finally the average over the disorder potential V is taken.
According to the calculations above, this can be evaluated
with the help of the replica action Srep[u], represented by
〈[u1(x) − w1][u2(z) − w2]〉Srep

. The latter is already averaged
over disorder. The last line shows the leading order in pertur-
bation theory, dropping terms of order T and higher.

Finally, let us integrate this expression over x and z, and
multiply by m4/Ld . This leads to

m4

Ld

∫
x,z
〈[u(x) − w1]〉w1

〈[u(z) − w2]〉w2

= −R′′(w1 − w2) + . . . (36)

Let us understand the prefactor on the lhs: the combination
m2[u(x) − w1] is the force acting on point x (a density), its
integral over x the total force acting on the interface. Force
correlations are short ranged in x, leading to the factor of 1/Ld.
Note that the thermal two-point function (32) is absent, as we
consider two distinct copies of the system.

1.6. Dimensional reduction

It is an interesting exercise to show that forw1 = w2 no pertur-
bative corrections to equation (36) exist in the limit of T → 0,
as long as one supposes that R(w) is an analytic function. Sim-
ilarly, one shows that in the same limit 〈uuuu〉c = 0, and the
same holds true for higher connected expectations. Thus u is a
Gaussian field with correlations

〈ũ(k)〉 〈ũ(−k)〉 = 〈ũ(k)ũ(−k)〉

= ũ(k)ũ(−k) = − R′′(0)
(k2 + m2)2

. (37)

In the third expression we suppressed the thermal expectation
values since at T = 0 only a single ground state survives7.
Fourier-transforming back to position space yields (with some
amplitude A, and in the limit of mx → 0)

1
2

[u(x) − u(y)]2 = −R′′(0)A|x − y|4−d. (38)

This looks very much like the thermal expectation (32), except
that the dimension of space has been shifted by 2. Further, both
theories are seemingly Gaussian, i.e. higher cumulants vanish.

We have just given a simple version of a beautiful and
rather mind-boggling theorem relating disordered systems to
pure ones (i.e. without disorder). The theorem applies to a
large class of systems, even when non-linearities are present

7 For disordered elastic manifolds with continuous disorder, the ground state
is almost surely unique. This is in strong contrast to mean-field spin glasses,
where it is highly degenerate, see e.g. [57].
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in the absence of disorder. It is called dimensional reduction
[104–106]. We formulate it as follows:

‘Theorem’. A d-dimensional disordered system at zero
temperature is equivalent to all orders in perturbation theory
to a pure system in d − 2 dimensions at finite temperature.

We give in section 8.1 a proof of this theorem using a super-
symmetric field theory introduced in [32]. The proof implicitly
assumes that R(u) is analytic, thus all derivatives can be taken.
The equivalence is rather powerful, since the supersymmet-
ric theory knows about different replicas, and allows one to
calculate even away from the critical point.

However, evidence from experiments, simulations, and ana-
lytic solutions show that the above ‘theorem’ is actually wrong.
A prominent counter-example is the three-dimensional RF
Ising model at zero temperature [30]; according to the theorem
it should be equivalent to the pure one-dimensional Ising-
model at finite temperature. While it was shown rigorously
[30] that the former has an ordered phase, the latter is disor-
dered at finite temperature [107]. So what went wrong? Let us
stress that there are no missing diagrams or any such thing, but
that the problem is more fundamental: as we will see later, the
proof makes the assumption that R(u) is analytic. While this
assumption is correct in the microscopic model, it is not valid
at large scales.

Nevertheless, the above ‘theorem’ remains important since
it has a devastating consequence for all perturbative calcula-
tions in the disorder: however clever a procedure we invent,
as long as we perform a perturbative expansion, expanding
the disorder in its moments, all our efforts are futile: dimen-
sional reduction tells us that we get a trivial and unphysical
result. Before we try to understand why this is so and how to
overcome it, let us give one more counter-example. Dimen-
sional reduction allowed us in equation (38) to calculate the
roughness-exponent ζ defined in equation (7), as

ζDR =
4 − d

2
. (39)

On the other hand, the directed polymer in dimension d = 1
does not have a roughness exponent of ζDR = 3/2, but [108]

ζRB
d=1 =

2
3
. (40)

Experiments and simulations for disordered elastic manifolds
discussed below in sections 2.31, 2.32, 3.12, 3.13, 3.15–3.17,
and 3.21 all violate dimensional reduction.

1.7. Larkin-length, and the role of temperature

To understand the failure of dimensional reduction, let us turn
to crucial arguments given by Larkin [109]. He considers a
piece of an elastic manifold of size L. If the disorder has corre-
lation length r, and characteristic potential energy Ē , there are
(L/r)d independent degrees of freedom, and according to the
central-limit theorem this piece of size L will typically see a
potential energy of amplitude

Edis = Ē
(

L
r

)d
2

. (41)

On the other hand, the elastic energy scales as

Eel = cLd−2. (42)

These energies are balanced at the Larkin-length L = Lc with

Lc =

(
c2

Ē2
rd

) 1
4−d

. (43)

More important than this value is the observation that in all
physically interesting dimensions d < dc = 4, and at scales
L > Lc, the disorder energy (41) wins; as a consequence the
manifold is pinned by disorder, whereas on small scales the
elastic energy dominates. For long-ranged elasticity, the same
argument implies

dc = 2α, and disorder relevant for d < dc. (44)

Since the disorder has many minima which are far apart in
configurational space but close in energy (metastability), the
manifold can be in either of these minima, and local minimum
does not imply global minimum. However, the existence of
exactly one minimum is assumed in e.g. the proof of dimen-
sional reduction, even though formally, the field theory sums
over all saddle points.

Another important question is the role of temperature. In
equation (7) we had supposed that u scales with the system size
as u ∼ Lζ . Demanding that the action (30) be dimensionless,
the first term in equation (30) scales as Ld−2+2ζ/T. This implies
that

T ∼ aθ, θ = d − 2 + 2ζ, (45)

where a is a microscopic cutoff with the dimension of L, to
compensate the factor of Ld−2+2ζ . For completeness, we also
give the result for generic LR-elasticity,

θα = d − α+ 2ζ. (46)

The thermodynamic limit is obtained by taking L →∞. Tem-
perature is thus irrelevant when θ > 0, which is the case for
d > 2, and when ζ > 0 even below. As a consequence, the RG
fixed point we are looking for is at zero temperature [110]. The
same argument applies to the free energy

F [u] = − 1
T

ln(Z[u]) ∼
(

L
a

)θ
. (47)

We added u as an argument to F [u], as e.g. in the directed
polymer the partition function is the weight of all trajectories
arriving at u. This is important in section 7.1 when considering
the KPZ equation.

From the second term in equation (30) we conclude that the
(microscopic) disorder scales as

R ∼ a2θ−d = ad−4+4ζ. (48)

For ζ = 0, this again implies that d = 4 is the upper critical
dimension. More thorough arguments are presented in the next
section, where we will construct an ε = 4 − d expansion for
the RG flow of R(u).
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2. Equilibrium (statics)

2.1. General remarks about renormalization

In the next section 2.2 we derive the central RG equations for
disordered elastic manifolds. These equations are obtained in a
controlled ε = 4 − d expansion [111] around the upper critical
dimension. Retaining in this expansion only the leading diver-
gences which show up as poles in 1/ε, by using minimal sub-
traction, this expansion is unique. This is a deep result, ensured
by the renormalizability of the theory (see e.g. [112–116]). We
consider it a gift: however we set up our RG scheme, we always
get the same result. This allows us to choose one scheme, and
switch to a different one whenever its particular features help
us in our reasoning. The schemes in question are

(a) Wilson’s momentum-shell scheme. This scheme goes
back to Wilson, who suggested to integrate over the fast
modes, i.e. modes k contained in a momentum shell
between Λ(1 − δ) and Λ, with δ � 1. Doing this incre-
mentally is interpreted as a flow equation for the effec-
tive parameters of the theory. The process stops when one
reaches the scale one is interested in, which is zero for
correlations of the center of mass. While intuitive, this
technique is cumbersome to implement, especially at sub-
leading order. We refer to the classical text [117] for an
introduction.

(b) Field theory as used in high-energy physics. This is the
standard technique to treat critical phenomena, and is
explained in many classical texts [1, 2, 4–7]. A well-oiled
machinery, especially for higher-order calculations.

(c) The operator product expansion as explained in [3], or
section 3.4 of [118]. Realizing that the dominant contri-
butions in schemes (a) and (b) come from large momenta
implies that they must come from short distances in posi-
tion space. It is not only very efficient at leading order8, it
also explains why counter-terms are local (see below).

(d) Non-perturbative (NP) functional RG: a rather heavy
machinery, which we believe should be restricted to cases
where other schemes fail (see section 9.2 on RF magnets).

(e) The experimentalist’s point of view: if all RG proce-
dures are equivalent, then we can choose to study the flow
equations by reducing an experimentally relevant param-
eter, here the strength m2 of the confining potential. As
we show below in sections 2.10 and 2.11, the theory can
be defined at any m2, e.g. by doing an experiment or sim-
ulation at this scale. This definition does not make refer-
ence to any perturbative calculation. The latter can then
be viewed as an efficient analytical tool to predict in an
experiment or a simulation the consequences of a change
of the parameter m2.

If we think about standard perturbative RG for φ4 theory,
we remark that the parameter ε controls the order of pertur-
bation theory necessary9, and that at leading order O(ε) the

8 In φ4-theory it gives the two-loop correction to η from a single integral, see
section 3.4 of [118].
9 As a rule of thumb: order n in ε necessitate order n in the interaction

∫
x φ

4(x).

differences boil down to a choice of how to evaluate the ele-
mentary integral (58). For disordered systems, there is an addi-
tional quirk: the interaction termed R(u) in equation (30) is
a function of the field differences, and we have no a-priory
knowledge of its form. It will turn out in the next section 2.2
that we can write down a flow equation for the function R(u)
itself. We would already like to stress that similar to φ4-theory,
the fixed point for R(u) is of order ε, thus the calculation
remains perturbatively controlled.

2.2. Derivation of the functional RG equations

In section 1.7, we had seen that 4 is the upper critical dimen-
sion for SR elasticity, which we treat now. As for standard criti-
cal phenomena [1–7], we construct an ε = (4 − d)-expansion.
Taking the dimensional-reduction result (39) in d = 4 dimen-
sions tells us that the field u is dimensionless there. Thus,
the width σ = −R′′(0) of the disorder is not the only rele-
vant coupling at small ε, but any function of u has the same
scaling dimension in the limit of ε = 0, and might equiva-
lently contribute. The natural conclusion is to follow the full
function R(u) under renormalization, instead of just its second
derivative R′′(0).

Such an RG-treatment is most easily implemented in the
replica approach: the n times replicated partition function led
after averaging over disorder to a path integral with weight
e−Srep[u], with action (30). Perturbation theory is constructed
as follows: the bare correlation function for replicas a and
b, graphically depicted as a solid line, is with momentum k
flowing through, see equations (31)–(33a),

(49)

Note that the factor of T is explicit in our graphical notation,
and not included in the line. The disorder vertex is (we added
an index R0 to R to indicate that this is the microscopic (bare)
disorder)

(50)

The rules of the game are to find all contributions which correct
R, and which survive in the limit of T → 0. At leading order,
i.e. order R2

0, counting of factors T shows that we can use at
most two correlators, as each contributes a factor of T . On the
other hand,

∑
a,b R0(ua − ub) has two independent sums over

replicas10. Thus at order R2
0 four independent sums over repli-

cas appear, and in order to reduce them to two, one needs at
least two correlators (each contributing a δab). Thus, at leading
order, only diagrams with two propagators survive.

Before writing down these diagrams, we need to see what
Wick-contractions do on functions of the field. To see this,
remind that a single Wick contraction (indicated by
sitting on top of the fields to be contracted)

10 The concept of sums over independent replicas already appears in the work
by Brout [102], see footnote 5.
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Realizing that nun−1 = ∂uun, we can write the Wick contrac-
tion for an arbitrary function V(u) as

(52)

Graphically we have at second order for the correction of
disorder

(53)
We have explicitly written all factors: a 1/2! from the expan-
sion of the exponential function exp(−Srep[u]), a factor of
1/(2T2) per disorder vertex, and a factor of T per propagator.
Using these rules, we obtain two distinct contributions

(54)

(55)
Note that all factors of T have disappeared, and only two
replica sums (not written explicitly) remain. Each R0(ua − ub)
has been contracted twice, giving rise to two derivatives. In the
first diagram, since once ua and once ub has been contracted,
each R′′

0 comes with an additional minus sign; these cancel. In
the second diagram, there is a minus sign from the first R′′

0, but
not from the second; thus the overall sign is negative.

Note that the following diagram also contains two correla-
tors (correct counting in powers of temperature), but is not a
two-replica but a three-replica sum,

(56)

In a renormalization program, we are looking for divergences
of these diagrams. These divergences are localized at x = y:
indeed the integral over the difference z := y − x, is in radial
coordinates with r = |z|, ε = 4 − d, and for m → 0 (up to a
geometrical prefactor)∫

z
C(z)2 ∼

∫ L

a

dr
r

rdr2(2−d) =

∫ L

a

dr
r

r4−d

=
1
ε

(Lε − aε) . (57)

Note that for ε→ 0 each scale contributes the same: from r =
1/2 to r = 1 the same as from r = 1/4 to r = 1/2, and again
the same for r = 1/8 to r = 1/4. Thus the divergence comes
from small scales, which allows us to approximate R′′

0(ua(y) −
ub(y)) ≈ R′′

0(ua(x) − ub(x)). This is formally an analysis of the

theory via an operator product expansion. For an introduction
and applications see [3, 118].

Equation (57) is regularized with cutoffs a and L. It is con-
venient to use ε > 0 (what we need anyway), which allows us
to take a → 0 and L →∞ while keeping m finite, as the latter
appears as the harmonic well introduced in section 2.11. The
integral in that limit becomes

(58)

It is the standard one-loop diagram of massive φ4-theory11.
Setting u = ua(x) − ub(x), we obtain for the effective dis-

order correlator R(u) at one-loop order with all combinatorial
factors as given above,

R(u) = R0(u) +

[
1
2

R′′
0(u)2 − R′′

0(u)R′′
0(0)

]
I1 + . . . (60)

We can now study its flow, by taking a derivative w.r.t. m, and
replacing on the rhs R0 with R, as given by the above equation.
This leads to

− m
∂

∂m
R(u) =

[
1
2

R′′(u)2 − R′′(u)R′′(0)

]
εI1. (61)

This equation still contains the factor of εI1, which has both
a scale m−ε, as a finite amplitude. There are two convenient
ways out of this: we can parameterize the flow by the integral
I1 itself, defining

∂�R(u) := − ∂

∂I1
R(u) =

1
2

R′′(u)2 − R′′(u)R′′(0). (62)

This is convenient to study the flow numerically.
To arrive at a fixed point one needs to rescale both R and u,

in order to make them dimensionless. The field u has dimen-
sion u ∼ Lζ ∼ m−ζ , whereas the dimension of R can be read
off from equation (54), namely R(u) ∼ R′′(u)2m−ε, equiva-
lent to R ∼ mε−4ζ . The dimensionless effective disorder R̃, as
function of the dimensionless field u is then defined as

R̃(u) := εI1m4ζR(u = um−ζ). (63)

Inserting this into equation (62), we arrive at12

∂�R̃(u) := − m
∂

∂m
R̃(u) (64)

= (ε− 4ζ)R̃(u) + ζuR̃′(u) +
1
2

R̃′′(u)2 − R̃′′(u)R̃′′(0).

11 The trick to calculate integrals of this type is to write

1
(k2 + m2)2

=

∫ ∞

0
ds s e−s(k2+m2). (59)

The integral over k is then the one-dimensional integral to the power of d.
Finally one integrates over s.
12 � in equations (62) and (64) is different.
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This is the functional RG flow equation for the renormalized
dimensionless disorder R̃(u), first derived in [119] within the
Wilson scheme13. We will in general set u → u in the above
equation, to simplify notations, and suppress the tilde as long
as this does not lead to confusion.

We would like to stress what we already said in section 2.1,
namely that the flow equations we derived as functions of m
have a very intuitive interpretation: since the strength m2 of
the confining potential (5) is a parameter of the experimental
system which does not renormalise (see the next section 2.3),
the RG equation can be taken quite literally: what happens if in
an experiment or a simulation the confining potential is weak-
ened? In a peeling or unzipping experiment (sections 2.32 and
3.17) this even happens during the experiment. The answer is
that for m →∞, one sees the microscopic disorder, while for
smaller m an effective scale-dependent disorder is measured.
This is explained in detail in section 2.11. Before doing this, let
us first ensure that m does not renormalize (next section 2.3),
and then study what happens if m is lowered (section 2.4).

2.3. Statistical tilt symmetry

We claim that there are no renormalizations of the quadratic
parts of the action which are replicated copies of

H0[u] :=Hel[u] +Hconf[u] (65)

given in equations (4) and (5). This is due to the statistical tilt
symmetry (STS)

ua(x) → ua(x) + αx. (66)

As the interaction is proportional to R(ua(x) − ub(x)), the latter
is invariant under the transformation (66). The change inH0[u]
becomes

δH0[u] = c
∫

dd x

[
∇u(x)α+

1
2
α2

]
+ m2

∫
ddx

[
u(x)αx +

1
2
α2x2

]
. (67)

To render the presentation clearer, the elastic constant c set
to c = 1 in equation (30) has been introduced. The important
observation is that all fields u involved are large-scale vari-
ables, which are also present in the renormalized action, where
they change according toHren[u] →Hren[u] + δHren[u]. Since
one can either first renormalize and then tilt, or first tilt and
then renormalize, we obtain δHren

0 [u] = δHbare
0 [u]. This

means that neither the elastic constant c, nor m change under
renormalization.

2.4. Solution of the FRG equation, and cusp

We now analyze the FRG flow equations (62) and (64). To
simplify our arguments, we first derive them twice w.r.t. u, to

13 The RG flow equation (64) is at this order independent of the RG scheme.
Universal quantities are scheme-independent to all orders [2, 112–114, 118].

obtain flow equations for Δ(u) ≡ −R′′(u). This yields

No rescaling: ∂�Δ(u) = −∂2
u

1
2

[
Δ(u) −Δ(0)

]2
, (68)

With rescaling: ∂�Δ̃(u) = (ε− 2ζ)Δ̃(u) + ζuΔ̃′(u)

− ∂2
u

1
2

[
Δ̃(u) − Δ̃(0)

]2
. (69)

For concreteness, consider equation (68), and start with an
analytic function,

Δ�=0(u) = e−u2/2. (70)

According to our classification, this is microscopically RF dis-
order. Since Δ(u) −Δ(0) grows quadratically in u at small u,
the rhs of equation (68) also grows ∼u2 at u = 0, and both
Δ(0) as well as Δ′(0+) do not flow in the beginning. This can
be seen on the plots of figure 5.

Integrating further, a cusp forms, i.e. Δ′′(0) →∞, and as a
consequence Δ′(0+) becomes non-zero. This is best seen by
taking two more derivatives of equation (68), and then taking
the limit of u → 0,

∂�Δ
′′(0+) = −3Δ′′(0+)2 − 4Δ′(0+)Δ′′′(0+). (71)

Since in the beginningΔ′(0+) = 0, only the first term survives.
Its behavior crucially depends on the sign of Δ′′(0). In the
example (70), Δ′′

�=0(0) < 0. This is true in general, as can be
seen by rewriting equation (10) for the unrescaled microscopic
disorder correlator at x = x′, as

Δ(0) −Δ(u − u′) =
1
2

〈
[F(x, u) − F(x, u′)]2

〉
� 0. (72)

Developing the lhs for small u − u′ with a vanishing first
derivative implies that Δ′′(0) < 0, valid also for the rescaled
Δ′′(0).

Integrating equation (71) with this sign yields

Δ′′
� (0) =

Δ′′
0(0)

1 + 3Δ′′
0(0)�

= −1
3

1
�c − �

,

�c = − 1
3Δ′′

0(0)

Δ′′
0(0)=−1

−−−−−−→ 1
3
.

(73)

In the last equality we used the initial condition (70). With
this, Δ′′

� (0) diverges at � = 1
3 , thus Δ�(u) acquires a cups,

i.e. Δ′
�(0

+) �= 0 for all � > 1/3. Physically, this is the scale
where multiple minima appear. In terms of the Larkin-scale Lc

defined in section 1.7

�c = ln(Lc/a). (74)

Our numerical solution shows the appearance of the cusp only
approximately, see the inset in the top right plot of figure 5.
This discrepancy comes from discretization errors. It is indeed
not simple to numerically integrate equation (68) for large
times, as Δ′′

� (0) diverges at � = �c, and all further derivatives
at u = 0+ were extracted from numerical extrapolations of the
obtained functions, in the limit of u → 0.
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Figure 5. (Top) Change of Δ(u) := − R′′(u) under renormalization and formation of the cusp. (Left) Explicit numerical integration of
equation (62), starting from Δ(u) = e−u2/2 (in solid black, top curve for u → 0). The function at scale � is shown in steps of δ� = 1/20.
(Inset) Blow-up. (Right) plots of Δ′(u). (Inset) Δ′(0+) as a function of �. The cusp appears for � = 1/3 (red dot); dashed lines are before
appearance of the cusp, and solid lines after. (Bottom) The same as the top line for RB disorder, starting from R(u) = e−u2/2; the cusp
appears for � = 1/9; δ� = 1/60.

Interpreting derivatives in this sense is an assumption, to
be justified, without which one cannot continue to integrate
the flow equations. In this spirit, let us again look at the flow
equation for Δ(0), now including the rescaling terms,

∂�Δ̃(0) = (ε− 2ζ)Δ̃(0) − Δ̃′(0+)2. (75)

This equation tells us that as long as Δ′(0+) = 0,

ζ�<�c 
 ζDR =
ε

2
=

4 − d
2

, (76)

the dimensional-reduction result. Beyond that scale, we have
(as long as we are at least close to a fixed point)

ζ�>�c =
ε

2
− Δ′(0+)2

Δ(0)
<

ε

2
, (77)

since both Δ′(0+)2 and Δ(0) are positive.
Let us repeat our analysis for RB disorder, starting from the

microscopic disorder

R0(u) = e−u2/2 ⇐⇒ Δ(u) = e−u2/2(1 − u2). (78)

This is shown on the bottom of figure 5. Phenomenologically,
the scenario is rather similar, with a critical scale �c = 1/9
instead of 1/3.

2.5. Fixed points of the FRG equation

We had seen in the last section that integrating the flow-
equation explicitly is rather cumbersome; moreover, an esti-
mation of the critical exponent ζ will be rather imprecise. For
this purpose, it is better to directly search for a solution of the
fixed-point equation (69), i.e. ∂�Δ̃(u) = 0,

0 = (ε− 2ζ)Δ̃(u) + ζuΔ̃′(u) − ∂2
u

1
2

[
Δ̃(u) − Δ̃(0)

]2
. (79)

We start our analysis with situations where u is unbounded,
as for the position of an interface. Then the fixed point is not
unique; indeed, if Δ̃(u) is solution of equation (79), so is

Δ̃κ(u) :=κ−2Δ̃(κu). (80)

2.6. Random-field (RF) fixed point

There is one solution we can find analytically: to this purpose
integrate equation (79) from 0 to ∞, assuming that Δ̃(u) has a
cusp at u = 0, but no stronger singularity,

0 =

∫ ∞

0
(ε− 2ζ)Δ̃(u) + ζuΔ̃′(u)

− ∂2
u

1
2

[
Δ̃(u) − Δ̃(0)

]2
du. (81)
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Integrating the second term by part, and using that the last term
is a total derivative which vanishes both at 0 and at ∞ yields

0 = (ε− 3ζ)
∫ ∞

0
Δ̃(u) du. (82)

This equation has two solutions: either the integral vanishes,
which is the case for RB disorder14, or

ζRF =
ε

3
. (83)

This is the exponent (22) (at N = 1) predicted by a Flory argu-
ment. Let us remark that equation (81) remains valid to all
orders in ε, as long as Δ(u) is the second derivative of R(u),
s.t. the additional terms at two- and higher-loop order are all
total derivatives, as is the last term in equation (79).

Let us pursue our analysis with the solution (83). Inserting
equation (83) into equation (79), and setting

Δ̃(u) =
ε

3
y(u) (84)

yields

∂u

[
uy(u) − 1

2
∂u

(
y(u) − y(0)

)2
]
= 0. (85)

This implies that the expression in the square bracket is a con-
stant, fixed to 0 by considering either the limit of u → 0 or
u →∞. Simplifying yields

uy(u) + [y(0) − y(u)] y′(u) = 0. (86)

Dividing by y(u) and integrating once again gives

u2

2
− y(u) + y(0) ln(y(u)) = const. (87)

Let us now use equation (80) to set y(0) → 1. This fixes the
constant to −1. Dropping the argument of y, we obtain

y − ln(y) = 1 +
u2

2
. (88)

This is plotted on figure 6.

2.7. Random-bond (RB) and tricritical fixed points

The other option for a fixed point is to have the integral in
equation (82) vanish, ∫ ∞

0
Δ̃RB(u) = 0. (89)

A numerical analysis of the fixed-point equation (79) proceeds
as follows: choose Δ̃(0) = 1; choose ζ; solve the differen-
tial equation (79) for Δ̃′′(u). Integrate the latter from u = 0
to u = ∞. In practice, to avoid numerical problems for u ≈ 0,
one first solves the differential equation in a Taylor-expansion
around 0; as the latter does not converge for large u one then

14 For RB disorder
∫ ∞

0
du Δ̃(u) = −

∫ ∞

0
du R̃′′(u) = R̃′(0) − R̃′(∞) = 0.

solves, with the information from the Taylor series evaluated at
u = 0.1, the differential equation numerically up to u∞ ≈ 30.
One then reports, as a function of ζ, the value of Δ̃(u∞). As
in quantum mechanics, one finds that there are several discrete
values of ζ with Δ̃(u∞) = 0. The largest value of ζ is the one
given in equation (83), where Δ̃(u) has no zero crossing. The
next smaller value of ζ is

ζRB = 0.208 298ε. (90)

The corresponding function is plotted on figure 6 (right). It has
one zero-crossing. Consistent with equation (82), it integrates
to zero. This is the RB fixed point. It is surprisingly close, but
distinct, from the Flory estimate (21), ζ = ε/5.

For ε = 3 we have the directed polymer (d = 1) in dimen-
sion N = 1, which has roughness ζRB

d=1 =
2
3 . Our result (90)

yields ζ(d = 1) = 0.624 894 +O(ε2). This is quite good,
knowing that ε = 3 is rather large. This value gets improved
at two-loop order (see section 2.13), with ζ(d = 1) =
0.686 616 +O(ε3). Despite the ‘strange cusp’, it seems the
method works!

The next solution is at

ζ3crit = 0.143 66ε. (91)

It has two zero-crossings, and corresponds to a tricritical point.
We do not know of any physical realization.

2.8. Generic long-ranged fixed point

If ζ is not one of these special values, then the solution of the
fixed-point equation (79) decays algebraically: suppose that
Δ(u) ∼ uα. Then the first two terms of equation (79) are dom-
inant over the last one, as long as α < 2. Solving equation (79)
in this limit one finds

Δζ (u) ∼ u2− ε
ζ for u →∞. (92)

An important application are the ABBM and BFM models
discussed in sections 4.3 and 4.5, for which

ζABBM = ε, ΔABBM(0) −ΔABBM(u) = σ|u|, (93)

such that the correlations of the random forces have the statis-
tics of a RW. One easily checks that the flow equation (62) van-
ishes for all u > 0. In this case Δ(0) is formally infinite, s.t. the
bound (77) does not apply. Generically, however, equation (77)
applies, implying that the exponent in equation (92) is nega-
tive, and Δζ (u) decays algebraically. This is what we mostly
see in numerical solutions of the fixed-point equation (79).

2.9. Charge-density wave (CDW) fixed point

In the above considerations, we had supposed that u can take
any real value. There are important applications where the dis-
order is periodic, or u is a phase between 0 and 2π. This is the
case for the CDWs introduced above. To be consistent with the
standard conventions employed in the literature [120–125], we
take the period of the disorder to be 1. One checks that the

15



Rep. Prog. Phys. 85 (2022) 086502 Review

Figure 6. (Left) The RF fixed point (88) with ζRF = ε
3 . (Right) The RB fixed point (90), with ζRB = 0.208 298ε.

following ansatz is a fixed point of the FRG equation (79)

ζRP = 0,

ΔRP(u) =
g

12
− g

2
u(1 − u),

0 � u � 1.

(94)

This ansatz is unique, due to the following three constraints: (i)
ζ = 0, as the period is fixed and cannot change under renor-
malization. (ii) Δ(u) = Δ(−u) = Δ(1 − u) due to the sym-
metry u →−u, and periodicity. Thus Δ(u) is a polynomial in
u(1 − u). (iii) A polynomial of degree 2 in u closes under RG.
(iv) The integral

∫ 1
0 duΔ(u) = 0, since Δ(u) = −R′′(u), and

R(u) itself is periodic. The fixed point has

g =
ε

3
+ . . . (95)

Instead of a universal scaling exponent ζ , the latter vanishes,
ζ = 0. As a consequence, the two-point function is logarith-
mic in all dimensions, with a universal amplitude given in
equations (119)–(120b). Apart from geometric prefactors, this
amplitude is simply the fixed-point value g.

2.10. The cusp and shocks: a toy model

Let us give a simple argument why a cusp is a physical neces-
sity, and not an artifact. The argument is quite old and appeared
probably first in the treatment of correlation-functions by
shocks in Burgers turbulence. It became popular in [126]. We
want to solve the problem for a single degree of freedom which
sees both disorder and a parabolic trap centered at w, which we
can view as a spring attached to the pointw. This is graphically
represented on figure 7 (upper left), with the quenched disor-
der realization having roughly a sinusoidal shape. For a given
disorder realization V(u), the minimum of the potential as a
function of w is

V̂(w) :=min
u

[
V(u) +

m2

2
(u − w)2

]
. (96)

This is reported on figure 7 (upper right). Note that it has non-
analytic points, which mark the transition from one minimum

to another. The remaining parts are parabolic, and stem almost
entirely from the spring, as long as the minima of the disor-
der are sharp, i.e. have a high curvature as compared to the
spring. This is rather natural, knowing that the disorder varies
on microscopic scales, while the confining potential changes
on macroscopic scales.

Taking the derivative of the potential leads to the force in
figure 7 (lower left). It is characterized by almost linear pieces,
and shocks (i.e. jumps). Let us now calculate the correlator of
forces F(u) := −∇V̂(u),

Δ(w) := F(w′)F(w′ − w)c. (97)

Here the average is over disorder realizations, or equivalently
w′, on which it should not depend. Let us analyze its behavior
at small distances,

Δ(0) −Δ(w) =
1
2

[F(w′) − F(w′ − w)]2

=
1
2

pshock(w)
〈
δF2

〉
+O(w2). (98)

As written, the leading contribution is proportional to the prob-
ability to have a shock (jump) inside the window of size w,
times the expectation of the second moment of the force jump
δF. If shocks are not dense, then the probability to have a shock
is given by the density ρshock of shocks times the size w of the
window, i.e.

pshock(w) 
 ρshock|w|. (99)

Let us now relate δF to the change in u; as the spring-constant
is m2,

δF = m2δu ≡ m2S. (100)

Here we have introduced the avalanche size S := δu. Putting
everything together yields

Δ(0) −Δ(w) =
m4

2

〈
S2
〉
ρshock|w|+O(w2). (101)

We can eliminate ρshock by observing that on average the
particle position u follows the spring, i.e.

w = u(w′ + w) − u(w′) = 〈S〉 ρshockw. (102)
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Figure 7. Generation of the cusp, as explained in the main text.

This yields

ρshock =
1
〈S〉 . (103)

Expanding equation (101) in w, and retaining only the term
linear in w yields

−Δ′(0+) = m4

〈
S2
〉

2 〈S〉 . (104)

We just showed that having a cusp non-analyticity in Δ(w)
is a necessity if the system under consideration has shocks or
avalanches. The latter are a consequence of metastability (i.e.
existence of local minima), thus metastability implies a cusp
in Δ(w).

2.11. The effective disorder correlator in the field-theory

The above toy model can be generalized to the field theory
[127]. Consider an interface in a random potential, as given by
equations (4)–(6)

Hw
tot[u] =

∫
x

m2

2
[u(x) − w]2 +Hel[u] +Hdis[u]. (105)

Physically, the role of the well is to forbid the interface to wan-
der off to infinity. This avoids that observables are dominated
by rare events. In each sample (i.e. disorder configuration),
and givenw, one finds the minimum-energyconfiguration. The

corresponding ground-state energy, or effective potential, is

V̂(w) :=min
u(x)

Hw
tot[u]. (106)

Let us call umin
w (x) this configuration. Its center-of-mass posi-

tion is

uw :=
1
Ld

∫
x
umin
w (x). (107)

Both V̂(w) and uw vary with w as well as from sample to sam-
ple. Let us now look at their second cumulants. The effective
potential V̂(w) defines a function R(w),

R(w − w′) :=L−dV̂(w)V̂(w′)c. (108)

This is the same function as computed in the field theory,
defined there from the zero-momentum action. The factor of
volume Ld is necessary. The interface is correlated over a
length ξ = 1/m, while its width u2 is bounded by the confining
well. This means that the interface is made of roughly (L/ξ)d

independent pieces of length ξ: equation (108) expresses the
central-limit theorem and R(w) measures the second cumu-
lant of the disorder seen by any one of the independent
pieces.

The nice thing about equation (108) is that it can be
measured. One varies w and computes (numerically) the
new ground-state energy, finallying averaging over disorder
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Figure 8. Filled symbols show numerical results for Δ(u), a normalized form of the interface displacement correlator −R′′(u)
(equation (111)), for D = 2 + 1 RF and D = 3 + 1 RB disorders. These suggest a linear cusp. The inset plots the numerical derivative
Δ′(u), with intercept Δ′(0+) ≈ −0.807 from a quadratic fit (dashed line). The points are for confining wells with width given by m2 = 0.02.
Comparisons to one-loop FRG predictions (curves) are made with no adjustable parameters. Reprinted figure with permission from [128],
Copyright (2007) by the American Physical Society.

realizations. In fact, what is even easier to measure are the fluc-
tuations of the center-of-mass position uw, related to the total
force acting on the interface. To see this, write the condition
for the interface to be in a minimum-energy configuration,

0 = −δH[u]
δu(x)

= ∇2u(x) − m2[u(x) − w] + F (x, u(x)) ,

F(x, u) = −∂uV(x, u). (109)

Integrating over space, and using periodic boundary condi-
tions, the term ∼∇2u(x) vanishes. At the minimum-energy
configuration umin

w (x), this yields

m2(uw − w) =
m2

Ld

∫
x
umin
w (x) − w

=
1
Ld

∫
x
F
(
x, umin

w (x)
)
=: F̂(w). (110)

The last equation defines the effective force F̂(w). Its second
cumulant reads

F̂(w)F̂(w′)c ≡ m4[w − uw][w′ − uw′]c

= L−dΔ(w − w′). (111)

Taking two derivatives of equation (108), one verifies that
the effective correlators for potential and force are related
by Δ(u) = −R′′(u), as in the microscopic relation (11).
Equation (104) remains valid (without an additional factor of
Ld).

2.12. Δ(u) and the cusp in simulations

A numerical check has been performed in [128], using a pow-
erful exact-minimization algorithm, which finds the ground
state in a time polynomial in the system size. The result of
these measurements is presented in figure 8. The functionΔ(u)
is normalized to 1 at u = 0, and the u-axis is rescaled (to yield
integral 1) to eliminate all non-universal scales. As a result,
the plot is parameter free, thus what one compares is purely
the shape. It has several remarkable features. Firstly, it shows
that a linear cusp exists in all dimensions. Next it is very close
to the one-loop prediction. Even more remarkably the statis-
tics is good enough to reliably estimate the deviations from
the two-loop predictions of [125], see figure 9.

While we vary the position w of the center of the well, it is
not a real motion. Rather it means to find the new ground state
given w. Literally moving w is another interesting possibility:
it measures the universal properties of the so-called depinning
transition, see section 3.

A technical point. A field theory is usually defined by its
partition function Z[J] in presence of an applied field J. To
obtain the effective action Γ(u), one evaluates the free energy
F [J] := − kT ln Z[J], and then performs a Legendre trans-
form from F [J] to Γ[u]. The effective action, solution of
the FRG flow equation, is the two-replica term in Γ[u], and
not F [J] itself. When measuring the force–force correlations
in equation (111), these are technically part of F [J = m2w].
Passing from F [J] to Γ[u] is achieved by amputating the cor-
relation function. Due to the STS discussed in section 2.3, the
latter does not renormalize. For the zero-mode (zero momen-
tum) we consider, this amounts to multiplying twice with m2,
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Figure 9. The measured Δ(u) in equilibrium with the one-loop (red) and two-loop corrections (blue) subtracted. (Left) RB-disorder d = 2.
(Right) RF-disorder d = 3. One sees that the two-loop corrections improve the precision, and that the second-order correction is stronger in
d = 2 than in d = 3.

resulting in the prefactor of m4 in equation (111). In the dynam-
ics, this remains true in the limit of a vanishing driving velocity.
These points are further discussed in [82, 127–131].

2.13. Beyond one-loop order

We have successfully applied functional renormalization at
one-loop order. From a field theory, we demand more. Namely
that it

(a) be renormalizable15,
(b) allows for systematic corrections beyond one-loop order,
(c) and thus allows us to make universal predictions.

This has been a puzzle since 1986, and it was even sug-
gested that the theory is not renormalizable due to the appear-
ance of terms of order ε

3
2 [132]. Why is the next order so

complicated? The reason is that it involves terms proportional
to R′′′(0). A look at figure 5 or 8 explains the puzzle. Shall we
use the symmetry of R(u) to conclude that R′′′(0) is 0? Or shall
we take the left-hand or right-hand derivatives, related by

R′′′(0+) := lim
u>0
u→0

R′′′(u) = − lim
u<0
u→0

R′′′(u) =: − R′′′(0−). (112)

Below, we present the solution of this puzzle, obtained at
two- and three-loop order. This is then extended to finite N
(section 2.17), compared to large N (section 2.18), and the
driven dynamics (section 3).

The flow-equation was first calculated at two-loop order
without the anomalous terms ∼R′′′(0+)2 [133]. The full result
with the necessary anomalous terms was first obtained at
two-loop order [123, 125, 134–136], and later extended to
three-loop order [40, 41]

∂�R̃(u) = (ε − 4ζ) R̃(u) + ζuR̃′(u)

+
1
2

R̃′′(u)2 − R̃′′(u)R̃′′(0)

15 Renormalizability is a key concept of (perturbative) field theory about the
organization of the leading divergences in perturbation theory, which imposes
constraints on higher-order diagrams. These constraints were historically
important to derive the RG equation at two-loop order [123, 125].

+

(
1
2
+C1ε

)[(
R̃′′(u)−R̃′′(0)

)
R̃′′′(u)2−R̃′′′(0+)2R̃′′(u)

]
+ C4

{
R̃′′(u)

[
R̃′′′(u)2R̃′′′′(u) − R̃′′′(0+)2R̃′′′′(0+)

]
− R̃′′(0+)R̃′′′(u)2R̃′′′′(u)

}
+ C3

[
R̃′′(u) − R̃′′(0+)

]2
R̃′′′′(u)2

+ C2
[
R̃′′′(u)4 − 2R̃′′′(u)2R̃′′′(0+)2

]
(113a)

C1 =
1

36

[
9 + 4π2 − 6ψ′

(
1
3

)]
= −0.335 976, (113b)

C2 =
3
4
ζ(3) +

π2

18
− ψ′ ( 1

3

)
12

= 0.608 554, (113c)

C3 =
ψ′ ( 1

3

)
6

− π2

9
= 0.585 977, (113d)

C4 = 2 +
π2

9
− ψ′ ( 1

3

)
6

= 1.414 023. (113e)

The first line contains the rescaling terms, the second line the
result at one-loop order, already given in equation (64). The
third line is new; setting there ε = 0 is the two-loop result.
All remaining terms (proportional to C1, . . . , C4) are three-loop
contributions, which we put here for completeness.

Consider now the last term of the third line, which involves
R′′′(0+)2 and which we call anomalous. The hard task is to fix
the prefactor −1. There are different prescriptions to do this:
the sloop-algorithm, recursive construction, reparametrization
invariance, renormalizability, potentiality and exact RG [41,
123, 125]. For lack of space, let us consider only renormaliz-
ability, a necessary property for a field theory. The following
two-loop diagram leads to the anomalous term

(114)
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The momentum integral is

(115)
In units where the one-loop integral (58) is 1/ε, it reads

(116)

The integral (114) contains a sub-divergence, which is indi-
cated by the red dashed box, and which yields the leading
1/ε2 term in equation (116). Renormalizability demands that
this term be canceled by a one-loop counter-term. The latter
is unique; it is obtained by replacing R(u) in the one-loop cor-
rection δR(u) = 1

2 R′′(u)2 − R′′(u)R′′(0) by δR(u) itself; the last
term then yields

δR′′(0) := lim
u→0

δR′′(u) = lim
u→0

R′′′(u)2 = R′′′(0+)2. (117)

This fixes the prefactor of the last (anomalous) term in the third
line of equation (113a).

A physical requirement is that the disorder correlations
remain potential, i.e. that forces are derivatives of a potential.
The force–force correlations being−R′′(u), this means that the
flow of R′(0+) has to vanish. (The simplest way to see this is
to study a periodic potential.) From equation (113a) one can
check that this does not remain true if one changes the pref-
actor of the last term in the third line of equation (113a); thus
fixing it.

RP disorder. Let us give results for cases of physical inter-
est. First of all, for a periodic potential (RP), which is relevant
for CDWs, the fixed-point function can be calculated analyti-
cally. With the notations of equations (94) and (95) this reads
(with the choice of period 1, u ∈ [0, 1])

RRP(u) = −u2(1 − u)2 g
24

+ const., (118a)

ΔRP(u) =
g

12
− g

2
u(1 − u), (118b)

g =
ε

3
+

2ε2

9
+

ε3

81

[
9 + 2π2 − 18ζ(3) − 3ψ′

(
1
3

)]
+O(ε4). (118c)

This gives a universal amplitude for the two-point function at
two-loop [123] and three-loop order [40],

ũ(q)ũ(−q)
∣∣
q=0

=
g

6md
. (119)

This in turn leads to a logarithmic growth of the two-point
function in position space. The amplitude is more compli-
cated to extract, as one needs to extract the asymptotic behav-
ior of scaling functions involved in this transformation. Using

equations (4.13)–(4.18) of [40],16 it can be written as

1
2

[u(x) − u(0)]2 =
gB(d)

6(4π)
d
2 Γ( d

2 )
ln

(
|x|
L

)
, (120a)

B(d) =
1 + 0.134 567ε
1 + 1.134 567ε

+O(ε3). (120b)

RF disorder. For RF disorder, the argument given in
equation (82) is still valid, and ζ = ε

3 remains valid, equiva-
lent to the Flory estimate (22). The fixed-point function Δ(u)
changes, and can up to three-loop order be given analytically
[40].

RB disorder. For RB disorder (short-ranged potential–
potential correlation function) we have to solve
equation (113a) numerically, order by order in ε. The
result is [40]

ζRB = 0.208 298 04ε+ 0.006 858ε2 − 0.010 75ε3 +O(ε4).

(121)

This compares well with numerical simulations, see figure 10.
It is also surprisingly close to, but distinct from, the Flory esti-
mate (21), ζ = ε/5. For d = 1 (ε = 3) it gets close to the exact
value [108]

ζd=1
RB =

2
3
. (122)

The fixed-point functionΔ(u) can be obtained up to three-loop
order numerically [40].

2.14. Stability of the fixed point

Having found a fixed point,

∂�Δ(u) = β[Δ](u) = 0, (123)

one has to ascertain that it is stable. Linear stability is analyzed
by considering infinitesimal perturbations of the fixed point

δβ[Δ, z](u) :=
d
dκ

β[Δ+ κz](u)

∣∣∣∣
κ=0

. (124)

Assuming that Δ(u) is a solution of equation (123), the eigen-
value equation reads

δβ[Δ, z](u) = −ωz(u). (125)

The exponent ω, if it exists, is the standard correction-to-
scaling exponent [2] associated to the eigen-mode z(u). In con-
trast to standard RG, more than one eigen-mode may exist. The
solutions to equation (125) depend on the universality class.

First, for the periodic fixed point (118a), there is a discrete
spectrum of solutions17,

ω−1 = −ε, z−1(u) = 1. (126a)

ω1 = ε− 2
3
ε2 +

5 + 12ζ(3)
9

ε3 +O(ε4), (126b)

16 Equation (4.15) of [40] should read Fd(0) = 1.
17 As in [140] we use the high-energy-physics conventions with ω > 0 for an
IR-attractive fixed point. This is opposite to some earlier work, as the leading
solution given in [40].
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Figure 10. Roughness exponent for RB disorder obtained by an ε-expansion in comparison with exact results and numerical simulations. In
the fourth column is an estimate value using a (2, 1)-Padé approximant of the three-loop result.

z1(u) = 1 − 6u(1 − u).

ω2 = 4ε− 5ε2 +
5
6

[13 + 12ζ(3)]ε3 +O(ε4), (126c)

z2(u) = 1

−
{

15 + 5ε− 5
6
ε2

[
12ζ(3) + 5 + 2π2 − 3ψ′

(
1
3

)]}
u(1 − u)

+

{
45 + 25ε− 25

6
ε2 [

12ζ(3) + 5 + 2π2− 3ψ′
(

1
3

)] }
[u(1 − u)]2

ω3 =
25ε
3

− 140ε2

9
+

70
9

[4ζ(3) + 7] ε3 +O(ε4) (126d)

...

The first solution ω−1 = −ε is relevant, and comes with a con-
stant perturbation for Δ(u). It is inadmissible in equilibrium,
where

∫
u Δ(u) = 0, but shows up at depinning, see section 3.

Thus the leading perturbation is z1(u), proportional to the
fixed-point solution Δ∗(u) itself. As the flow in this subspace
can be represented by the flow of a single coupling constant g,
the β-function must be a polynomial in g, and at leading order
it is a parabola. This parabola has two fixed points, with slope
−ε at g = 0 and consequently slope ε at the non-trivial fixed
point. This explains why the eigenvalue ω1 starts with ε, mak-
ing the fixed point stable, exactly as in scalar φ4 theory [2].
The following solutions zn(u) can be classified by their maxi-
mal order in [u(1 − u)]n. One sees that the larger n, the larger
ωn. Thus this fixed point is perturbatively stable.

The analysis is more difficult for the non-periodic fixed
points, i.e. those which allow for a non-trivial exponent ζ > 0.
The RB and RF fixed points above belong to this class. While
a proof of stability even for the one-loop fixed point is still
lacking, there are two analytical solutions which can be given
([50], section 7):

ω0 = 0 (127)

z0(u) = uΔ′(u) − 2Δ(u)

ω1 = ε (128)

z1(u) = ζuΔ′(u) + (ε− 2ζ)Δ(u).

The first one is a redundant perturbation in the sense of Wegner
[141]: it is a consequence of the invariance of the β-function
under the rescaling Δ(u) → κ−2Δ(κu). In conformal field the-
ory, redundant operators are associated to null states [142].
Their eigenvalues have no physical meaning. The dominant
solution thus is ω1, z1(u), which for ζ = 0 reduces (at lead-
ing order) to equation (126b). Subleading solutions can be
constructed numerically.

To conclude, we believe that all the FRG fixed points
discussed above are perturbatively stable, and that the lead-
ing eigenvalue, i.e. correction-to-scaling exponent is ω1 = ε+
O(ε2). Order-ε2 corrections depend on the universality class.
Subleading solutions can be constructed manually [40].

2.15. Thermal rounding of the cusp

Generalities. As we have seen, a cusp non-analyticity neces-
sarily arises at zero temperature, due to the jumps between
metastable states. Interestingly, this cusp can be rounded by
several effects: by a non-zero temperature T > 0 (see below),
disorder chaos as defined in section 2.16, or a non-zero driving
velocity in the dynamics (section 3.11).

Let us start by a finite temperature, which is easy to include
in the FRG equation [143]. The additional one-loop correction
to R(u) is

(129)

(130)

The combinatorial factor is 2 for the two ends of the interac-
tion, and 1/2 accompanying the second derivative; this can
be checked for R(ua − ub) = (ua − ub)2. The RG flow of the
tadpole diagram is

(131)

with I1 given in equation (58). This leads to the β-function

∂�R̃(u) = (ε− 4ζ) R̃(u) + ζuR̃′(u)

+
1
2

R̃′′(u)2 − R̃′′(u)R̃′′(0) + T̃�R̃
′′(u). (132)

The dimensionless temperature T̃� is

T̃� :=
2T
ε

(
εI1 |m=1

)
mθ =

2T
ε

(
εI1 |m=1

)
e−θ�. (133)

The power of m is obtained from equation (63) as the scaling
of m2R̃′′(u), i.e. m2−ε+2ζ = md−2+2ζ = mθ. Although T̃� finally
flows to zero since θ > 0 (see equation (45)), in equation (132)
it acts as a ‘diffusion’ term smoothening the cusp. In fact,
at non-zero temperature there is no cusp, and R(u) remains
analytic. The convergence to the fixed point is non-uniform.
For u fixed, R̃(u) rapidly converges to the zero-temperature
fixed point, except near u = 0, or more precisely in a bound-
ary layer of size u ∼ T̃�, which shrinks to zero in the large-
scale limit �→∞, i.e. m → 0. Non-trivial consequences are:
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the curvature blows up as R′′′′(0) ∼ eθ�/T ∼ Lθ/T. We show
in section 2.21 that this is related to the existence of thermal
excitations, or droplets in the statics [144], and of barriers in
the dynamics, which grow as Lθ [145].

An analytic solution for the thermal boundary layer. Con-
sider the flow equation (132) for RF disorder. Following
section 2.5, we solve it analytically. Setting

−R̃′′(u) ≡ Δ̃(u) =
ε

3
κ−2yt(κu) (134)

yt(0) = 1, T̃� =
ε

3
κ−2t, (135)

and taking two derivatives of equation (132) yields in general-
ization of equation (85)

∂u

[
uyt(u) − 1

2
∂u

(
yt(u) − 1

)2
+ ty′t(u)

]
= 0. (136)

The expression in the square brackets is a constant, fixed to 0
by considering the limit of u →∞. Simplifying gives

uyt(u) + [t + 1 − yt(u)] y′t(u) = 0. (137)

Dividing by yt(u) and integrating once more we arrive at

u2

2
+ (t + 1) ln(yt(u)) − yt(u) = −1. (138)

The integration constant was fixed by considering the limit of
u → 0, yt → 1. This is an explicit analytic solution, plotted on
figure 11.

It is instructive to relate this to the solution at t = 0, which
will guide us to a general finite-T approximation. To this aim,
rewrite equation (138) as

u2

2(1 + t)
= − ln (yt(u)) − 1 − yt(u)

1 + t
. (139)

It can be reduced to the solution y0 at t = 0, by setting
yt → (1 + t)y0, u2 → u2(1 + t) − 2 ln(1 + t)(1 + t) + 2t. As a
consequence,

yt(u) = (1 + t)y0

(√
u2 − 2t
1 + t

+ 2 ln(1 + t)

)
. (140)

Finally using the rescaling invariance (134), we find yet
another solution of the flow equation,

ỹt(u) :=
1

1 + t′
yt′

(
u
√

1 + t′
)

(141a)

t =
t′

1 + t′
⇐⇒ t′ =

t
1 − t

. (141b)

Using this and the rhs of equation (140) yields

ỹt(u) = y0

(√
u2 − 2t

t + 1
+ 2 ln(t + 1)

)

≈ y0

(√
u2 + t2

)
. (142)

This solution, often in the approximate form of the second line,
is commonly used in a boundary-layer analysis. The idea of

the latter is to match a solution in one range, say at small u, for
which TΔ̃′′(u) is large but the non-linear terms in ∂�Δ̃(u) can
be neglected, to a solution at large u, where the former can be
neglected. As a consequence,

lim
t→0

lim
u→0

t∂2
u ỹt(u) = lim

u→0
lim
t→0

∂uỹt(u). (143)

To rewrite this in terms of Δ̃(u) is not immediate as we do
not know the scale κ. However, we can derive a relation
directly from the one-loop flow equation for Δ̃(u), obtained
from equation (132) after taking two derivatives

∂�Δ̃(u) = (ε− 2ζ) Δ̃(u) + ζuΔ̃′(u)

− ∂2
u

1
2

[
Δ̃(u) − Δ̃(0)

]2
+ T̃�Δ̃

′′(u). (144)

Suppose that the fixed point is attained and the lhs vanishes.
Evaluating equation (144) once for T̃� = 0, i.e. T̃� → 0 and
then u → 0, and once for finite T̃�, where the limit u → 0 is
taken first, we obtain

(ε− 2ζ) Δ̃(0) =

⎧⎪⎨⎪⎩
Δ̃′(0+)2, T̃� = 0

− lim
T̃�→0

T̃�Δ̃
′′(0), T̃� > 0.

(145)

This implies

Δ̃′(0+)2
∣∣∣
T�=0

= − lim
T̃�→0

T̃�Δ̃
′′(0)

∣∣∣∣
T̃�>0

. (146)

There is a large mathematics and physics literature on the sub-
ject. Relevant keywords are boundary layer (physics literature)
or singular perturbation theory (mathematics literature); a few
references to start with are [146–149].

Check for a toy model. Consider a particle subject to peri-
odic disorder (CDW, RP universality class). Suppose that the
minimum of the random potential is at u = u0 + ni, i ∈ Z,
and that this minimum is rather sharp. Then for small m, the
effective potential V̂(w) is

V̂(w) = −T ln

(∑
i∈Z

exp

(
− (w − i − u0)2m2

2T

))
. (147)

The effective force is

F̂(w) = −∂wV̂(w). (148)

We need the force–force correlator, which is obtained as

ΔT(w) =
〈
F̂(w)F̂(0)

〉c
=

∫ 1

0
du0 F̂(w)F̂(0). (149)

For T = 0 we find at m = 1

Δ0(w) =
1

12
− 1

2
w(1 − w). (150)

This solution is shown in blue in figure 11 (right). There is
also the numerically evaluated integral (149) (red, dashed). Let
us finally consider the FRG-equation for the rescaled disorder
Δ̃T(w) :=m4Δ(w),
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Figure 11. (Left) The RF-solution yt given in equation (138). (Middle) The rescaled solution ỹt given in equation (141a). (Right) Solution
for the toy model. The blue line is the exact result at t = T = 0; the red dashed line is the numerical integral (149) for t = T|m=1 = 0.02; the
green dotted line is the boundary-layer approximation (153).

∂�Δ̃T (w) = 4Δ̃T (w) − 4∂2
u

1
2

[
Δ̃T(w) − Δ̃T(0)

]2

+ 2Tm2Δ̃′′
T (w). (151)

The prefactors in their order of appearance are: ε = 4,
4 = −m∂m ln I1 from the one-loop diagram I1, and
2 = −m∂m ln ITP from the tadpole ITP defined in
equation (130). Thus the FP equation at m = 1 is as
above

0 = Δ̃T(w) − ∂2
u

1
2

[
Δ̃T (w) − Δ̃T (0)

]2
+

T
2
Δ̃′′

T (w). (152)

At m = 1, Δ̃T and Δ coincide, resulting in

Δ̃T(w) = ΔT (w) ≈ Δ0

(√
w2 +

T2

4

)
+ const. (153)

The constant is chosen s.t.
∫ 1

0 dwΔT(w) = 0. This approxima-
tion works quite well, see figure 11, right.

For complementary descriptions of the high-temperature
regime we refer to [151].

2.16. Disorder chaos

When changing the disorder slightly, e.g. by varying the mag-
netic field in a superconductor, the new ground state may
change macroscopically, a phenomenon termed disorder chaos
[128, 152, 153]. Not all types of disorder exhibit chaos. Using
FRG, one studies a model with two copies, i = 1, 2, each see-
ing a slightly different potential Vi(x, u(x)) in equation (6). The
latter are mutually correlated Gaussian random potentials with
correlation matrix

Vi(x, u)V j(x′, u′) = δd(x − x′)Ri j(u − u′). (154)

At zero temperature, the FRG equations for R11(u) = R22(u)
are the same as in equation (64). The one for the cross-
correlator R12(u) satisfies equation (132), with T̃� replaced by
T̂ :=R′′

12(0) − R′′
11(0). The flow of this fictitious temperature

must be determined self-consistently from the FRG equations.

As for a real temperature the cusp is rounded, leading to a
non-trivial cross-correlation function.

2.17. Finite N

Up to now, we have studied the functional RG for one compo-
nent N = 1. The general case of N �= 1, here termed finite N, is
more difficult to handle, since derivatives of the renormalized
disorder now depend on the direction in which this derivative is
taken. Define amplitude u := |�u| and direction û :=�u/|�u| of the
field. Then deriving the latter variable leads to terms propor-
tional to 1/u, which are diverging in the limit of u → 0. This
poses problems in the calculation, and it is a priori not clear
that the theory at N �= 1 exists, supposed this is the case for
N = 1. At one-loop order everything is well-defined [132]. A
consistent FRG-equation at two-loop order is [150]

∂�R̃(u) = (ε− 4ζ)R̃(u) + ζuR̃′(u)

+
1
2

R̃′′(u)2 − R̃′′(0)R̃′′(u)

+
N − 1

2
R̃′(u)

u

[
R̃′(u)

u
− 2R̃′′(0)

]
+

1
2

[
R̃′′(u) − R̃′′(0)

]
R̃′′′(u)2

+
N − 1

2

[
R̃′(u) − uR̃′′(u)

]2 [
2R̃′(u) + u(R̃′′(u) − 3R̃′′(0))

]
u5

− R̃′′′(0+)2

[
N + 3

8
R̃′′(u) +

N − 1
4

R̃′(r)
u

]
. (155)

The first line is from rescaling, the next two lines are the
one-loop contribution given in [132], with the third line con-
taining additional contributions for N �= 1 as compared to
equation (64). The last three lines represent the two-loop
contributions, with the new anomalous terms proportional to
R′′′(0+)2 in the last line.

The fixed-point equation (155) can be integrated numeri-
cally, order by order in ε. The result, specialized to directed
polymers, i.e. ε = 3 is plotted on figure 12. We see that the
two-loop corrections are rather big at large N, so some doubt
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Figure 12. The roughness exponent ζ as a function of the number of components N: 1 loop (blue), 2 loops (red), and a two-loop Padé-(1, 1)
(green). Reprinted figure with permission from [150], Copyright (2005) by the American Physical Society.

on the applicability of the latter down to ε = 3 is advised.
However both one- and two-loop results reproduce well the
two known points on the curve: ζ = 2/3 for N = 1 and ζ = 0
for N = ∞. The latter result will be given in section 2.18.
As discussed in section 7, the directed polymer in N dimen-
sions treated here, and the KPZ-equation of non-linear surface
growth in N dimensions are related, identifying zKPZ = 1/ζ,
see equation (783). Using the analytic solution for the latter
in dimension N = 1, ζN=1

KPZ = 1/2 (equation (817)), and the
scaling relation zKPZ + ζKPZ = 2 (equation (781)) leads to

ζN=1
d=1 =

2
3
. (156)

The line ζ = 1/2 given on figure 12 plays a special role: in
the presence of thermal fluctuations, we expect the roughness-
exponent of the directed polymer to be bounded by ζ � 1/2.
In the KPZ-equation, this corresponds to a dynamic expo-
nent zKPZ = 1/ζ � 2, which due to the scaling relation zKPZ +
ζKPZ = 2 is an upper bound in the strong-coupling phase. The
results above suggest that there exists an upper critical dimen-
sion in the KPZ-problem, with duc ≈ 2.4. Even though the
latter value might be an underestimation, it is hard to imag-
ine what can go wrong qualitatively with this scenario. The
debate in the literature is far from settled, and we summarize
it in section 7.11.

2.18. Large N

In the last sections we discussed renormalization in a loop
expansion, i.e. an expansion in ε = 4 − d. In order to check
consistency, we now turn to a non-perturbative (NP) approach
which can be solved analytically in the large-N limit. The start-
ing point is a straightforward generalization of equation (30),

H[�u,�j] =
1

2T

n∑
a=1

∫
x
[�ua(x) − �w](m2 −∇2)[�ua(x) − �w]

− 1
2T2

n∑
a,b=1

∫
x
B
(
(�ua(x) − �ub(x))2

)
, (157)

B(u2) = R(|u|). (158)

For large N the saddle-point equation reads [49, 154]

B̃′(w2
ab) = B′(w2

ab + 2TITP + 4I1[B̃′(w2
ab) − B̃′(0)]

)
. (159)

This equation gives the derivative of the effective (renormal-
ized) disorder B̃ as a function of the (constant) background
fieldw2

ab = (�wa − �wb)2 in terms of: the derivative of the micro-
scopic (bare) disorder B, the temperature T and the integrals I1

and ITP defined in equations (58) and (130). The saddle-point
equation can be turned into a closed functional renormaliza-
tion group (FRG) equation for B̃ by taking a derivative w.r.t.
m. In analogy to equation (64), and with the same notation used
there, one obtains [49, 154]

∂�B̃(x) := − m∂

∂m
B̃(x) = (ε− 4ζ)B̃(x) + 2ζxB̃′(x)

+
1
2

B̃′(x)2 − B̃′(x)B̃′(0) +
εTB̃′(x)

ε + B̃′′(0)
. (160)

This is a complicated nonlinear partial differential equation.
It is surprising that one can find an analytic solution: the
trick (reminding the RF-solution (88)) is to examine the flow-
equation for the inverse function of y(x) := − B̃′(x), which is
the dominant term at large N for the force–force correlator18,

m∂mx(y) = (ε− 2ζ)yx′(y) + 2ζx(y) + y0 − y

+
Tm

1 − (εx′0)−1
.

(161)

Let us only give the results of this analytic solution: first of all,
for LR correlated disorder of the form B̃′(x) ∼ x−γ , the expo-
nent ζ can be calculated analytically as ζ = ε

2(1+γ) . It agrees
with the replica-treatment in [155], the one-loop treatment in
[132], and the Flory estimate (23). For short-range correlated
disorder, ζ = 0. Second, it demonstrates that before reaching
the Larkin-length, B̃(x) is analytic and dimensional reduction
holds. Beyond the Larkin length, B̃′′(0) = ∞, a cusp appears
and dimensional reduction is broken. This shows again that
the cusp is not an artifact of the perturbative expansion, but an

18 The sign of the last term in equation (11) of [154] must be reversed.

24



Rep. Prog. Phys. 85 (2022) 086502 Review

important property of the exact solution of the problem (here
for large N).

2.19. Corrections at order 1/N

In a graphical notation, we find [156]

(162)

(163)

where χab is the argument of the rhs of equation (159). More
explicit expressions are given in [156].

By varying the IR-regulator, one can derive a β-function
at order 1/N [156]. At T = 0, it is UV-convergent, and should
allow one to find a NP fixed point. This goal has currently only
been achieved to one-loop order [156]. Another open problem
is the behavior at finite T .

2.20. Relation to replica symmetry breaking (RSB)

One of the key methods employed in disordered systems
is a method termed RSB [57, 60–62, 157–162], sometimes
referred to as Gaussian variational ansatz, or simply MF, since
there is no tractable scheme to go beyond that limit. It is an
interesting task to confront this alternative approach to the
FRG. As we saw above, FRG works very well for the experi-
mentally most relevant case of N = 1, whereas the RSB ansatz
only holds in the limit of N →∞ [155]. So what is the idea?
[155] starts from equation (157) but without a source-term w,
i.e. without an applied field, a relevant difference. In the limit
of large N, a Gaussian variational energy of the form

Hg[�u] =
1

2T

n∑
a=1

∫
x
�ua(x)

(
−∇2 + m2

)
�ua(x)

− 1
2T2

n∑
a,b=1

∫
x
σab�ua(x)�ub(x) (164)

becomes exact. The art is to make an appropriate ansatz forσab.
The simplest possibility, σab = σ for all a �= b reproduces the

dimensional-reduction result, which we know to break down at
the Larkin length. Beyond that scale, a replica-symmetry bro-
ken (RSB) ansatz for σab is suggestive. To this aim, one breaks
σab into four blocks of equal size, and chooses two (varia-
tionally optimized) values for the diagonal and off-diagonal
blocks. This is termed one-step RSB. One then iterates the pro-
cedure on the diagonal blocks, proceeding via a two-step to an
infinite-step RSB. The final result has the form

(165)

One finds that the more often one iterates, the more stable
(to perturbations) and precise the result becomes. In fact,
one has to repeat this procedure infinitely many times. This
seems like a hopeless endeavor, but Parisi has shown [60]
that the infinitely often replica symmetry broken matrix can
be parameterized by a function [σ](z) with z ∈ [0, 1]. In the
SK-model, z has the interpretation of an overlap between repli-
cas. While there is no such simple interpretation for the model
(164), we retain that z = 0 describes distant states, whereas
z = 1 describes nearby states. The solution of the large-N
saddle-point equations leads to the curve depicted in figure 6.
Knowing it, the two-point function is given by

〈ũkũ−k〉 =
1

k2 + m2

(
1 +

∫ 1

0

dz
z2

[σ] (z)
k2 + [σ] (z) + m2

)
. (166)

The important question is: what is the relation between the
two approaches, which both declare to calculate the same two-
point function? Comparing the analytical solutions, we find
that the two-point function given by FRG is the same as that
of RSB, if in the latter expression we only take into account
the contribution from the most distant states, i.e. those for z
between 0 and zm (see figure 13). To understand why this is so,
we have to remember that the two calculations are done under
quite different assumptions: in contrast to the RSB-calculation,
the FRG-approach calculates the partition function in pres-
ence of an external field w, which is then used to give via a
Legendre transform the effective action. Even if the field w
is finally tuned to 0, the system remembers its preparation, as
does a magnet: preparing the system in presence of a mag-
netic field results in a magnetization which aligns with this
field. The magnetization remains, even if finally the field is
turned off. The same phenomenon happens here: by explic-
itly breaking the replica-symmetry through an applied field,
all replicas settle into distant states, and the close states from
the Parisi-function [σ] (z) + m2 (which represent spontaneous
RSB) will not contribute. However, the full RSB-result can be
reconstructed by remarking that the part of the curve between
zm and zc is independent of the infrared cutoff m. Integrating
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Figure 13. The function [σ] (u) + m2. Reproduced from [155].
CC BY 4.0.

over m [154] then yields (mc is the mass corresponding to zc)

〈ũkũ−k〉|RSB
k=0 =

B̃′
m(0)
m4

+

∫ mc

m

dB̃′
μ(0)

μ4
+

1
m2

c
− 1

m2
. (167)

We also note that a similar effective action has been proposed
in [126]. While it agrees qualitatively, it does not reproduce
the correct FRG two-point function, as it should.

To go further, one needs to redo the analysis of [155] in
presence of an applied field, a formidable task. A first step in
this direction was taken in [126], building on the technique
developed in [163]. However, the function R(u) defined in that
work does not coincide with the one usually studied in field
theory (there is an additional Legendre transform), making a
precise comparison difficult. This goal was finally achieved in
[164]. In summary, there are two distinct scaling regimes,

B̃(w2) − B̃(0) =

⎧⎨⎩L−db̃(w2Ld) for w2 ∼ L−d, (i)

Nb(w2/N) for w2 ∼ N, (ii)
(168)

(i) a ‘single shock’ regime,w2 ∼ L−d where Ld is the system’s
volume, and (ii) a ‘thermodynamic’ regime, with w2 ∼ N,
independent of L. In regime (i) all the equivalent RSB sad-
dle points within the Gaussian variational approximation con-
tribute, while in regime (ii) the effect of RSB enters only
through a single anomaly. When RSB is continuous (e.g., for
short-ranged disorder, in dimension 2 � d � 4), regime (ii)
yields the large-N FRG function shown above. In that case, the
disorder correlator exhibits a cusp in both regimes, though with
different amplitudes and of different physical origin. When
the RSB solution is one-step and non-marginal (e.g. in d < 2
for SR disorder), the correlator R̃(w) = B̃(w2) in regime (ii) is
considerably reduced, and exhibits no cusp.

RSB at finite N. The Gaussian variational ansatz with an
infinite-step RSB is possible also at finite N, and termed the
Gaussian variational model (GVM). For m = 0,

[σ](u) ∼ uα, α =
4 + N

d − N(1 − d
2 )
. (169)

As a consequence,

ζGVM =
4 − d
4 + N

≡ ζRB
Flory, (170)

where ζRB
Flory is the Flory estimate (21). How can this be

explained? In the GVM solution [165], all power-laws can be
deduced from dimensional considerations, leaving no room
for a deviation from the Flory estimate (21). Deviations are
possible with additional scales [166].

2.21. Droplet picture

The droplet picture was proposed [56, 167] for Ising spin
glasses (more in [168–171]), as a conceptual alternative to the
Parisi solution [60, 157–159] (more in [57, 61, 62, 160–162])
of the SK model [58, 59]. Using the concept of RSB, the
latter yields infinitely many extremal Gibbs states at very
low temperature, organized within an ultrametric topology,
i.e. arrangeable as a tree. As temperature is raised, states at
increasing distance coalesce until a unique state remains at
T = Tc. Appropriate for the infinite-range SK model, its valid-
ity for short-ranged spin glasses as the Edwards–Anderson
(EA) model [103] is disputed. The latter assumes an energy

HEA =
∑
〈i, j〉

Ji jSiS j (171)

with uncorrelated random couplings Ji j, drawn from a proba-
bility distribution P(J).

Existence of the spin-glass phase is detected by the EA
order parameter

qEA(T) := 〈Si〉2
t , (172)

where the overline denotes (as above) the disorder average
(over J), and 〈. . .〉t the temporal average over an infinite
time. One expects qEA(T ) = 0 for T > Tc, and qEA(T ) > 0 for
T < Tc.

In contrast to the RSB scenario with a finite density of states
at q = 0, the droplet picture proposes that the low-lying exci-
tations which dominate the long-distance and long-time cor-
relations are clusters of (nested) droplets of coherently flipped
spins. Let us denote by F0 the ground-state free energy, i.e. the
infimum of all free energies Fi,

F0 := inf
i

(Fi). (173)

In a pure system at T = 0, the energy of a domain wall can
be measured by imposing anti-periodic boundary conditions,
which force a domain wall of size Ld−1 and energy EL 

ΥLd−1. In a disordered system at T > 0 this generalizes to

FL 
 ΥLθ, (174)

with θ < d − 1, where FL is the free energy at scale L. If
one supposes that the free energies FL in the domain wall
are uncorrelated, using the central-limit theorem improves the
bound19 to θ � d−1

2 . The probability of droplet excitations with

19 One might argue that if a domain wall is rough, then its size scales as Ldf with
d − 1 � df � d, and we get a weaker bound for θ. This is incorrect. While the
minimum-energy domain wall may be larger, its energy is lower; otherwise
the minimal-energy interface would be flat.
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free-energy differences FL, given size L, has the scaling form

ρ(FL|L) =
ρ(FL/ΥLθ)

ΥLθ
, ρ(0) > 0, 0 < θ � d − 1

2
.

(175)
Values of θ satisfying the bound (175) have been reported
[172].

Next consider an ensemble of independent (but possibly
nested) droplets of size between Ld and (L + δL)d. The prob-
ability that a spin is inside such a droplet is independent of L:
while the probability that a spin is inside a droplet scales as
Ld, the number of droplets scales as L−d. Thus the measure for
integration of ρ(FL|L) over L is

ρ(L)dL =
dL
L
ρ(FL|L). (176)

Stated differently, a given spin has a finite, L-independent,
probability to be inside a droplet of size L.

Only if both points i and i + r are inside a droplet, the con-
nected spin-spin correlation function 〈Si〉t〈Si+r〉t

c, is non-zero.
To give a non-vanishing contribution to the space-dependent
version of the EA order parameter (172), the droplet has to be
bigger than r, leading to

qEA(r) := 〈Si〉t 〈Si+r〉t

c ∼ r−θ, as r →∞. (177)

For higher-energy excitations, it is natural to suppose that their
activation barriers scale with L as

Fb 
 ΔLψ , θ � ψ � d − 1. (178)

The upper bound is given by the maximal energy needed
to flip a flat wall. The lower bound insures that FL from
equation (174) satisfies FL < Fb.

To address dynamical properties, suppose a droplet per-
sists for a time t = t0eFb/T . The line of arguments used above
implies that the autocorrelation function decays as

C(t) := 〈Si(0)Si(t)〉t 

qEAT
Υ

[
Δ

T ln(t/t0)

] θ
ψ

. (179)

To conclude our excursion into the droplet picture for the EA-
spin glass (for further reading see [56, 169–171, 173]), let us
mention an interesting result due to Bovier and Fröhlich [167],
who analyze EA-spin glasses with concepts from gauge the-
ory. They state that for d = 2 the Gibbs state is unique at all
temperatures. In the language used here, this implies θ < 0.
The debate whether EA-spin glasses are better described by the
droplet picture or RSB is still raging [174–181]. It is possible
that depending on the dimension, the distance to Tc, and small
modifications of the EA spin-glass energy (171), both phases
are realized in some domains of the phase diagram, while in
other domains, none of them is appropriate.

Let us finally apply the droplet ideas to the directed polymer
[24], and more generally disordered elastic manifolds [127,
144, 145, 182]. First of all, the droplet exponent θ as defined
in equation (174) is the one given in equation (45)

θ = d − 2 + 2ζ. (180)

The bound θ � d/2 translates into

ζ � ζdroplet bound =
4 − d

4
. (181)

It is less clear what the exponent ψ is, but there is some
evidence [183, 184] that

ψ = θ, (182)

up to logarithmic corrections, shown to exist at least in one
case [184]. As an immediate generalization to equation (177),
we expect that at finite temperature [182]〈

[u(x) − u(y)]2n
〉

 T|x − y|2nζ−θ. (183)

To build a consistent field theory is a challenge. Techni-
cally, one has to connect the thermal boundary layer of Δ(w)
(section 2.15) with the outer region. Physically, one needs to
make the connection to the droplet picture. This problem is
considered in [127, 144, 145, 182].

2.22. Kida model

In [187] Kida solved the problem how a random short-ranged
correlated velocity field decays under action of the Burgers
equation. As we discuss in sections 7.2–7.7, this is equivalent
to minimizing the energy

Hw(u) :=
m2

2
(u − w)2 + V(u). (184)

The random potential V(u) is defined for u ∈ Z, and each V
is drawn from a probability distribution P(V). The effective
potential is defined as in equation (96). Kida’s solution for the
V̂(w) correlations, rephrased in [82, 188] for the minimization
problem (184), is constructed in several steps: define

P<(V) :=
∫ V

−∞
P(V ′)dV ′ 
 e−A(−V)γ for V →−∞. (185)

The characteristic u-scale is

ρm =
[
m2γ ln (m−1)1− 1

γ A
1
γ

]− 1
2
. (186)

For a standard Gaussian distribution, A = 1/2, γ = 2, this can
be simplified to

ρGauss
m =

1
m

[
ln(m−2)

]− 1
4 , i.e. ζKida = 1−. (187)

The u-distribution minimizing the energy (184) is

P(u) ≈ 1

ρm

√
2π

e−
1
2 (u/ρm)2

. (188)
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In order to proceed, define the auxiliary function

Φ(x) :=
∫ ∞

0
dy e−

y2

2 +xy =

√
π

2
e

x2
2

[
erf

(
x√
2

)
+ 1

]
.

(189)
The effective disorder force–force correlator Δ(w) and R(w)
are then given by

Δ(u) = m4ρ2
mΔ̃(w/ρm), R(u) = m4ρ4

mR̃(w/ρm), (190)

Δ̃(w) =
d

dw

∫ ∞

0

2w
Φ(w2 + x) +Φ(w2 − x)

dx, (191)

R̃(w) =
π2

6
−
∫ ∞

0

2w2xΦ(w2 − x)
Φ(w2 + x) +Φ(w2 − x)

dx. (192)

The solutions Δ̃(w) and R̃(w) are compared in figure 14
to numerical simulations, and to the fixed point obtained
by solving the one-loop FRG equation (79), for ζ = ζRB,
equation (90). For reference we give for the Kida-solution

Δ̃(0) = 1, Δ̃′(0+) = − 2√
π

, Δ̃′′(0+) =
3

3
2

π
− 1,

Δ(0)Δ′′(0)
Δ′(0+)2

≈ 0.5136.

(193)

Using equation (104) the universal avalanche scale is

Sm :=

〈
S2
〉

2 〈S〉 =
2√
π
ρm. (194)

2.23. Sinai model

In 1983 Sinai asked: consider a RW Xn, which with prob-
ability pn increases by 1 in step n, and with probability
1 − pn decreases by 1, assuming the pn ∈ [0, 1] themselves to
be (quenched) independent random variables. Sinai showed
[189] that contrary to a normal RW, which has variance n
after n steps, the process Xn defined above has a variance
which grows as ln2(n). Interpreting the pn as RF disorder,
Sinai’s theorem shows that the walk is localized even at finite
temperature.

Let us consider again the model defined in equation (184),
but with a potential which itself is a RW,

Hw(u) :=
m2

2
(u − w)2 + V(u), (195)

V(u) = −
∫ u

0
F(u′)du′, (196)

F(u)F(u′) = σδ(u − u′). (197)

Thus
1
2

[V(u) − V(u′)]2 = σ|u − u′|. (198)

Using the methods developed in [190], the renormalized dis-
order correlator Δ(w) for the Sinai model has been obtained

Figure 14. The force–force correlator Δ(u) for the Kida model
(blue solid), compared to the RB one-loop FRG result (cyan,
dashed) already shown in figure 6 (right), rescaled to have the same
value and slopes as equation (191). In solid red the
potential–potential correlator R̃(w), in dashed the corresponding
one-loop FRG result. (Inset) Numerical simulations [185, 186] for
m2 = 10−1 (red solid), m2 = 10−2 (cyan, dashed), and m2 = 10−4

(orange dotted), compared to the theory curve (blue). Convergence
is slow. Statistical errors are within the line thickness.

in [82]. Here we give a simplified version20:

Δ(w) = m4ρ2
mΔ̃(w/ρm), (199)

R(w) = m4ρ4
mR̃(w/ρm), (200)

ρm = 2
2
3 m− 4

3 σ
1
3 . (201)

The effective disorder correlator reads

Δ̃(w) = − e−
w3
12

4π
3
2
√
w

∫ ∞

−∞
dλ1

∫ ∞

−∞
dλ2 e−

(λ1−λ2)2

4w

× ei w2 (λ1+λ2) Ai′(iλ1)
Ai(iλ1)2

Ai′(iλ2)
Ai(iλ2)2

×
[

1 + 2w

∫∞
0 dVewVAi(iλ1 + V)Ai(iλ2 + V)

Ai(iλ1)Ai(iλ2)

]
.

(202)

For reference we give

Δ̃(0) ≈ 0.418 375, Δ̃′(0+) ≈ −0.566,

Δ̃′′(0+) ≈ 0.52,
Δ(0)Δ′′(0)
Δ′(0+)2

≈ 0.68.
(203)

Using equation (104), this predicts, among others, the univer-
sal avalanche scale,

Sm :=

〈
S2
〉

2 〈S〉 = 0.566ρm. (204)

20 We simplify the result of [82] such that the only appearance of a = 2−1/3

or b = 22/3 is in the scale ρm of equation (201). We further correct several
misprints: first, the formulas given for a and b in [82] can only be used for
m = σ = 1, or one would have to rescale the term ∼w3 in the exponential as
well. The factor of w in the innermost integral for Δ is missing in equation
(304) of [82], while it is there in equation (293) for R.
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One can also give an explicit formula for the poten-
tial–potential correlator R̃(w)

R̃(w) = −
√
w e−

w3
12

16π
3
2

∫ ∞

−∞
dλ1

∫ ∞

−∞
dλ2 e−

(λ1−λ2)2

4w

× ei w2 (λ1+λ2)

Ai(iλ1)Ai(iλ2)

[
1 − (λ1 − λ2)2

2w

]

×
[

1 + 2w

∫∞
0 dVe

w
2 VAi(iλ1 + V)Ai(iλ2 + V)

Ai(iλ1)Ai(iλ2)

]
+ R̃(0). (205)

We checked numerically that Δ̃(w) = −R̃′′(w). We find that

lim
w→∞

R̃(0) − R̃(w) − w

4
= 0.127 689, (206)

lim
w→∞

− R′(w) =
m4ρ3

m

4
= σ. (207)

The latter is a consequence of the FRG equation: it cannot
renormalize the tail of R(w), given for the microscopic disor-
der in equation (198). Finally note that if in the square brackets
of the second line of equation (205) one only retains the ‘1’,
then the dominant term w/4 of equation (206) is obtained. A
plot, a comparison to the one-loop FRG fixed point (79), and
a numerical verification are presented in figure 15.

2.24. Random-energy model (REM)

The random-energy model (REM) was introduced by Derrida
in 1980 [55, 191] as an exactly soluble, albeit extreme simpli-
fication of a spin glass. It was further studied in [192–194].
Consider an Ising model with N spins. It has 2N distinct con-
figurations, labeled by i = 1, . . . , 2N . Suppose that the energy
Ei of each state i is taken from a Gaussian distribution

P(E) =
1√
πN

e−E2/N . (208)

Thus 〈E〉 = 0, and
〈
E2
〉
= N/2. The factor of N is chosen to

obtain a non-trivial limit for N →∞ below.
A sample of the REM consists of 2N random energies Ei

drawn from equation (208). The partition function at tempera-
ture T = 1/β, and the occupation probabilities are

Z0 =

2N∑
i=1

e−βEi , pi =
e−βEi

Z0
. (209)

Consider the number N (ε, ε+ δ) of states in the interval
[Nε, N(ε+ δ)]. Setting

Iε :=
∫ N(ε+δ)

Nε

P(x)dx ≡
√

N
π

∫ ε+δ

ε

e−y2
dy, (210)

the expectation and variance of N (ε, ε+ δ) are

〈N (ε, ε+ δ)〉 = 2NIε, (211)〈
N (ε, ε+ δ)2

〉c
= 2NIε(1 − Iε). (212)

Figure 15. Δ̃(w) for the Sinai model (blue), obtained by numerical
integration of equation (202). In cyan dashed the solution (84)–(88)
of the one-loop FRG equation, rescaled to the same value and slope
at w = 0. In red, dotted R̃(0) − R̃(w). (Inset) Numerical simulation
[185, 186] for m2 = 10−1 (red, solid), and m2 = 10−2 (cyan,
dashed), indistinguishable from the theory (blue solid). Statistical
errors are within the line thickness.

This allows us to write the density of states ρ(ε) 
 1
δN (ε, ε+

δ) as

ln ρ(ε) 
 N
[
ln(2) − ε2

]
+

1
2

ln

(
N
π

)
. (213)

Define ε∗ s.t.

ln ρ(ε∗) = 0 ⇐⇒ ε∗ =
√

ln 2 +
ln(N/π)

4N
√

ln 2
+ . . . (214)

It is instructive to run a simulation: as can be seen in figure 16,
there is not a single state for |ε| � ε∗. Second, according to
equations (211) and (212), relative fluctuations are suppressed,〈

N (ε, ε+ δ)2
〉c

〈N (ε, ε+ δ)〉2 = 2−N 1 − Iε
Iε

. (215)

To good precision one can therefore approximate at leading
order in 1/N

ln ρ(ε) = Ns(ε), s(ε) =

⎧⎨⎩ln(2) − ε2, |ε| � ε∗

−∞, |ε| > ε∗.
(216)

The quantity s(ε) is interpreted as the entropy of the system;
s(ε) = −∞ means that the corresponding density ρ(ε) van-
ishes. Note that the factor of N in equation (208) is introduced
in order to render thermodynamic quantities as equation (216)
extensive, i.e. ∼N.

We now proceed to other thermodynamic properties,
notably the free energy

e−βN f (ε) = Z0 

∫ ε∗

−ε∗
dε e−N[βε−s(ε)], (217)

equivalent to

f (ε) 
 min
ε∈[−ε∗,ε∗]

[
ε− s(ε)

β

]
. (218)

This is a Legendre transform, typical of thermodynamic argu-
ments; the restriction of ε to [−ε∗, ε∗] is implicit in the
definition (217), and allows us to use the parabolic form valid
in that domain. An explicit calculation yields
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Figure 16. The log of the density of states lnρ(ε) for the REM,
n = 23. The maximal and minimal energies in this sample are
0.8376 and −0.7736, compared to ε∗ = 0.8582: the histogram
vanishes for |ε| � ε∗.

f (ε) =

⎧⎪⎨⎪⎩
−β

4
− ln(2)

β
, β � βc

−
√

ln(2), β > βc

, βc = 2
√

ln(2). (219)

Next define the participation ratio inspired by spin glasses
[62, 195]

Y ≡ Y(β) =

∑
i

e−2βEi[∑
i

e−βEi

]2 . (220)

It was shown [192] that all moments can be calculated analyt-
ically (see equations (10) and (11) of [192])

g(μ) =
∫ ∞

0
(1 − e−u−μu2

)u− T
Tc

−1 du, (221)

〈Yn〉 = (−1)n+1

Γ(2n)
Tc

T
dn ln g(μ)

dμn

∣∣∣∣
μ=0

. (222)

The first moments read

〈Y〉 = 1 − T
Tc

,
〈
Y2
〉c

=
1
3

T
Tc

(
1 − T

Tc

)
. (223)

Thus Y is a random variable, with rather large, non-
selfaveraging fluctuations.

Finally, one can calculate the partition function in presence
of a magnetic field [194], by generalizing its definition to

Z(h) =
2N∑
i=1

e−βEi−βMih, (224)

where Mi is the total magnetization of the sample (the number
of up spins minus the number of down spins). As the energies
Ei are independent of the spin configuration σi, and its total
magnetization Mi, the expectation value of Z(h) factorizes,

〈Z(h)〉 = 〈Z0〉 ×
〈
e−βhM1

〉
σ1
. (225)

Using this factorization property (which also holds for SK),
the partition function for two copies reads

〈Z(h1)Z(h2)〉
Z2

0

=
∑
i= j

1
Z2

0

〈
e−β[2Ei+(h1+h2)Mi]

〉
+

1
Z2

0

∑
i �= j

〈
e−β[Ei+E j+h1Mi+h2M j]

〉
= 〈Y〉

〈
e−β(h1+h2)M1

〉
σ1

+
(
1 − 2−N

) 〈
e−βh1M1

〉
σ1

〈
e−βh2M1

〉
σ1
. (226)

The average over spin configurations factorizes21,〈
e−βhM1

〉
σ1

= cosh (βh)N. (227)

In the high-temperature phase where 〈Y〉 vanishes the parti-
tion function factorizes. In the low-temperature phase, the first
term dominates for h1h2 > 0, whereas the second one does for
h1h2 < 0. It leads to a non-analyticity of the effective action for
T < Tc. This behavior is comparable to that of Δ(w), and dif-
ferent from that of R(w) (section 2.4). How can we understand
this? The reason is that the disorder is very strong: flipping
a single spin changes the energy as much as flipping a finite
fraction of the spins. Thus there is no continuity in energy as
for random manifolds, and shocks appear in the energy, rather
than in the force. A cusp in the correlations of energy is a rather
natural consequence.

2.25. Complex disorder and localization

Motivation. FRG is used with success to describe the statis-
tics of elastic objects (this section 2) and depinning (next
section 3), subjected to quenched real disorder. An interesting
question is whether it can also be applied to systems with com-
plex disorder (complex random potential or force), relevant
in quantum mechanics. There is one study for quantum creep
[198], but what we are after is a situation where interference
becomes important.

Let us give a specific example. The hopping conductivity
of electrons in disordered insulators in the strongly localized
regime is described by the Nguyen–Spivak–Shklovskii (NSS)
model [199]. The probability amplitude J(a, b) for a transition
from a to b is the sum over interfering directed paths Γ from a
to b [200–205]

J(a, b) :=
∑
Γ

∏
j∈Γ

η j. (228)

The conductivity between sites a and b is given by g(a, b) =
|J(a, b)|2. Each lattice site j contributes a random sign η j = ±1
(or, more generally a complex phase η j = eiθ j).

Another example is the Chalker–Coddington model [206]
for the quantum Hall (and spin quantum Hall) effect, where the
transmission matrix J between two contacts a and b is given
by [207, 208]

J(a, b) =
∑
Γ

∏
(i, j)∈Γ

S(i, j). (229)

21 We refer to [194] for details.

30



Rep. Prog. Phys. 85 (2022) 086502 Review

Figure 17. Phase portrait of the model defined in equation (230), following the conventions of [196]. The horizontal axis is the strength of V,
the vertical axis the strength of θ. The effective disorder correlators for points A (deep in the diffusive phase), B (deep in the pinned phase),
C (infinitesimally small disorder) are shown as well. Symbols are from numerical simulations. Reprinted figure with permission from [196],
Copyright (2011) by the American Physical Society.

The random variables S(i, j) on every bond (i, j) are U(N ) matri-
ces, with N = 1 for the charge quantum Hall effect and N = 2
for the spin quantum Hall effect. Γ are paths subject to some
rules imposed at the vertices. The conductance is given by
g(a, b) = tr

(
J(a, b)†J(a, b)

)
.

In both models, one would like to understand the dominat-
ing contributions to the sum Z over paths with random weights
J(a, b). In contrast to the thermodynamics of classical mod-
els, where all contributions are positive, contributions between
paths with different phases can cancel. One is interested in the
expected phase transitions.

Definitions. This is a complicated problem. In [197,
209–211] simplified models were considered. Here we con-
sider the toy model of [197], which allows one to define the
central objects of the FRG. The partition function at finite
T = β−1 reads in generalization of equation (96)

Z(w) =

√
βm2

2π

∫ ∞

−∞
dx e

−β

[
V(x)+ m2

2 (x−w)2
]
−iθ(x)

=: e−βV̂(w)−îθ(w). (230)

One wishes to study the correlations

ΔV (w1 − w2) := V̂ ′(w1)V̂ ′(w2), (231)

Δθ(w1 − w2) := θ̂′(w1)θ̂′(w2). (232)

They are related to the correlations of ∂wZ(w) and ∂wZ∗(w)
by

ΔZZ∗(w) = ΔV(w) + β−2Δθ(w), (233)

ΔZZ (w) = ΔV(w) − β−2Δθ(w). (234)

Results. As established by Derrida [196], there are three
phases: high-temperature phase I, frozen phase II, and strong-
interference phase III, depicted in the center of figure 17,
accompanied by their correlation functions [197].

Phase I. For weak disorder (perturbative regime) one can
evaluate the integral (230) by Taylor expanding to leading
order in both V and θ, to obtain

ΔV (w) ∼ Δθ(w) ∼ −∂2
w e−

m2
4 w2

. (235)

Phase II. This phase may be seen as a deformation of the
localized phase, encountered for short-ranged disorder in the
Kida model (section 2.22), or for long-ranged disorder in the
Sinai model (section 2.23). The key change is a deformation
of the shocks, which shows up in an additional logarithmic
deformation of the force–force correlator inside a boundary
layer of size w ∼ T , see figure 17.

Phase III. Here V(u) = 0. This phase is the one most
closely related to the NSS or Chalker–Coddington mod-
els. Contrary to the Kida or Sinai models which lead to a
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Figure 18. Phase diagram for vortices in a type-II superconductor.
Reproduced from [212]. CC BY 4.0. From bottom to top these are
the Meissner, vortex-free region (red), followed by the Bragg glass
(orange) and a vortex glass (green and blue), above which
super-conductivity vanishes (white).

localization of the path (the partition function is dominated
by a minimizing path) fluctuations of Z are important, and
zero-crossings are observed. They seem to be rather indepen-
dent of the nature of the θ-disorder, which we attribute to θ
being a compact variable. The zero crossings lead to a loga-
rithmic divergence of the correlation functions (231) to (234),
see figure 17.

2.26. Bragg glass and vortex glass

When the magnetic field H is increased in a pure type-II super-
conductor, there are two phase transitions: for low magnetic
fields, H < Hc

1(T), vortices are expelled due to the Meissner
effect [213] (red region in figure 18). For H > Hc

1(T) flux-
vortices appear. Increasing the magnetic field further, super-
conductivity breaks down for H > Hc

2(T) (white region in
figure 18).

Let us now consider a dirty magnet. There has been a long
debate whether the vortex lattice present for Hc

1(T) < H <
Hc

2(T) can be described by a Bragg glass, or a vortex glass. In
a Bragg glass favored by [21, 214–216], the Abrikosov lattice
of vortices (see sketch in figure 3) is elastically deformed, but
there are no topological defects and each vortex line retains six
nearest neighbors. According to the theory of disordered elas-
tic manifolds, the correlation function given in equation (120a)
grows logarithmically with distance, preserving enough coher-
ence to show up in a Bragg peak in neutron scattering experi-
ments (hence the name). The alternative theory, termed vortex
glass and favored (for sometimes quite different reasons) in
[217–224], assumes that topological defects destroy the order,
and as a consequence the Bragg peak in neutron scattering
experiments.

The current experimental situation [212] shown in figure 18
favors, in agreement with intuition, a Bragg glass for smaller

fields, and a vortex glass for larger ones, with a transition at
Hc

B/V(T), with Hc
1(T) < Hc

B/V(T) < Hc
2(T).

If the disorder contains columnar defects, it may exhibit
[25, 225] a transverse Meissner effect, for which the tilt ϑ to
an applied field H vanishes up to Hc

tilt, after which it grows
as ϑ ∼ |H − Hc

tilt|φ, with φ < 1. One-dimensional quantum
systems (Luttinger liquid) map to two-dimensional classical
systems with columnar disorder, thus can be understood
in the same framework [225], or alternatively [226–230]
within the non-perturbative FRG (NPFRG) approach
(section 9.1). One further encounters a rounding of the cusp
through quantum fluctuations, similar to the quantum creep
regime of [198].

There are also situations where one of the two phases is
absent, as defects can destabilize the Bragg-glass phase [231].
Similar physics may be observed in CDWs [232]. For details
we refer the reader to [19, 233]. Discussion of a moving vortex
lattice is referred to section 3.25.

2.27. Bosons and fermions in d = 2, bosonization

To proceed, we need to establish connections between theories
in two dimensions, including relations between fermions and
bosons, known as bosonization. Dimension d = 2 is special as
the Gaussian free field is dimensionless, allowing for a number
of constructions of which we show some below. Our account is
very condensed, and we refer to [3, 234–236] for background
reading.

Bosons.

Hboson =
1

8π

∫
d2�z

[
∇Φ(�z)

]2
. (236)

Appendix A.6 implies

〈Φ(�z )Φ(0)〉 = − ln |�z|2 = − ln z − ln z̄. (237)

This suggests that one can decomposeΦ(�z ) into a holomorphic
and antiholomorphic part, Φ(�z ) ≡ Φ(z, z̄) = φ(z) + φ̄(̄z), with

〈φ(z)φ(w)〉 = − ln(z − w),〈
φ̄(̄z)φ̄(w̄)

〉
= − ln(̄z − w̄),〈

φ(z)φ̄(w̄)
〉
= 0.

(238)

Since φ(z) has logarithmic correlations, an infinity of power-
law correlated vertex operators can be constructed (the dots
indicate normal ordering, i.e. exclusion of self-contractions at
the vertex),

Vα(z) = :eαφ(z): (239)

〈Vα(z)Vβ(w)〉 = e−αβ ln(z−w) = (z − w)−αβ. (240)

Majorana fermion. Consider a Majorana (real) fermion,
constructed from anti-commuting Grassman fields
(section 8.2)

HMajorana =
1

2π

∫
d2�z

[
ψ̄(̄z)∂ψ̄(̄z) + ψ(z)∂̄ψ(z)

]
. (241)
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Its correlation-functions are obtained from equation (992) as

〈ψ(z)ψ(w)〉 = 1
z − w

, (242)

〈
ψ̄(̄z)ψ̄(w̄)

〉
=

1
z̄ − w̄

. (243)

As for the bosons above, the theory can be split into a holo-
morphic and an antiholomorphic part.

Dirac fermion. A Dirac (complex) fermion is made out of
two Majorana-fermions ψ1 = ψ∗

1 and ψ2 = ψ∗
2,

ψ = ψ1 + iψ2, ψ∗ = ψ1 − iψ2. (244)

Corresponding rules hold for the antiholomorphic fields.
Choosing

HDirac =
1
π

∫
z
ψ̄∗ (̄z)∂ψ̄(̄z) + ψ∗(z)∂̄ψ(z), (245)

the correlation functions for the components ψ1 and ψ2 have
an additional factor of 1/2 as compared to equations (241) and
(242), resulting in

〈ψ∗(z)ψ(w)〉 = 〈ψ(z)ψ∗(w)〉 = 1
z − w

, (246)

〈ψ(z)ψ(w)〉 = 〈ψ∗(z)ψ∗(w)〉 = 0. (247)

Similar relations hold for the anti-holomorphic parts ψ̄, and
correlations vanish between ψ and ψ̄.

Bosonization. Since a Dirac-fermion and a free boson have
both central charge22 c = 1, we may expect a closer relation
between objects in these theories. Indeed setting

ψ(z)=̂ :eiφ(z) : ψ∗(z)=̂ :e−iφ(z): (248)

ψ̄(̄z)=̂ :eiφ̄(̄z) : ψ̄∗ (̄z)=̂ :e−iφ̄(̄z): (249)

the (diverging part of the) fermion correlation functions are
reproduced within the bosonic theory. Products of fermion
operators are obtained from the point-splitted product

[
ψ∗ψ

]
(z) := lim

z→w
ψ∗(w)ψ(z) = :e−iφ(w)eiφ(z):

1
w − z

=
1
i
∂φ(z). (250)

22 The conformal charge c is the amplitude of the leading term in the OPE
of the stress–energy tensor with itself. It can be measured from the finite-size
corrections of the free energy of a system [3, 234, 237, 238]. The central charge
is often used to identify or distinguish systems. This has to be taken with some
precaution, as the total central charge of non-interacting systems is the sum of
the central charges of its components.

This rule allows one to decouple the four-fermion interaction
as

ψ̄∗(̄z)ψ̄(̄z)ψ∗(z)ψ(z) =̂ ∂̄φ(̄z)∂φ(z). (251)

Note that since there are two complex fermions, the only non-
vanishing combination one can write down is the one given in
equation (251). Introductory texts on bosonization techniques
can be found in [235, 236].

Thirring and sine-Gordon model. The Thirring model intro-
duced in [239] is the most general two-dimensional model with
two independent families of fermions, and a kinetic term with
a single derivative.

SThirring =
1
π

∫
z

{
ψ̄∗ (̄z)∂ψ̄(̄z) + ψ∗(z)∂̄ψ(z)

+
λ

2

[
ψ̄(̄z)ψ(z) + ψ̄∗ (̄z)ψ∗(z)

]
+

g
2
ψ̄∗(̄z)ψ̄(̄z)ψ∗(z)ψ(z)

}
. (252)

Using the dictionary provided by equations (248), (249) and
(251) shows equivalence to the sine-Gordon model [240]

HSG =

∫
d2�z

1 + g
8π

[
∇Φ(�z )

]2
+

λ

π
cos

(
Φ(�z )

)
. (253)

2.28. Sine-Gordon model, Kosterlitz–Thouless transition

The sine-Gordon model can be treated in a perturbative expan-
sion in λ. The leading-order correction comes at second order,
and corrects g. Noting

T :=
1

1 + g
, (254)

it can be written as23(
λ

2π

)2∫
x,y

:eiΦ(x): :e−iΦ(y):

=

(
λ

2π

)2∫
x,y

:ei[Φ(x)−Φ(y)]: |x − y|−2T



(

λ

2π

)2∫
x,y

{
1 − 1

2
:[Φ(x) − Φ(y)]2: + . . .

}
|x − y|−2T



(

λ

2π

)2∫
x,y

{
1 − 1

2
:

[
(x − y)∇Φ

(
x + y

2

)]2

: + . . .

}
× |x − y|−2T



(

λ

2π

)2∫
x,y

{
1 − (x − y)2

4
:

[
∇Φ

(
x + y

2

)]2

: + . . .

}
× |x − y|−2T . (255)

23 Combinatorial factors are obtained from cos(Φ) = 1
2 (eiΦ + e−iΦ), leaving

two combinations with overall charge neutrality, which cancel against the 1/2!
from the expansion of e−HSG . The dots denote normal-ordering, the change in
λ being absorbed therein. Vector notation is suppressed for simplicity. For an
introduction into the technique see [118].
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The first term yields a correction to the free energy; it necessi-
tates a relevant counter term (UV divergent, IR finite), but does
not enter into IR properties of the theory. The second term is a
correction to g,

δg = λ2
∫ L

0

dz
z

z4−2T = λ2 L4−2T

4 − 2T
. (256)

Defining the dimensionless couplings as g̃ ≡ geff = g + δg,
λ̃ :=λeffL2−T , with λeff = λ+O(λ3), one obtains the β
functions24

βg̃(λ̃, g̃) = λ̃2 + . . . (257a)

βλ̃(λ̃, g̃) = (2 − T)λ̃+ . . . =

(
2 − 1

1 + g̃

)
λ̃+ . . .

(257b)

Subdominant corrections are down by a factor of λ̃2. Rewritten
in terms of λ̃ and T̃ = 1/(1 + g̃), this yields

βT̃ (T̃, λ̃) = −T̃2λ̃2 + . . . = −T̃2
cλ̃

2 + . . . (258a)

βλ̃(T̃, λ̃) = (T̃c − T̃)λ̃+ . . . (258b)

The reader will mostly see these equations expanded around
T̃c = 2, as done above. The schematic flow chart is shown in
figure 19.

There is a line of fixed points for T̃ > T̃c (red in figure 19).
All these fixed points have λ̃ = 0, thus are Gaussian theories.
Below T̃c, the flow is to strong coupling. Physically, eiΦ and
e−iΦ are interpreted as vortices and anti-vortices, topological
defects with charge ±1, chemical potential λ, interacting via
Coulomb interactions. For T̃ > T̃c they are bound, and only a
finite number is present. For T̃ < T̃c they are unbound, gaining
enough entropy to overcome the energetic costs for their core.
The transition at T̃ = T̃c is known as the Kosterlitz–Thouless
transition [241].

Higher-loop calculations can be performed, both in the
Thirring model (241), as in the sine-Gordon model (253). As
our treatment shows, they are rather straight-forward, and one
should be able to go at least to three-loop order in sine-Gordon,
and to even higher order in the fermionic model. It is therefore
surprising to read about massive contradictions in the literature
at two-loop order [242], confirming the original 1980 result of
[243], but declaring later calculations in [244–246] as well as
[247] to be incorrect.

24 Definition of the β functions are as in section 2.2. Equations (252) and (253)
were tuned to have the simplest coefficients later.

Figure 19. Flow diagram of the Kosterlitz–Thouless transition: all
trajectories starting from the green line are attracted to λ̃ = 0, and
T̃ > T̃c (line of fixed points), the remaining ones to the
strong-coupling regime with λ̃ � 1.

What the RG approach cannot reach is the strong-disorder
fixed point λ̃ � 1. The latter has been studied in the Wegner
flow-equation approach [248], and via NPFRG [249].

2.29. Random-phase sine-Gordon model

The sine-Gordon model (253) with quenched disorder cou-
pling to eiΦ reads (writing�z → z)

HrpSG =

∫
z

[∇Φ(z)]2

8πT
+ ξ(z) :eiΦ(z): +ξ∗(z) :e−iΦ(z) :

ξ(z)ξ∗(z′) =
λ

2π
δ2(z − z′). (259)

After replication (see section 1.5), the effective action reads

SrpSG =

∫
z

∑
α

[∇Φα(z)]2

8πT
− λ

2π

∫
z

∑
α �=β

:ei[Φα(z)−Φβ (z)] :

− σ

4π

∫
z

∑
α �=β

∇Φα(z)∇Φβ(z). (260)

We added an additional off-diagonal term in the second line,
since it is generated under RG; we will see this shortly.

Perturbation theory is performed with

〈Φα(x)Φβ(y)〉0 = −Tδαβ ln
(
|x − y|2

)
. (261)

First diagram (one loop). We use the graphical notation

(262)

The contributions to the effective action are δSi ≡
∫

x δsi. The
first one is (an ellipse encloses the same replica)

(263)
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This term contains a strongly UV-divergent contribution to the
free energy (which we do not need) and the sub-dominant term

−δs1 ≈ −1
4

(
λ

2π

)2∑
α �=β

∫
y
|x − y|−4T

× :
[
(x − y) · ∇Φα(x) − (x − y) · ∇Φβ(x)

]2
:

= −1
4

(
λ

2π

)2∑
α �=β

∫
y
|x − y|2−4T

× :
[
∇Φα(x) −∇Φβ(x)

]2
: (264)

It corrects σ,

δσ =
1
2
λ2 × I1, (265a)

I1 =
1

2π

∫
dy2 |y|2−2TΘ(|y| < L) =

L4τ

4τ
, (265b)

τ := 1 − T. (265c)

Second diagram (one loop).

(266)
Projecting onto the interaction yields

−δs2 ≈
(

λ

2π

)2

× (n − 2)
∑
α �=γ

:ei[Φα(x)−Φγ (x)]: I2 ,

(267)

I2 =
1

2π

∫
d2y |y|−TΘ(|y| < L) =

L2τ

2τ
. (268)

Setting the number of replicas n → 0, we get

δλ = −2λ2 × I2. (269)

Defining the β-functions as the variation with respect to the
large-scale cutoff L, keeping the bare coupling λ, one obtains
after some algebra

βλ̃(λ̃) :=L
∂

∂L
λ̃ = 2τλ̃− 2λ̃2 + λ̃3 +O(λ̃4), (270a)

βσ(λ̃) :=L
∂

∂L
σ =

1
2
λ̃2 +O(λ̃4). (270b)

The additional two-loop coefficients are obtained in [257].
What are the physical consequences of theseβ-functions? First
of all, there is a non-trivial fixed point for λ̃ at

λ̃c = τ +
1
2
τ 2 +O(τ 3). (271)

Figure 20. The RG flow for λ̃ as a function of T.

Second, integrating the β-function for σ, starting at a micro-
scopic scale a, yields, see figure 20

σ =
1
2
λ̃2

c ln

(
L
a

)
+ · · · =

[
τ 2

2
+

τ 3

2
+O(τ 4)

]
ln

(
L
a

)
,

(272)
equivalent to

σ(k) 
 −
[
τ 2

2
+

τ 3

2
+O(τ 4)

]
ln(ak). (273)

This allows us to obtain the k dependent two-point function as

〈
Φ̃1(k)Φ̃2(−k)

〉
=

(
4πT
k2

)2
σ(k)k2

2π
. (274)

As a consequence25,

〈Φ(x) − Φ(0)〉2 = A ln (x/a)2 +O
(
ln(x/a)

)
, (275)

A = 2(1 − τ )2
[
τ 2 + τ 3 +O(τ 4)

]
= 2τ 2 − 2τ 3 +O(τ 4). (276)

A numerical test [254] using a combinatorial algorithm grow-
ing polynomial in system size (the concept behind this achieve-
ment is discussed in section 2.31) are shown in figure 21.

The result (276) was obtained in a perturbative expansion
in T − Tc. Even if one could calculate the following orders,
and resum them properly, one wonders whether the expansion
remains correct down to T = 0. This is unlikely: we know from

25 Intermediate steps are

〈Φ1(x)Φ1(0)〉 − 〈Φ1(x)Φ2(0)〉 =
∫

d2k
(2π)2

4πT
k2

eikx

= −2T ln |x/a|.

〈Φ1(x)Φ2(0)〉 =
∫

d2k
(2π)2

(
4πT
k2

)2
σ(k)k2

2π
eikx

= −
[
τ 2 + τ 3 +O(τ 4)

]
T2 ln2|x/a|.
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Figure 21. The amplitude A(τ ), characterizing the super-rough
phase. Reprinted figure with permission from [254], Copyright
(2012) by the American Physical Society. The squares are numerical
estimates using the algorithm of [255]. ‘One loop’ indicates the
one-loop result A(τ ) = 2τ 2 while ‘two loop’ refers to
equation (276), (a Padé resummation of it is shown as well). Aff is
the result of [256]. We also show values obtained numerically at
T = 0 in the corresponding references.

the ε-expansion, see equation (94), that the fixed-point at T =
0 has to all orders in ε the form (with C a constant)

Δ(Φ) = C
[

2π2

3
− Φ(2π − Φ)

]
≡ 4C

∞∑
q=1

cos(qΦ)
q2

. (277)

It contains an infinity of subdominant modes indexed by q,
which one can try to incorporate into the perturbative result.
Naively one expects the mode q to show up at Tc(q) = Tc/q2,
and it is likely to increase the perturbative result. Attempts to
do so have been undertaken in [258–261].

2.30. Multifractality

Consider an observable O(�) such as the field difference
between two points a distance � apart. Its nth moment reads

〈O(�)n〉 ∼ �ζn . (278)

Generically there are two possibilities

(a) ζn = nζ: fractal
(b) ζn �= nζ: multifractal

In some cases, e.g. in the critical dimension, one has

〈O(�)n〉 ∼ �ζn = eζn ln(�) → ζn ln(�), (279)

i.e. the universal anomalous dimension appears as the ampli-
tude of the log, see e.g. equation (120a) and section 3.8. We
still think of these systems as fractal or multifractal, depending
on which of the two choices above applies.

Most pure critical systems are fractals. Famous multifractal
systems are Navier–Stokes turbulence [262–264], or the more
tractable passive advection of particles, the passive scalar
[265–271], or its generalization to the advection of extended
elastic objects [272].

An important question is whether systems with quenched
disorder show multifractality. A prominent example is the
wave-function statistics at a delocalization transition, such as
the Anderson metal–insulator transition at the mobility edge in
three spatial dimensions, or the integer quantum-Hall plateau
transition in two dimensions. Here one considers (see [273] for
a concise introduction or the classic [274])

Pq(εi) :=
∫

Ld
ddr|ψi(r)|2q ∼ L−τ (q), (280)

where εi is the energy of the state i, and ψi(r) its wave func-
tion. Note that normalization imposes τ (1) = 0. For extended
states inside a band τ (q) = d(q − 1), while for localized states
τ (q) = 0. At the band edge τ (q) is non-trivial. Define by f (α)
its Legendre transform,

Legendreα↔q f (α) + τ (q) = αq. (281)

Then the set of points at which an eigenfunction takes the
value |ψ(r)|2 = AL−α has weight L f (α). Both f (α) and τ (q)
are convex.

The question relevant for this review is whether disordered
elastic manifolds show multifractality. As long as the rough-
ness exponent ζ > 0, this does not seem to be the case. The
situation is different for ζ = 0, i.e. CDWs or vortex lattices.
Technically, it can be accessed either via a 4 − ε expansion
[275] or directly in two dimensions [276].

Multifractality of the random-phase sine-Gordon model in
dimension d = 2. The random-phase sine-Gordon model was
introduced above in section 2.29. The object to be considered
is

C(q, r) := 〈eiq[Φ(r)−Φ(0)]〉. (282)

It was shown in [276] that with A given in equation (276),

C(q, r) 

(a

r

)η(q)
exp

(
−1

2
Aq2 ln2(r/a)

)
. (283)

The anomalous exponent η defined in equation (283) reads

η(q) = 2q2(1 − τ )[1 + 2(1 − τ )σ′] + τ 2ηg(q) +O(τ 3).
(284)

Its nontrivial part ηg is [276]

ηg(q) =

{
q2[1 − 2γE − ψ(q) − ψ(−q)], q < 1

−2, q = 1.
(285)

Here γE is Euler’s constant. The result for the correlation func-
tion (282) enables one to calculate the leading large-distance
behavior of all higher powers of the connected correlation
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functions in the super-rough phase, i.e., for T < Tc (τ > 0, see
figure 20). Using

ηg(q) = q2 + 2
∞∑

n=2

ζ(2n − 1)q2n, (286)

one sees that odd moments vanish, the second moment is given
by equations (275) and (276), and higher even moments by

(−1)n

(2n)!

〈
[Φ(r) − Φ(0)]2n

〉
c = −2τ 2 ζ(2n − 1) ln

( r
a

)
+ . . .

(287)
This system is multifractal.

FRG in dimension 4 − ε. Following [275], define

G[λ] := 〈e∫xλ(x)u(x)〉 = lim
n→0

〈
e
∫

xλ(x)u1(x)
〉
S

, (288)

λ(x) = iq[δ(x) − δ(x + r)]. (289)

This can be calculated with methods similar to [277], using
from the action (30) only the cubic vertex,

1
2T2

∫
x

∑
a,b

R
(

ua(x) − ub(x)
)

→ σ

12T2

∑
a,b

|ua(x) − ub(x)|3, σ = R′′′(0+). (290)

The connected part ofG[λ] reads (the correlation function C(x)
is defined in equation (33a))

(291)

(292)

Calculating the determinant (291) is a formidable task, usu-
ally only possible in perturbation theory in σ. Here we give
analytical results, using three consecutive tricks:

(a) Solve the problem for a spherically symmetric source
λ(y), assuming a uniformly distributed positive unit
charge on a circle of radius a, and a compensating neg-
ative charge on a circle of radius L � a. The potential
is U(x) = (r−2 − L−2)/(2π)2 for a � r � L, and constant
beyond.

(b) Write the Laplacian in distance and angle variables,

−∇2 →Hl := − d2

dr2
+

(
l + d−3

2

) (
l + d−1

2

)
r2

. (293)

(c) ln(G[λ]) is written as a sum of the logarithms of the
one-dimensional determinant ratios Bl for partial waves,
weighted with the degeneracy of angular momenta l,

ln(G[λ]) =
∞∑

l=0

(2l + d − 2)(l + d − 3)!
l!(d − 2)!

ln(Bl). (294)

(d) The Gel’fand–Yaglom method [278] explained in
appendix A.8 gives the ratio of the one-dimensional
functional determinants for each partial wave l as

Bl :=
det

[
Hl + σU(r) + m2

]
det

[
Hl + m2

] =
ψl(L)

ψ̃l(L)
. (295)

Here ψl(r) is the solution of[
Hl + σU(r) + m2

]
ψl(r) = 0, (296)

satisfying ψl(r) ∼ rl+(d−1)/2 for r → 0; ψ̃l(r) is the solu-
tion for σ = 0.

(e) After some pages of algebra, one finds (modulo odd terms
which cancel below)

ln(G[λ]) = F
(

σq
(2π)2

)
+ terms odd in σ (297)

F (s) = −
∞∑

l=0

(l + 1)2

(√
(l + 1)2 + s − (l + 1)

− s
2(l + 1)

+
s2

8(l + 1)3

)
. (298)

Resummation yields (dropping odd terms)

F (s) =
∞∑

n=2

s2nΓ
(
2n − 1

2

)
ζ(4n − 3)

2
√
π(2n)!

. (299)

(f) In a last step one proves perturbatively that all n-point
functions remain unchanged if one moves the charge on
the sphere at |r| = L to a single point at distance L from
the origin. The combinatorial analysis yields an additional
factor of 2.

Using the FRG fixed point (95), s = ε
3 q, the 2n(th) cumulant

of relative displacements is obtained as

〈[u(r) − u(0)]2n〉c 
 A2n ln(r/a) (300)

A2n = −
( ε

3

)2nΓ(2n − 1
2 )ζ(4n − 3)√
π

, n � 2. (301)

This correlation function is multifractal.

2.31. Simulations in equilibrium: polynomial versus NP-hard

Finding the ground state of a disordered system is in gen-
eral a very difficult problem, often even NP-hard, meaning no
algorithm exists which is guaranteed to find the ground state in
polynomial time, i.e. within a time which does not grow faster
than N p, with N the system size, and p a finite number. This
statement should be viewed as ‘state of the art’: e.g. we know
of no algorithm to find the ground state of the SK model in
polynomial time; but this does not imply that no such algorithm
can exist. What computer scientists have proven is that if one
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day an algorithm is found to solve one NP-hard problem, all
other NP-hard problems can be solved as well. We refer the
reader to the textbooks [279, 280] and collection [281] for a
more precise definition and further information on the subject.

While many ground-state calculations are considered NP-
hard, there are some notable exceptions: for the RNA-folding
problem [282] a polynomial algorithm exists [283], which
evaluates the partition function at all temperatures in a time
growing as N3, allowing one not only to find the ground state
but even the phase transition from a frozen to a molten phase
[284–286].

Another notable exception are disordered elastic manifolds,
or more specifically the ground state of an Ising ferromagnet
coupled to either RB or RF disorder. It can be solved by the
minimum-cut algorithm [287]. This has been used in numerous
publications: to find the roughness exponent ζ in dimensions
2 and 3 [137], see figure 10; to measure the FRG-fixed point
function [128], see figure 8 or avalanche-size distributions in
equilibrium [288], see figure 51. Further for flux lines in a dis-
ordered environment [289, 290]; or solid-on-solid models with
disordered substrates [250].

2.32. Experiments in equilibrium

There are few experiments which really are in equilibrium.
The main reason is that in most cases the exponent θ defined
in equation (45) is positive, restricting the energy fluctuations
which according to equation (47) grow as Lθ. As a conse-
quence, there is a maximal length Lmax

T up to which the system
can equilibrate, i.e. find the minimum-energy configuration.
Let us give a list of notable exceptions.

(a) Domain walls in thin magnetic films with RB disor-
der have long been interpreted [84, 291, 292] as show-
ing the roughness exponent of ζd=1

RB = 2/3 given in
equation (122). This interpretation probably holds only on
small scales, see the discussion in section 3.21.

(b) Hairpin unzipping reported in [293] is consistent with a
roughness exponent ζ = 4/3, in agreement with the value
predicted for a single degree of freedom, i.e. d = 0 or
ε = 4 in equation (83). We discuss this experiment in
detail in section 3.17. There it is confronted with an exper-
iment using the much softer peeling mode, placing it in the
different depinning universality class with ζ = 2−.

(c) Vortex lattices (section 2.26).

3. Dynamics, and the depinning transition

3.1. Phenomenology

Another important class of phenomena for elastic manifolds
in disorder is the so-called depinning transition: applying a
constant force to the elastic manifold, e.g. a constant mag-
netic field to the ferromagnet mentioned in the introduction,
the latter will move if, and only if, a certain critical threshold
force fc is surpassed, see figure 22. (This is fortunate, since
otherwise the magnetic domain walls in the hard-disc drive
onto which this article is stored would move, with the effect
of deleting all information, depriving you from your reading.)

At f = fc, the so-called depinning transition, the manifold has
a roughness exponent ζ (see equation (7)), distinct from the
equilibrium ( f = 0). The equation describing the movement
of the interface is

∂tu(x, t) = (∇2 − m2)u(x, t) + F (x, u(x, t)) + f (x, t),

(302)

F(x, u) = −∂uV(x, u). (303)

There are two main driving protocols, depending on whether
one controls the applied force, or the mean driving velocity.

Force-controlled depinning. Let us impose a driving force
f (x, t) = f , and set m → 0. For f > fc, the manifold then
moves with velocity v. Close to the transition, new critical
exponents appear:

• a velocity-force relation given by (see figure 22)

v ∼ | f − fc|β for f > fc, (304)

• a dynamic exponent z relating correlation functions in
space and time

t ∼ xz. (305)

Thus if one has a correlation or response function R(x, t),
it will be for short times and distances be a function of
t/xz only,

R(x, t) 
 R(t/xz). (306)

• a correlation length ξ set by the distance to fc

ξ = ξ f ∼ | f − fc|−ν. (307)

Remarkably, this relation holds on both sides of the tran-
sition: for f < fc, it describes how starting from a flat or
equilibrated configuration, the correlation length ξ, which
can be interpreted as the avalanche extension (defined
below in equation (470)), increases as one approaches fc.
Arriving at fc, each segment of the interface has moved.
Above fc, the interface is always moving, and the corre-
lation length ξ (which now decreases upon an increase in
f ) gives the size of coherently moving pieces.

• The new exponents z, β and ν are not independent, but
related [294]. Suppose that f > fc, and we witness an
avalanche of extension ξ. Then its mean velocity scales
as

v ∼ u
t
∼ ξζ

ξz
∼ | f − fc|−ν(ζ−z)

=⇒ β = ν(z − ζ). (308)

One can make the same argument below fc, by slowing
increasing f to fc.

• Suppose that below fc the manifold is in a pinned config-
uration. Increasing f leads to an avalanche, of extension
ξ, and a change of elastic force (per site) ∼ξζ−2. This has
to be balanced by the driving force, i.e.

ξζ−2 ∼ | f − fc| =⇒ ν =
1

2 − ζ
. (309)
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Figure 22. (Left) Snapshot of a contact-line at depinning, courtesy Rolley (movie). Observables derived from this system are shown in
figures 32 and 48. (Right) Velocity of a pinned interface as a function of the applied force. f = 0: equilibrium. f = fc: depinning. For an
experimental confirmation of the v( f ) curve in a thin magnetic film, see figure 43.

Velocity-controlled depinning. If m > 0, then we can
rewrite the equation of motion (302) as

∂tu(x, t) = (∇2 − m2)[u(x, t) − w] + F (x, u(x, t)) ,

w = vt. (310)

The phenomenology changes:

• The driving force acting on the interface is fluctuating as
well as the velocity, while the mean driving velocity is
fixed

u̇(x, t) = v, f =
1
Ld

∫
x
F (x, u(x, t)). (311)

• The correlation length ξ is set by the confining potential,

ξ = ξm =
1
m
. (312)

3.2. Field theory of the depinning transition, response
function

We can enforce the equation of motion (310) with an auxiliary
field ũ(x, t) 26

S[u, ũ, F] =
∫

x,t
ũ(x, t)

[ (
∂t −∇2 + m2

)(
u(x, t) − w

)
− F

(
x, u(x, t)

)
− f (x, t)

]
. (313)

We need to average over disorder, to obtain the disorder-
averaged action e−S[u,̃u] := e−S[uũ,F], with

S[u, ũ] =
∫

x,t
ũ(x, t)

[
(∂t −∇2 + m2)[u(x, t) − w] − f (x, t)

]
− 1

2

∫
x,t,t′

ũ(x, t)Δ
(
u(x, t) − u(x, t′)

)
ũ(x, t′). (314)

We remind the definition of the force–force correlator given in
equation (10).

Response function and the free theory. The response of a
system is defined as the answer of the system given a per-
turbation f (x, t). The response can be any observable, as the

26 This trick is known as the MSR formalism [295–299]. It is the generaliza-
tion to a field of the relation

∫
k eikx = δ(x): the response field ũ(x, t) enforces

the Langevin equation (310) for each x and t. A short introduction is given in
appendix A.4.

avalanche-size distribution defined below in equation (472),
but the simplest one is the response of the field u(x′, t′) itself,

R f (x′, t′|x, t) :=
δ

δ f (x, t)
u(x′, t′) = 〈u(x′, t′)ũ(x, t)〉 . (315)

In a translationally invariant system, R f (x′, t′|x, t) does only
depend on x′ − x and t′ − t, and is denoted

R(x′ − x, t′ − t) :=R f (x′, t′|x, t). (316)

In the second equality of equation (315) we used the aver-
age provided by the action (314). The formalism is explained
in appendix A.4, see equation (969) and following. The most
convenient representation is the spatial Fourier transform cal-
culated for the free theory in equation (983),

R(k, t) = 〈u(k, t + t′)ũ(−k, t′)〉 = e−(k2+m2)tΘ(t). (317)

We could introduce response functions as the answer to differ-
ent perturbations, e.g. increasing w instead of f ,

Rw(k = 0, t) :=
d

dw
〈u(k = 0, t)〉 = m2R(k = 0, t). (318)

This changes the normalization,∫
t
Rw(k = 0, t) = 1. (319)

While equation (318) is the free-theory result, corrected in
perturbation theory, equation (319) is by construction exact.

3.3. Middleton theorem

We now state the famous Middleton theorem [300].

Middleton theorem. If F(x, u) is continuous in u, and
u̇(x, t) � 0, then u̇(x, t′) � 0 for all t′ � t. Moreover, if two con-
figurations are ordered, u2(x, t) � u1(x, t), then they remain
ordered for all times, i.e. u2(x, t′′) � u1(x, t′) for all t′′ � t′ > t.

Proof. Consider an interface discretized in x. The trajecto-
ries u(x, t) are a function of time. Suppose that there exists
x and t′ > t s.t. u̇(x, t′) < 0. Define t0 as the first time when
this happens, t0 := infx inft′>t{u̇(x, t′) < 0}, and x0 the corre-
sponding position x. By continuity of F in u, the velocity u̇ is
continuous in time, and u̇(x0, t0) = 0. This implies that the dis-
order force acting on x0 does not change in the next (infinitesi-
mal) time step, and the only changes in force can come from a
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change in the elastic terms. Since by assumption no other point
has a negative velocity, this change in force cannot be negative,
contradicting the assumption.

To prove the second part of the theorem, consider the
following configuration at time t0:

Here the red configuration is ahead of the blue one, except
at position x0, where they coincide. As in the first part of the
proof, we wish to bring to a contradiction the hypothesis that at
some later time u1(x0) (blue) is ahead of u2(x0) (red). For this
reason, we have chosen t0 the infimum of times contradicting
the theorem, t0 := inft′>t{u1(x0, t′) > u2(x0, t′)}. Consider the
equation of motion equation (310) for the difference between
u1 and u2,

∂t [u2(x0, t) − u1(x0, t)]|t=t0

= ∇2 [u2(x0, t0) − u1(x0, t0)] . (320)

The disorder force terms have canceled as well as the
term of order m2, since by assumption u2(x0, t0) = u1(x0, t0).
By construction, the rhs is positive, leading to the desired
contradiction.

Remark. Uniqueness of perturbation theory. As in the stat-
ics, one encounters terms proportional to Δ′(0+) ≡ −R′′′(0+).
Here the sign problem can uniquely be solved by observing
that due to Middleton’s theorem the manifold only moves
forward,

t′ > t =⇒ u(x, t′) − u(x, t) � 0. (321)

Thus the argument of Δ
(
u(x, t′) − u(x, t)

)
has a well-defined

sign, allowing us to interpret derivatives at vanishing argu-
ments correctly. Practically this means that when evaluating
diagrams containing Δ(u(x, t) − u(x, t′)), one splits them into
two pieces, one with t < t′ and one with t > t′. Both pieces are
well defined, even in the limit of t → t′.

3.4. Loop expansion

Consider the field theory defined by the action (314). To appre-
ciate the problem, let us remind that in equilibrium a model
is defined by its Boltzmann weight. As long as the system
is ergodic, it can be sampled with the help of a Langevin
equation, and equilibrium expectations can be evaluated as
expectations in the dynamic field theory. This goes hand in
hand with identical renormalizations, as is e.g. known for the
effective coupling in φ4 theory. On the other hand, it does
not fix the dynamics. It is indeed well-known that a differ-
ent dynamics leads to a different dynamic universality class,

as exemplified by the Hohenberg–Halperin classification of
dynamical critical phenomena [301], leading to the zoo of
models A, B, C, . . . , F, and J. We might therefore not be sur-
prised if below we find the same renormalization for the dis-
order in the driven dynamics. On the other hand, equilibrium
and out-of-equilibrium are two distinct phenomena, and may
have distinct critical exponents. As we will see below, at one-
loop order all comparable observables are identical, whereas
differences are manifest at two-loop order.

Let us start by rederiving the corrections to the renormal-
ized disorder correlator at one-loop order. The replica diagram
in equation (54) is one of the two contributions to the effective
potential–potential correlator R(u) given in equation (60). In
the dynamics, the disorder term in equation (314) is the bare
(microscopic) force–force correlator Δ0(u), which we note
graphically as

(322)

The arrows are the response fields ũ(x, t1)ũ(x, t2); some authors
represent them by a wiggly line. Since the response func-
tion has a direction in time, the static diagram (54) has two
descendants in the dynamic formulation,

(323)
The first descendant with the corresponding times is

(324)
Some remarks are in order: this is a correction to Δ, and
we have not written the integrations over t3, t4 and y. The
derivatives of Δ come from the Wick contractions as in
equation (52). The global minus sign in the first line originates
from the derivatives acting once on the field at time t3, and
once at time t4. Going to the second line, we have in the argu-
ment of Δ replaced fields at time t2 by those at time t4, and
fields at time t1 by those at time t3; this is justified since the
response function R decays rapidly in time. In the argument of
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Δ we have also replaced x by y, as we did in the statics after
arriving at equation (55). The remaining two times t3 and t4

can be taken arbitrarily far apart, thus this diagram encodes a
contribution to the effective disorder.

The second descendant gives after the same steps

(325)

We used that Δ′(u) is odd in u. Together, these two diagrams
give with I1 defined in equation (58)

(326)
Taking care of the combinatorial factors, and the factors of 1/2
in the action, we read off their contribution to the effective
disorder Δ(u),

δ1Δ(u) = −
[
Δ0(u)Δ′′

0(u) +Δ′
0(u)2

]
I1

= −∂2
u

1
2
Δ0(u)2I1. (327)

This is the same contribution as given by the diagram in
equation (54), noting that Δ0(u) = −R′′

0(u), and using the
combinatorial factor 1/2 reported in equation (60).

To complete our analysis, consider the second diagram; it
also has two descendants,

(328)
After time-integration this yields

(329)

(330)

The last diagram contains a first factor of Δ′(0+); the definite
sign results from the causality of the response functions ensur-
ing t2 < t1. It is asymmetric under exchange of t3 and t4, thus
vanishes after integrating over these times. (B.t.w., inserted
into a two-loop diagram, it is this diagram which is respon-
sible for the differences seen there, especially for the two-loop

contribution to ζ.) Together, they give a second contribution to
the effective disorder

δ2Δ(u) = Δ0(0)Δ′′
0(u)I1 = ∂2

u [Δ0(0)Δ0(u)] I1. (331)

This is the same contribution as given by equation (55).
The last diagram we drew for the equilibrium was given in

equation (56). Its descendant reads

(332)

While the static diagram on the lhs does not contribute to the
effective disorder since it is a three-replica term (three inde-
pendent sums over replicas), the dynamic diagram on the rhs
does not contribute due to the acausal loop, as it does not allow
for any time integration, thus vanishes.

For completeness, we write the effective disorder-force
correlator at one-loop order,

Δ(u) = Δ0(u) − ∂2
u

[
1
2
Δ0(u)2 −Δ0(0)Δ0(u)

]
I1. (333)

This result is the same as when applying−∂2
u to equation (60).

We thus recover the same flow equation for the renormalized
dimensionless force–force correlator as given in equation (69)
and first derived in [121, 122, 294, 302]

∂�Δ̃(u) = (ε− 2ζ)Δ̃(u) + ζuΔ̃′(u)

− ∂2
u

1
2

[
Δ̃(u)2 − Δ̃(0)

]2
. (334)

While this might not be surprising on a formal level, it is
very surprising on a physical level: the effective disorder (60)
is for the minimum energy state, while the derivation given
above is for a state at depinning. We will see in the next
section 3.5 that there are indeed corrections at two-loop order
which account for this difference, and which are important to
reconcile the physically observed differences in exponents and
other observables with the theoretical prediction.

Before going there, let us complete our analysis with two
additional contributions not present in the statics, and which
we will interpret as the critical force at depinning, and a renor-
malization of friction, leading to a non-trivial dynamical expo-
nent z, as defined in equation (305). The diagram in question
is

(335)
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The first term corresponds to a constant driving force f in
equation (302), and can be interpreted as the threshold force
below which the manifold will not move. In terms of the
renormalized disorder, it reads

fc = −Δ′(0+)ITP, (336)

(337)

Its value is non-universal, but gives us a pretty good idea how
strong we have to drive. In the driving protocol with a parabola
centered at w as given in equation (310), it gives us the size of
the hysteresis loop, illustrated in figure 25,

m2
[
uw − wforward − uw − wbackward

]
= 2 fc. (338)

Let us now turn to the second term in equation (335). Restoring
the friction coefficient η in front of ∂tu(x, t) in the equation of
motion (310) yields

ηeff = 1 −Δ′′
0(0+)I1 + . . . (339)

The dynamical exponent z, expressed in terms of the renormal-
ized disorder, is then obtained as

z = 2 − m∂m ln ηeff = 2 − Δ̃′′(0+) + . . . (340)

Taking one derivative of equation (79), or equivalently of
equation (334) at the fixed point ∂�Δ̃(u) = 0, and evaluating
it in the limit of u → 0 allows us to conclude that

Δ̃′′(0+) =
ε− ζ

3
. (341)

This depends on the universality class,

z = 2 − ε− ζ

3
+ . . . =

⎧⎪⎨⎪⎩
2 − ε

3
+ . . . RP disorder

2 − 2ε
9

+ . . . RF disorder.

(342)
We do not give a value of z for the RB fixed point, as the latter
is unstable under RG, as we will see in the next section.

3.5. Depinning beyond leading order

Renormalization at the depinning transition was first treated
at one-loop order by Natterman et al [294], soon followed
by Narayan and Fisher [303]. As we have seen, the one-loop
flow-equations are identical to those of the statics. This is
surprising, since equilibrium and depinning are quite differ-
ent phenomena. There was even a claim by [303], that the
roughness exponent in the RF universality class is ζ = ε/3
also at depinning. After a long debate among numerical physi-
cists, the issue is now resolved: the roughness is significantly
larger, and reads e.g. for the driven polymer ζ = 1.25 ± 0.005
[53, 304], and possibly exactly ζ = 5

4 [305]; this should
be contrasted to ζ = 1 at equilibrium, see equation (83).
Clearly, a two-loop analysis is necessary to resolve these
issues. The latter was performed in [124, 125]. At the

Table 1. Critical exponents at the depinning transition for
short-ranged elasticity (α = 2). One-loop and two-loop results
compared to estimates based on three Padé approximants, scaling
relations and common sense.

d ε ε2 Estimate Simulation

ζ
3 0.33 0.38 0.38 ± 0.02 0.355 ± 0.01 [307]
2 0.67 0.86 0.82 ± 0.1 0.753 ± 0.002 [307]
1 1.00 1.43 1.2 ± 0.2 5/4 [305]

z
3 1.78 1.73 1.74 ± 0.02 1.75 ± 0.15 [294]
2 1.56 1.38 1.45 ± 0.15 1.56 ± 0.06
1 1.33 0.94 1.35 ± 0.2 10/7 [305]

β
3 0.89 0.85 0.84 ± 0.01 0.84 ± 0.02 [294]
2 0.78 0.62 0.53 ± 0.15 0.64 ± 0.02
1 0.67 0.31 0.2 ± 0.2 5/21 [305]

ν
3 0.58 0.61 0.62 ± 0.01
2 0.67 0.77 0.85 ± 0.1 0.77 ± 0.04 [308]
1 0.75 0.98 1.25 ± 0.3 4/3 [305]

depinning transition, the two-loop FRG flow equation reads
[124, 125]

∂�Δ̃(u)

= (ε− 2ζ)Δ̃(u) + ζuΔ̃′(u) − 1
2
∂2

u

[
Δ̃(u) − Δ̃(0)

]2

+
1
2
∂2

u

{[
Δ̃(u) − Δ̃(0)

]
Δ̃′(u)2+Δ̃′(0+)2Δ̃(u)

}
. (343)

Compared to the FRG-equation (113a) for the statics, the only
change is in the last sign on the second line of equation (343),
given in bold. This ‘small change’ has important consequences
for the physics. First of all, the roughness exponent ζ for the RF
universality class changes: integrating equation (343) the last
term yields a boundary term at u = 0, and due to the different
sign it no longer cancels with the preceding one, resulting in

0 = (ε− 3ζ)
∫ ∞

0
Δ̃(u)du − Δ̃′(0+)3 +O(ε3). (344)

Inserting the one-loop fixed point (84)–(88) leads to27

ζdep
RF =

ε

3
(1 + 0.143317ε+ . . . ). (345)

Other critical exponents mentioned above can also be calcu-
lated. The dynamical exponent z reads [124, 125]

ζdep
RF = 2 − 2

9
ε− 0.043 21ε2 + . . . (346)

The remaining exponents are related via the scaling relations
(308) and (309). That the method works well quantitatively can
be inferred from table 1.

The RB fixed point is unstable and renormalizes to the RF
universality class. This might physically be expected: since the
manifold only moves forward, each time it advances it experi-
ences a new disorder configuration, and it has no way to ‘know’
whether this disorder is derived from a potential or not. This

27 For details see [124], section 4.1.
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Figure 23. Doing RG in a simulation: crossover from RB disorder
to RF for a driven particle. Reprinted figure with permission from
[128], Copyright (2007) by the American Physical Society.

can be seen from the integrated FRG equation (344): accord-
ing to equation (89), an RB fixed point is characterized by a
vanishing of the integral in equation (344), but this does not
solve equation (344). The instability of the RB fixed point can
already be seen for a toy model with a single particle, mea-
suring the renormalized disorder correlator at a scale � = 1/m
set by the confining potential, see figure 23. Generalizing the
arguments of section 2.11 one shows [129] that equation (111)
remains valid in the limit of w = vt, v → 0. It was confirmed
numerically for a string that both RB and RF disorder flow to
the RF fixed point [306], and that this fixed point is close to
the analytic solution of equation (343), see figure 24.

The non-potentiality of the depinning fixed point is also
observed in the RP universality class, relevant for CDWs.
The fixed point for a periodic disorder of period one reads
(remember Δ̃(u) = −R̃′′(u))

Δ̃(u) =
ε

36
+

ε2

108
−
(
ε

6
+

ε2

9

)
u(1 − u) +O(ε3). (347)

Integrating over a period, we find∫ 1

0
du Δ̃(u) ≡

∫ 1

0
du F̃(u)F̃(u′) = − ε2

108
. (348)

In equilibrium, this correlator vanishes since potentiality
requires

∫ 1
0 du F̃(u) ≡ 0. Here, there are non-trivial contribu-

tions at two-loop order, O(ε2), violating this condition and
rendering the system non-potential.

If an additional constant term Δ̃0 cannot be excluded as
is the case in equilibrium, then according to equation (343)
it flows as

∂�Δ̃0 = (ε− 2ζ)Δ̃0. (349)

It acts as a Larkin term leading to a roughness exponent [122,
124, 309]

ζCDW
obs = ζLarkin =

4 − d
2

. (350)

For the dynamic exponent z, one can go further [140,
310–312], using the equivalence to φ4-theory discussed in

section 8.9,

z = 2 − ε

3
− ε2

9
+

[
2ζ(3)

9
− 1

18

]
ε3

−
[

70ζ(5)
81

− ζ(4)
6

− 17ζ(3)
162

+
7

324

]
ε4

−
[

541ζ(3)2

162
+

37ζ(3)
36

+
29ζ(4)

648
+

703ζ(5)
243

+
175ζ(6)

162
− 833ζ(7)

216
+

17
1944

]
ε5

− 11.7939ε6 +O(ε7). (351)

3.6. Stability of the depinning fixed points

The stability analysis at depinning is done as in section 2.14
for the equilibrium.

RP fixed point. The RP fixed point at depinning is stable
perturbatively, (appendix I of [124]). The leading three modes
are

ω−1 = −ε, z−1(u) = 1. (352a)

ω1 = ε+
7
3
ε2 +O(ε3), (352b)

z1(u) = 1 − (6 + 4ε)u(1 − u).

ω2 = 2ε+ 4ε2 +O(ε3),
(352c)

z2(u) = 1 − (15 + 20ε)u(1 − u) + (45 + 85ε)[u(1 − u)]2,

ω3 =
25
3
ε+

140
9

ε2 +O(ε3). (352d)

RF fixed point.

ω = ε+ 0.0186ε2 +O(ε3). (353a)

The fixed-point function is

z(u, ε) = εz1(u) + ε2z2(u) +O(ε3), (353b)

z1(u) = ζuΔ′(u) + (ε− 2ζ)Δ(u)|ε=1. (353c)

While the first-order term can rather instructively be expressed
in terms of the fixed point Δ(u) itself, the higher-order terms
are more complicated (section 6.5 of [40]).

3.7. Non-perturbative FRG

The fixed points discussed above are also present in the
non-perturbative functional renormalization group (NP-FRG)
approach [313], leading to slightly varying numerical pre-
dictions in the values of the critical exponents. The result
of NP-FRG for the RF class is z = 1.69 (d = 3), z = 1.33
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Figure 24. (Left) The fixed point Δ(w) for the force–force correlations in d = 1, rescaled s.t. Δ(0) = 1, and
∫
w Δ(w) = 1, starting both

from RB and RF initial condition. Reprinted figure with permission from [306], Copyright (2007) by the American Physical Society. (Right)
Residual error δΔ(w) after subtracting the one-loop correction. The measured difference is consistent with the depinning fixed point, but not
the static one.

(d = 2), and z = 0.97 (d = 1). For the roughness at depinning
this yields ζ = 0.37 (d = 3), ζ = 0.76 (d = 2), and ζ = 1.15
(d = 1).

3.8. Behavior at the upper critical dimension

[50, 314] consider depinning at the upper critical dimension.
To derive this, note that the integral I1 defined in equation (58)
has a well-defined limit for ε→ 0, if one introduces as in
equation (57) an UV-cutoff Λ ∼ 1/a,

(354)

This suggests as scale for the RG flow

� := ln(Λ/m). (355)

Let us make in generalization of equation (63) the ansatz

Δ(u) = 8π2�2ζ1−1Δ̃�(u�−ζ1), (356)

ζ = ζ1ε+ ζ2ε
2 + . . . (357)

Then Δ̃�(u) satisfies the flow equation [50, 314]

∂�Δ̃�(u) = (1 − 2ζ1)Δ̃�(u) + ζ1uΔ̃′
�(u)

− 1
2
∂2

u

[
Δ̃�(u) − Δ̃�(0)

]2
+
∑
n>1

�1−nβn(u), (358)

where βn(u) are the n-loop contributions to the β-function. As
a consequence,

ũqũ−q

∣∣
q�m


 Δ(0)
m4

[
1 +O(�−1)

]

 8π2 ln (Λ/m)2ζ1−1

m4
+ . . . . (359a)

This formula is valid both in equilibrium and at depinning.
For RF disorder, ζ1 = 1/3, leading to an additional factor of
ln(Λ/m)1/3 in the 2-point function (359a) as compared to naive
expectations. In position space this reduces the expected lnx
behavior to

[u(x) − u(0)]2 ∼ (ln, x)2/3. (359b)

Thus mean field is invalid at the upper critical dimension.

3.9. Extreme-value statistics: the discretized particle model
(DPM)

For a single particle, there is a nice geometrical construction
to obtain the particle trajectories, indicated in figure 25: for
given w, draw a line m2(u − w). For forward driving, u(w)
is the leftmost intersection with the pinning force F(u), while
for backward driving it is the rightmost such intersection. As
indicated by the arrows, this is equivalent to shining light with
slope m2, either from the left for forward driving, or from the
right for backward driving. Parts in the shadow are never vis-
ited, while illuminated ones are. The jumps are the avalanches
of section 2.10 and are further discussed in section 4.

Using this construction, one can obtain both the distribu-
tion of critical forces, as well as the renormalized disorder
force–force correlator Δ(w) analytically [315]. The distribu-
tion of threshold forces corresponds to the three main classes
of extreme-value statistics. Let us according to equation (111)
define

Δ(w − w′) :=m4[w − u(w)][w′ − u(w′)]c. (360)
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Figure 25. Construction of u(w) in d = 0, for the pinning force F(u) (bold black line). The two quasi-static motions driven to the right and
to the left are indicated by red and green arrows, and exhibit jumps (‘dynamical shocks’). The position of the shocks in the statics is shown
for comparison, based on the Maxwell construction (equivalence of light blue and yellow areas, both bright in black and white). The critical
force is 1/(2m2) times the area bounded by the hull of the construction. (Right) The needles of the discretized particle model (DPM).
Reprinted figure with permission from [315], Copyright (2009) by the American Physical Society. uw as a function of w is given by the
left-most intersection of m2(u − w) with a needle, here uw = j, and uw′ = j′.

Each class (discussed below), has its own exponent ζ , setting
a scale ρm ∼ m−ζ . At small m, force–force correlations are
universal, given by

Δ(w) = m4ρ2
mΔ̃(w/ρm). (361)

The fixed-point function Δ̃(w) depends on the universality
class. The three classes are distinguished by the distribution
of the random forces F for the most blocking forces.

Gumbel class.

P(F) 
 e−A(−F)γ , as F →−∞. (362)

The threshold forces fc are distributed according to a Gumbel
distribution (tested in [131]),

PG(a) = exp(−a)Θ(a), (363)

fc =

[
− ln(m2a)

A

] 1
γ

= f 0
c − ln(a)m2ρm + . . . (364)

The constant f 0
c, the scale ρm, and the exponent ζ are

f 0
c = A− 1

γ (ln m−2)
1
γ ,

ρ−1
m = γA

1
γ mζ (ln m−2)1− 1

γ , ζ = 2−.
(365)

The effective disorder correlator reads

Δ̃G(w) =
w2

2
+ Li2(1 − ew) +

π2

6
. (366)

Its first derivatives are

Δ̃G(0) =
π2

6
, Δ̃′

G(0) = −1, Δ̃′′
G(0) =

1
2

,

Δ̃G(0)Δ̃′′
G(0)

Δ̃′
G(0)2

=
π2

12
= 0.822 467. (367)

It can be compared to the FRG fixed point for the RF class
at depinning, see figure 26, and discussed below around
equation (376).

Figure 26. (Main plot) The function (366) rescaled s.t.
Δ(0) = −Δ′(0+) = 1 (in black). This is compared to the similarly
rescaled one-loop prediction (88) (in red), and the straightforward
two-loop prediction obtained from equation (343) (blue dashed). To
improve convergence, we have used a Padé-(1, 1) resummation
(green, dashed), defined in equation (376). (Inset) The same
functions with the black curve subtracted. We see that the one-loop
result is decent, and that the Padé-resummed two-loop result
strongly improves on it.

Fréchet class.

P(F) 
 Aα(α+ 1)(−F)−2−αΘ(−F) as F →−∞. (368)

The threshold forces fc are distributed according to a Fréchet
distribution (α > 0),

fc = xm2ρm, PF(x) = αx−α−1 e−x−α
Θ(x). (369)

The mean pinning force fc, the scale ρm, and the exponent ζ
are

fc = Γ

(
1 − 1

α

)
m2ρm, ρm = A

1
α m−ζ ,

ζ = 2 +
2
α
.

(370)

The effective disorder correlator can be written as an integral,
and is ill-defined for α < 2, where the second moment of the
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force–force fluctuations vanishes. For α > 2 it has a cusp at
small w, and decays algebraically at large w,

Δ̃F(w) 
 Γ

(
α− 2
α

)
− Γ

(
1 − 1

α

)2

+
1
α2

Γ

(
− 1
α

)
w

+
αw2

4α+ 2
+ . . . for w → 0,

Δ̃F(w) 
 w2−αα

(α− 2)(α− 1)
+ . . . for w →∞. (371)

Weibull class. In this class, the random forces are bounded
from below, growing as a power law above the threshold, here
chosen to be zero,

P(F) = Aα(α− 1)Fα−2θ(F), α > 1. (372)

The threshold forces are distributed according to a Weibull
distribution

fc = xm2ρm,

PW(x) = α(−x)α−1 e−(−x)αΘ(−x).
(373)

The mean pinning force fc, the scale ρm, and the exponent ζ
are

fc = −A− 1
α m

2
αΓ

(
1 +

1
α

)
,

ρm = A− 1
α m−ζ , ζ = 2 − 2

α
.

(374)

The most important class is the box distribution with minimum
at 0 (α = 2). Its force–force correlator is

Δ̃α=2
W (w) =

e−w2

4w

[
2w − ew

2√
π
(
2w2 + 1

)
erfc(w) +

√
π
]

+
1
2

√
π

[
w e−w2 − Γ

(
3
2

,w2

)]
. (375)

Comparison to the ε-expansion. An interesting question is
whether one of the cases discussed above can be related to
the ε-expansion. The most natural candidate is the Gumbel
class with γ = 2, as field theory assumes bare Gaussian dis-
order. In that case ζ = 2−, close to the two-loop result (345),
i.e. ζ(ε = 4) = 2.098. While a straightforward ε-expansion for
Δ̃(w) is not satisfactory at two-loop order, we can use a Padé
approximant,

Δ̃Padé(w) =
Δ̃1(w) + αεΔ̃2(w)

1 + (α− 1)εΔ̃2(w)/Δ̃1(w)
. (376)

A comparison between equations (366) and (376), rescaled
s.t. Δ̃(0) = 1, and

∫∞
0 dw Δ̃(w) = 1, is shown on figure 26.

As can be seen there, α = 0.35 yields a good approximation,
making it a strong candidate to compare to numerical simula-
tions or experiments in d = 1 and d = 2. Note however, that
the functions (366), (371) and (375) are close, so that the ε
expansion might not be able to discriminate between them.

Avalanches and waiting times. For simplicity we restrict
ourselves to the Gumbel class, where both the waiting dis-
tances w between jumps as well as the avalanches size S have
a pure exponential distribution, (for definitions see section 4),

P(w) = ρ−1
m exp(−w/ρm), (377)

P(S) = ρ−1
m exp(−S/ρm). (378)

Dynamics. The model defined in [315] and discussed in this
section advances instantaneously. The easiest way to endow it
with a dynamics is to consider a Langevin equation [131],

η∂tu(t) = m2[w − u(t)] + F (u(t)) . (379)

If the disorder is needle-like as on the right of figure 25 (the
original construction of [315]), then either the particle is at rest,
blocked by a needle, or it moves, and the only force acting on it
comes from the spring. Neglecting that the spring gets shorter
during the movement, the response-function is then given by
R(t) ∼ P(S/v), where ηv = fc, resulting for Gaussian disorder
(Gumbel class with γ = 2, A = 1/2) into

R(t) = τ−1
m e−t/τm , τm =

η

2m2 ln(m−2)
. (380)

3.10. Mean-field theories

The framework of disordered elastic manifolds covers many
experiments, from contact-line depinning over magnetic
domain walls to earthquakes. Many of these experiments, or
at least aspects thereof, are successfully described by MF the-
ory. For driven disordered systems the first question to pose
is: what is meant by MF? Let us define MF theory as a the-
ory which reduces an extended system to a single degree of
freedom28, in general its center of mass u. For depinning, u
then follows the equation of motion (302), reduced to a single
degree of freedom,

∂tu(t) = m2 [w − u(t)] + F (u(t)) . (381)

Specifying the correlations of F(u) selects one MF theory.
However, when the reader encounters the term ‘MF theory’ in
the literature, it is quite generally employed for a model where
the forces perform a RW,

∂uF (u) = ξ(u), (382)

〈ξ(u)ξ(u′)〉 = 2σδ(u − u′). (383)

This model was introduced in 1990 by Alessandro, Beatrice,
Bertotti and Montorsi (ABBM) [316, 317] to describe mag-
netic domain walls. There F(u) are the ‘coercive magnetic

28 In the literature, the term MF is used with varying meanings: it was coined
for magnetic systems, when each spin interacts with all the other spins, the
mean field. This approximation is valid in Ginzburg–Landau theory above
a critical dimension and MF theory is often equated with the minimum of
the Ginzburg–Landau free energy. In the bootstrap approach to CFT, Gaus-
sian theories with long-range interactions are termed MF. In the context of
avalanches, MF equates with the ABBM model introduced below. The term
MF is further used for the Gaussian variational ansatz to replica-symmetry
breaking (section 2.20), and in dynamical systems (section 6.7).
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fields’ pinning the domain wall, which were observed experi-
mentally [318] to change with a seemingly uncorrelated func-
tion ξ(u). The decision of ABBM [316] to model ξ(u) in
equation (383) as a white noise is a strong assumption, a pos-
teriori justified by the applicability to experiments [317]. It
means that F(u) has the statistics of a RW.

Field theory [123–125] gives a more differentiated view:
first of all, MF theory should be applicable (with additional
logarithmic corrections, see section 3.8) in d = dc [50, 314],
which contains magnets with strong dipolar interactions [319],
earthquakes [80], and micro-pillar shear experiments [320]. As
F(u) has the statistics of a RW, the (microscopic) force–force
correlator of equations (382) and (383) is

Δ(0) −Δ(u − u′) =
1
2

〈[
F(u) − F(u′)

]2
〉
= σ|u − u′|.

(384)
Our argument for RF-disorder in section 1.2, the strongest
microscopic disorder at our disposal, predicts such a behav-
ior for the correlator R(0) − R(u) = 1

2

〈
[V(u) − V(0)]2

〉
of the

potential, but not of the force. On the other hand, the effec-
tive (renormalized) force–force correlator Δ(u) has a cusp, so
equation (384) with σ = |Δ′(0+)| is an approximation, valid
for small u. The ABBM model (381)–(383) should then be
viewed as an effective theory, arriving after renormalization.

If indeed the microscopic disorder has the statistics of a RW,
then the force–force correlator (384) does not change under
renormalization, as is easily checked by inserting it into the
one-loop (334) or two-loop (343) flow equation. Counting of
derivatives for higher-order corrections proves that this state-
ment persists to all orders in perturbation theory. Thus even
an extended (non-MF) system where each degree of freedom
sees a random force which performs a RW, the BFM, intro-
duced in [321] and further discussed in section 4.5, is sta-
ble under renormalization, and has an a roughness exponent
ζABBM = ε.29

Our discussion shows that the ABBM model (382) and
(383) is adequate only at small distances, but fails at larger
ones, where the force–force correlator decorrelates. We there-
fore expect that at large distances it crosses over to the DPM
of section 3.9. ter Burg et al [131] proposed to model the
crossover by replacing the RW equation (382) by an Orn-
stein–Uhlenbeck process,

∂uF (u) = −F(u) + ξ(u). (385)

This equation is solved by

F(u) =
∫ u

−∞
du1 e−(u−u1)ξ(u1). (386)

29 This was indirectly numerically verified in [322].

Figure 27. Avalanche-size distribution P(S) for a particle evolving
due to equation (379), with forces F(u) modeled by the
Ornstein–Uhlenbeck process (385). The theoretical curves are the
kicked ABBM model as given by equation (527) (cyan dotted), and
the discrete particle model as given by equation (378) (blue,
dashed). m2 = 10−4, δw = A = ρ = 1, δt = 10−4,
Sm =

〈
S2

〉
/(2 〈S〉) = 2408.89, ρm = 2329.95, 108 samples.

Reprinted figure with permission from [131], Copyright (2021) by
the American Physical Society.

It leads to microscopic correlations

Δ(u − u′) = F(u)F(u′)

=

∫ u

−∞
du1

∫ u′

−∞
du2 e−(u+u′−u1−u2)ξ(u1)ξ(u2)

= 2σ
∫ min(u,u′)

−∞
dũ e−(u+u′−2ũ)

= σ e−|u−u′|. (387)

The small-distance behavior of Δ(u − u′) is as in
equation (384). The crossover was confirmed numeri-
cally [131], and in experiments on magnetic domain walls
[323] and knitting [324]. On figure 27 we show a simulation
for the crossover in the avalanche-size distribution (section 4)
from τ = 3/2 for ABBM, given in equation (527), to τ = 0
as given by equation (378).

Equation (385) also serves as an effective theory for the
crossover observed in systems of linear size L, from a regime
with mL � 1 described by an extended elastic manifold
(section 3.4), to a single-particle regime as described by the
DPM model (section 3.9). This crossover has indeed be seen
in numerical simulations for a line with periodic disorder
[325–327].

3.11. Effective disorder, and rounding of the cusp by a finite
driving velocity

Suppose the system is driven quasi-statically, such that
whenever we measure, almost surely ∂tu(x, t) = 0. Then the
condition (109) derived for equilibrium is valid too. As is illus-
trated in figure 25, the chosen minimum is not the global mini-
mum, but the leftmost stable one (driving from left to right), as
obtained by the construction contained in Middleton’s theorem
of section 3.2. Thus there are three relevant local minima: from
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Figure 28. Rounding of Δ(w) (green, dashed) at finite v to Δv(w)
(blue solid) given by equation (390) and the boundary-layer
approximation (393) (red dotted).

left to right these are the (local) depinning minimum, the equi-
librium one, and finally the (local) depinning minimum for
driving the system in the opposite direction. The arguments in
the construction entering equations (109)–(111) remain valid,
and equation (111) is the prescription to measure Δ(w) at
depinning. Defining with w = vt, w′ = vt′

Δv(w − w′) :=Ldm4[w − uw][w′ − uw′]c, (388)

the renormalized force–force correlator is

Δ(w − w′) = lim
v→0

Δv(w − w′). (389)

In an experiment, the driving velocity v is finite, and it is
impossible to take the limit of v → 0. However, the observable
(388) can be calculated as [131]

Δv(w) =
∫ ∞

0
dt
∫ ∞

0
dt′ Δ(w − vt + vt′)Rw(t)Rw(t′), (390)

where Rw(t) is the response (318) of the center of mass to an
increase inw, and

∫
t Rw(t) = 1. This implies that the integral of

Δv(w) is independent of v. An example is shown in figure 28.
As an illustration, consider Δ(w) = Δ(0)e−|w|/ξ, and

Rw(t) = τ−1e−t/τ . Then

Δv(w) = Δ(0)
e−|w|/ξ − τv

ξ
e−|w|/(τv)

1 −
(

τv
ξ

)2 . (391)

This is a superposition of two exponentials, with the natural
scales ξ and τv. Since

Δ′
v(0+) = 0, (392)

the cusp is rounded. This can be proven in general from
equation (390). However,Δv(w) is not analytic, contrary to the
thermal rounding discussed in section 2.15. As long as τv �
ξ, the second term decays much faster than the first, allow-
ing us to perform a boundary-layer analysis, already encoun-
tered for the thermal rounding of the cusp in equation (142).
Equation (390) is approximated by the boundary-layer ansatz

Δv(w) 
 AvΔ
(√

w2 + (δBL
w )2

)
, (393)

δBL
w = vτ , τ :=

∫ ∞

0
dt Rw(t)t, (394)

Av =

∫∞
0 dwΔ(w)∫∞

0 dwΔ(
√
w2 + (δBL

w )2)
. (395)

The amplitude Av ensures normalization. While the response
function Rw(t) (and possibly Δ(w)) in equation (390) may
depend on v, our considerations using the zero-velocity
expressions in equation (390) yield at least the correct small-
velocity behavior [131].

If in an experiment the response function is unavailable,
its characteristic time scale τ can be reconstructed approxi-
matively from Δv(w) as

τ 
 1
v

limw→0 Δ
′(w)

Δ′′
v(0)

. (396)

In the numerator we have written limw → 0Δ′(w), which is
obtained by extrapolating Δ′

v(w) from outside the boundary
layer, i.e. w � δBL

w = vτ , to w = 0.
There are two other, and more precise, strategies to obtain τ ,

and at the same time reconstruct the zero-velocity correlator:

(a) use the boundary-layer formula (393) to plot the mea-
sured Δv(w) against

√
w2 + (vτ )2; find the best τ which

removes the curvature of Δv(w). This yields τ , and by
extrapolation to w = 0 the full Δ(w).

(b) Use that (τ∂t + 1)Rw(t) = δ(t) to remove the response
functions in equation (390),

Δv=0(w) =

[
1 −

(
τv

d
dw

)2
]
Δv(w). (397)

In both approaches, the fitting parameter τ can rather precisely
be obtained by plotting −Δ′

v=0(w)/Δv=0(w), and optimizing
to render the plot as straight as possible for small w, i.e. inside
the boundary layer w � δBL

w = vτ . While equation (397) is
more precise, and reconstructs Δv=0(w) down to w = 0, the
boundary analysis is more robust for noisy data [131, 323].

3.12. Simulation strategies

In order to test the predictions of the field theory, one needs
efficient simulation algorithms. There are three categories.

(a) Cellular automata are simple to implement, either
directly for the elastic manifold, or for one of the related
sandpile models (section 5). Direct implementations for
the elastic manifold are tricky, as extended moves are
necessary [328].

(b) Langevin dynamics is the most realistic approach, and
the best approach to access the dynamics [304]; even
though dynamical simulations are sometimes performed
in cellular automata.

(c) Critical configurations in a continuous setting can be
sampled most efficiently by the Rosso–Krauth algorithm
[329, 330], termed by the authors variant Monte Carle.
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The idea is simple: when updating the position of a sin-
gle site, the latter site can be moved as far ahead as the
equation of motion permits, without updating at the same
time its neighbors. Since Middleton’s theorem guaran-
tees that the such generated configuration cannot surpass
the next pinning configuration, the algorithm converges
to the latter. This fictitious dynamics is much faster than
the Langevin one, and gives precise estimates for the
roughness ζ in dimension d = 1 [53], and higher [307].

3.13. Characterization of the one-dimensional string

Scaling variables. To keep a system translationally invari-
ant, simulations are usually performed with periodic boundary
conditions. Trying to extract critical exponents by plotting sim-
ulation results against distance yields poor results. There are
two natural scaling variables:

(a) Polymer scaling. For a non-interacting polymer of size x,
or RW of time x, the probability that monomers 0 and x
come close in d-dimensional space is P(x) = Ax−d/2. The
probability that a ring polymer of size L has monomers 0
and x close together equals the probability to have two
rings of sizes x and L − x,

P(x|L) = P(x)P(L − x) = A2[x(L − x)]−
d
2 . (398)

This identifies the natural scaling variables

x(1)
p :=

4x(L − x)
L2

, x(2)
p :=

(
x(1)

p

)2
. (399)

(b) Conformal invariance. The conformal mapping from the
line z = 1 + iy to the circle of diameter 1 as shown
in figure 29 and known as an inversion at the circle,
maps

z = 1 + iy → z′ =
1

1 − iy
=

1
2

(
1 + eiφ

)
. (400)

This implies (for details see [331])

y = tan(φ/2). (401)

Suppose the two-point function on the infinite axis is

〈O(y1)O(y2)〉 = 1
|y1 − y2|2Δ

. (402)

Conformal invariance [234, 332, 333] implies that on the
circle

〈O(φ1)O(φ2)〉 =
(
∂y1

∂φ1

)Δ(
∂y2

∂φ2

)Δ
〈O(y1)O(y2)〉

= t−2Δ
12 . (403)

Here t12 is the chordal distance between the two points
parameterized by φ1 and φ2, i.e.

t12 = t(φ1 − φ2) = |eiφ1 − eiφ2 | = 2

∣∣∣∣sin

(
φ1 − φ2

2

)∣∣∣∣ .
(404)

Similarly, for the three-point function of scalar operators
of dimension Δ, conformal invariance implies

〈O(φ1)O(φ2)O(φ3)〉 = A(t12t13t23)−Δ. (405)

An anomalously large roughness ζ = 5/4. Consider the stan-
dard definition of the two-point function

〈
u(2)(x)

〉
:=

1
2

〈
[u(x) − u(0)]2

〉
. (406)

We expect that
〈
u(2)(x)

〉
∼ |x|2ζ . This is not possible for ζ > 1,

as is shown by the following simple argument [334]:

1
2

〈
[u(x) − u(0)]2

〉
=

1
2

x∑
i=1

x∑
j=1

〈[u(i) − u(i − 1)][u( j) − u( j − 1)]〉 . (407)

The expression inside the expectation value depends on i − j,
and is maximal for i = j. Thus

1
2

〈
[u(x) − u(0)]2

〉
� x2

2

〈
[u(1) − u(0)]2

〉
. (408)

As can be seen on the middle of figure 30, the bound is almost
saturated. Thus, we expect

1
2

〈
[u(x) − u(0)]2

〉
≈ Ax(2)

p L2ζ 
 4Ax2L2ζ−2, x � L.

(409)
The roughness exponent ζ can be observed in the overall scal-
ing, evaluating

〈
u(2)(x)

〉
at its maximum x = L/2, in Fourier

space, or by measuring correlations of the discrete derivative
of u(x). We expect that

〈
∂u(2)(x)

〉
:=

1
2

〈[
(u(x + 1) − u(x)) − (u(1) − u(0))

]2
〉

= B
(

x(2)
)ζ−1 
 4Bx2ζ−2, x � L. (410)

This is indeed satisfied, see the middle of figure 30. The expo-
nent is consistent with ζ = 5/4, as conjectured in [305], see
section 5.4.
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Figure 29. The conformal transformation z → z′ as given in
equation (400).

Skewness. In equilibrium the connected three-point func-
tion 〈u(x)u(y)u(z)〉c vanishes, due to the symmetry u →−u.
At depinning this symmetry may be broken, but no signs were
found yet [335, 336].

On figure 31 we show non-vanishing simulation results for
the three-point function [331]〈

u(3)(x)
〉

:=
〈
[u(x) − u(0)]2[u(−x) − u(0)]

〉
. (411)

Note that the more symmetric-looking variant

〈[u(x) − u(y)][u(y)− u(z)][u(z) − u(x)]〉c = 0 (412)

vanishes as indicated, which can be shown by expansion. The
simplest symmetric, non-vanishing combination is〈

u(3)(x, y, z)
〉

:=
1
6
〈Δu(x, y, z)Δu(y, z, x)Δu(z, x, y)〉c,

Δu(x, y, z) :=u(x) + u(y) − 2u(z). (413)

It is related to the combination in equation (411) by〈
u(3)(x, 0,−x)

〉
≡
〈
u(3)(x)

〉
. (414)

From scaling, we expect that〈
u(3)(x)

〉
∼ |x|3ζ , x � L, (415)

as long as we escape the argument that leads to equation (409).
Figure 31 shows that this is the case. What is tested there in
addition is whether conformal invariance holds. According to
equation (405), conformal invariance implies that〈

u(3)(x)
〉
= A(x(3))ζ , (416)

x(3) = t(x)2t(2x). (417)

with t(x) introduced in equation (404). While this does not hold
conformal symmetry may be present in a different observable.

3.14. Theory and numerics for long-range elasticity:
contact-line depinning and fracture

Contact-line depinning can be treated by a modification of the
theory for disordered elastic manifolds, using the LR elastic-
ity introduced in section 1.3, equation (15). The theory was

developed to O(ε) in [338] and to O(ε2) in [124, 125]. Key
predictions for α = 1 are [124]

ε = 2 − d, (418)

ζ =
ε

3

(
1 + 0.397 35ε2

)
+O(ε3), (419)

z = 1 − 2
9
ε− 0.113 2997ε2 +O(ε3). (420)

The other exponents are obtained via scaling, ν = 1/(1 − ζ),
and β = ν(z − ζ). Simulation results are

ζ = 0.388 ± 0.002 [330], (421)

z = 0.770 ± 0.005 [338], (422)

β = 0.625 ± 0.005 [338]. (423)

For arbitrary α the roughness reads [339]

ζ(α) =
ε

3
+

ψ(α) − 2ψ
(
α
2

)
− γE

20.9332
ε2 +O(ε3). (424)

For the exponent z, expressions are more involved, and we only
give an additional value for α = 3/2 [339],

z(α = 3/2) =
3
2
− 2

9
ε − 0.067 9005ε2. (425)

Numerical values both for the ε-expansion and for simulations
are collected on figure 32.

3.15. Experiments on contact-line depinning

Contact lines are a nice experimental realization of depinning,
as one can watch and film them to extract not only their rough-
ness, but also dynamical properties. The value of the rough-
ness exponent, given as ζ = 0.51 in [85], but observed smaller
ζ ≈ 1/3 in earlier work [340], is still debated [341], and many
effective exponents are found in the literature. Our own theo-
retical work [94, 95] does not allow to exclude an exponent of
ζ > ζLR

dep = 0.38, but we do not believe this to be likely.
Contact-line depinning is also the first system where the

renormalized disorder correlator Δ(w) was measured, both
for liquid hydrogen on a disordered cesium substrate, and for
isobutanol on a randomly silanized silicon wafer [71]. Ear-
lier experiments with water on a glass plate with randomly
deposited chromium islands [85] turned out to have LR cor-
related correlations, both due to the impurity of water as of
the inhomogeneity of glass. Measurements of the renormalized
force–force correlator Δ(w) as defined in equation (111) are
shown in figure 33, using the cleaner of the two systems, liquid
hydrogen on a disordered cesium substrate. The agreement is
satisfactory.

3.16. Fracture

There are two main types of fracture experiments: fracture
along a fault plane [329, 342–345], and fracture of a bulk
material [73, 74, 346–351].
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Figure 30. (Left) A critical string at depinning, L = 8000, mL = 1. (Middle and right) The two-point function for L = 2000, mL = 1. The
measured slopes (in orange) are 0.970, and 0.259, confirming the theoretically expected 1, and 0.25 (in yellow).

Figure 31. The three-point function
〈
u(3)

〉
for L = 2000, mL = 1. The measured slope is 1.21 ± 0.04 (orange, dashed), as compared to the

expected ζ = 1.25 (in yellow). The descending branch of the last curve has slope 3ζ − 2 = 1.75. The red dotted curves are the theoretical
prediction from [331].

Figure 32. Exponents for the depinning of a line with LR elasticity,
(α = 1) relevant for contact-line depinning and fracture. The last
exponent ν was obtained from ν = 1/(1 − ζ).

Fracture along a fault plane. Let us start with the con-
ceptionally simpler fracture along a fault plane. It is char-
acterized by a roughness exponent ζ ≡ ζ‖ in the propaga-
tion direction. A beautiful example is the Oslo experiment
[342, 345], where two transparent plexiglas plates are sand-
blasted rendering them opaque. Sintered together the sand-
wich becomes transparent. Breaking the crack open along the
fault plane between the two plates, the damaged parts become
again opaque, allowing one to observe and film the advanc-
ing crack, see the inset of figure 34. Below a characteris-
tic scale δ0 ≈ 100 μm, which also is the correlation length
of the disorder, the roughness exponent is ζ‖ ≈ 0.63, which

Figure 33. (Inset) The disorder correlator Δ(w) for contact-line
depinning H2/Cs, with error bars estimated from the experiment.
(Main plot) The rescaled disorder correlator (green/solid) with error
bars (red). The dashed line is the one-loop result. Reproduced from
[71]. © IOP Publishing Ltd. All rights reserved. Note that the
boundary layer due to the finite driving velocity (section 3.11) is not
deconvoluted.

is interpreted [342] as the roughness exponent in directed
percolation (DP) ζ = 0.632613(3), see equation (670). (For
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Figure 34. Scaling behavior of the height–height correlations with two different roughness exponents ζ‖ ≈ 0.63 below the critical scale
δ∗ = 100 μm and ζ‖ ≈ 0.37 above. Reproduced from [342]. © IOP Publishing Ltd. All rights reserved. The inset shows the fracture front,
moving from bottom to top.

reasons discussed in section 5.7, DP is also relevant for
anisotropic depinning.) For larger scales, the roughness
crosses over to a smaller exponent of ζ‖ ≈ 0.37, consistent
with the roughness exponent for depinning of a line with
long-ranged elasticity, ζ = 0.388 ± 0.002 see equation (421)
[329]. (LR elasticity is explained in section 1.3.) For fracture
it was introduced in [93]. Finally, interface configurations are
non-Gaussian [352].

Fracture of bulk material. Fracture of a bulk material is
more complicated. To get the notations straight, we show the
coordinate system favored in the fracture community (drawing
of [350]).

Applying stress in the direction of the fat arrows, the crack
advances on average in the x direction. The crack front as a
function of time is parameterized by

x(z, t) = w + f (z, t), (426)

y(z, t) = ĥ(z, t) = h (x(z, t), z) . (427)

The quantity w = vt is the external control parameter (used
throughout this review). Several critical exponents can be
defined. Denote

δh(δx, δz)2 :=
〈
[h(x + δx, z + δz) − h(x, z)]2

〉
, (428)

where the average is taken over all x and z (and samples, if
possible). The critical exponents β̂ and ζ defined in the litera-
ture are (we changed β → β̂ in order to avoid confusion with
the exponent β defined in equation (304))

δh(δx, 0) ∼ δxβ̂ , δh(0, δz) ∼ δzζ . (429)

Scaling implies that equation (428) can be written as

δh(δx, δz) = δxβ̂ f

(
δz

δx1/z

)
, (430)

f (u) ∼ uζ , for u large, and ζ = β̂z. (431)

A third exponent ζ‖ can be defined by the fluctuations of f ,

δ f ∼ δzζ‖ . (432)

As measurements are in general post-mortem, ζ‖ is inaccessi-
ble, except if the broken material is transparent, and one can
observe the crack front advancing. It has been measured in a
clever experiment where a crack was filled with color, and bro-
ken open after the color had dried, confirming the small-scale
regime ζ‖ ≈ 0.6 [353]. Numerical simulations suggest [354]
that a smaller exponent ζ‖ ≈ 0.38 should hold at larger scales;
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an experimental confirmation is outstanding [354]. One imag-
ing option is to use a synchrotron; this challenging experiment
has to our knowledge not been attempted. Common values for
materials as diverse as silica glass, aluminum, mortar or wood
give β̂ ≈ 0.6, and ζ ≈ 0.75 to 0.8 [350, 353]. The question
arises whether there is a connection to fracture along a fault
plane, and depinning.

To make contact to the latter, we first observe that fracture
is irreversible, a crucial point for depinning. To proceed, note
the 2D vector

�u(z, t) =
(

f (z, t), h(z, t)
)
. (433)

Knowing the elastic kernel (18) for LR elasticity with α = 1
[93], the only Langevin equation linear in u(z, t) one can write
down is (see e.g. [355, 356])

∂t�u(z, t) =
γ

2π

∫
z′

�u(z′, t) − �u(z, t)
(z − z′)2

+ η (�u(z, t), z) ,

(434)

η(x, y, z)η(x′, y′, z′) = σδ(x − x′)δ(y − y′)δ(z − z′).

(435)

Assuming that the scenario of [357, 358] holds for long-
ranged elasticity, at large scales the longitudinal exponent
ζ‖ should be that of a contact line, with according to
equations (421)–(423) an exponent ζ‖ = 0.388. The transver-
sal roughness ζ⊥ should be thermal, which for α = 1 means
logarithmically rough (

∫
k eikz/|k| ∼ ln z). This agrees with

[355], and was experimentally verified in [359].
The question arises whether this LR universality class, and

especially the roughness exponent ζ = 0.38 can be seen in
an experiment. The first such experiment is in [73], using
a very brittle material. The authors of this study conjecture
that [73] ‘both critical scaling regimes can be observed in all
heterogeneous materials’: for length scales smaller than the
process zone, the larger exponents (ζ ≈ 0.75, β̂ ≈ 0.6, z =
ζ/β̂ ≈ 1.2) should be relevant, and the fracture surface was
reported to be multi-fractal [360]. For larger scales the expo-
nents are those of depinning (ζ ≈ 0.4, β̂ = 0.5, z = ζ/β ≈
0.8). However, these observations were made for the transver-
sal roughness, accessible post-mortem, whereas according to
the scenario proposed above it should hold for the longitu-
dinal roughness which is less accessible in experiments. The
emerging consensus [354] of the community seems to be that
the large-scale roughness in the longitudinal direction is ζ‖ ≈
0.38, whereas the transversal roughness ζ⊥ = 0 (logarithmic
rough), as observed in [359]; and that whenever a roughness of
ζ⊥ ≈ 0.38 has been observed, it has to do with physics related
to short scales (damage zone).

What is the process-zone mentioned above? The standard
theory for fracture is based on work by Griffith [361], with a
crucial improvement by Irwin [362]. The idea of Griffith [361]
was to write an energy balance between the stress released by
the crack, and the surface energy necessary to create it. Irwin
[362] realized that for ductile material, part of the released
energy goes into a plastic deformation, i.e. heat, at the crack

front. The size of the zone affected is the process zone. It ranges
from ξ = 50 ± 9 μm for ceramics, over ξ = 170 ± 12 μm for
aluminum to ξ = 450 ± 35 μm for mortar [360].

Fracture in thin sheets. In thin sheets, very different
roughness exponents have been reported: ζ = 0.48 ± 0.05 for
polysterene, and ζ = 0.67 ± 0.05 for paper [364]. We may
speculate that the larger one is related to DP (section 5.8).

Random fuse models. Random fuse models, a.k.a. damage
percolation, have been proposed [365] as a model for frac-
ture: consider a regular lattice, where on each bond is placed
a fuse of unit resistance, and a random maximum carrying
capacity ic (maximal current), in most studies drawn from a
uniform distribution, ic ∈ [0, 1]. The system may be two or
three-dimensional, with a voltage applied in one direction. To
avoid finite-size effects due to the electrodes, it is advantages
to use periodic boundary conditions [366], with an additional
voltage gain V in one dimension. The voltage is then ramped
up from 0, until one of the fuses exceeds its carrying capacity,
at which point it is considered broken, i.e. having an infinite
resistance. One then recalculates the current distribution and
checks whether another fuse breaks. If not, one increases the
applied voltage.

This is an interesting model for fracture: (i) by solving the
Laplace equation to find the current distribution, it incorpo-
rates the elasticity of the bulk of the material, providing an
effective LR elasticity; (ii) when a part of the material is bro-
ken, it is removed. It incorporates ingredients found in Lapla-
cian walks (section 8.9) and DLA (solving in both cases the
Laplace equation to determine the most likely point of action),
and cellular automata as TL92 (section 5.7).

A roughness exponent of the fracture surface in d = 2 + 1
was reported to be ζ = 0.62 ± 0.05 [366], apparently not too
different from some experiments [366]. Other authors focused
on the distribution of strength, or broken fuses upon failure
[367–369]. A variant is the fiber-bundle model [370, 371].

3.17. Experiments for peeling and unzipping

There are two ways to open a double helix made out of two
complementary RNA or DNA strands, or one RNA and its
complementary DNA strand: peeling and unzipping. In both
cases beads are fixed to the molecules, and then pulled in an
optical or magnetic trap. In the literature, the word peeling is
used for the setup of figure 35, where forces act along the heli-
cal axis from opposite extremities of a duplex, and one of the
two strands peels off. Unzipping denotes an alternative setup
where the right bead of figure 35 is attached to the free end
of the upper strand. As the reader can easily verify with a
twisted thread, unzipping is much easier to accomplish than
peeling. Let us start with peeling [363], for which a typical
force-extension curve is shown in figure 36. The stationary
regime is the plateau part (in red). Averaging over about 400
samples, the effective disorder Δ(w) defined in equation (111)
is measured. The resulting curve, including error bars for the
shape [363], is shown in gray in figure 37, where it is compared
to three theoretical curves: an exponentially decaying func-
tion (red, dotted, top curve), the DPM solution (366) for the
Gumbel class (blue, dashed, middle curve), and the one-loop
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Figure 35. Peeling of an RNA-DNA double strand. The RNA
sequence is from subunit 23S of the ribosome in Escherichia coli,
prolonged to attach the beads (brown circles, with a much larger
radius than drawn here). The DNA sequence is its complement. The
beads sit in an optical trap (blue), at a distance w. (Drawing not to
scale.) Reproduced from [363]. CC BY 4.0.

Figure 36. (Left) A sample force-extension curve. For the
data-analysis only the last plateau part of the curve is used (in red).
The effective stiffness m2 in equation (302) is estimated from the
slope of the green dashed lines as m2 = 55 ± 5 pN μm−1 at the
beginning of the plateau, which remains at least approximately
correct at the end of the plateau. The driving velocity is about
7 nm s−1. Reproduced from [363]. CC BY 4.0.

FRG solution given by equations (84) and (88), all rescaled to
have the same value and slope at u = 0. The experiment clearly
favors the DPM solution, best seen in the inset of figure 36.
While this is expected, it is a nice confirmation of the theory
in a delicate experiment.

One should be able to extract Δ(w) also from the unzipping
of a hairpin. Interestingly, experiments report that the scaling
of equation (365) is replaced by [293]

ρm ∼ m−4/3, i.e. ζ =
4
3
. (436)

This is a clear signature of a different universality class,
namely ‘RF’ disorder in equilibrium, for which the rough-
ness exponent (83) to all orders in ε reads ζ = ε/3; setting
ε = 4 leads to equation (436). An analytic solution is given in
section 2.23. This scenario is possible through the much larger
effective stiffness m2 there, which manifests itself in correla-
tion lengths of ξ = 1 to 35 base pairs, as compared to ξ = 186
base pairs for peeling. Equilibrium is observed experimentally
[293] through a vanishing hysteresis curve.

Figure 37. Measurements of Δ(w) (in gray), with one-σ error bars
(green shaded), compared to three theoretical curves: pure
exponential decay (dotted red), one-loop FRG, equation (84) (black
dot-dashed), and DPM, equation (366) (blue dashed), all rescaled to
have the same value and slope at u = 0. Inset: theoretical curves
with the data subtracted (same color code). The blue curve is the
closest to the data. The correlation length estimated from Δ(w) is
ξ = 0.055 ± 0.005 μm 
 186 base pairs. Reproduced from [363].
CC BY 4.0.

3.18. Creep, depinning and flow regime

In section 1.7, equations (45) and (47), we had argued that in
equilibrium the elastic energy scales as

Eel(�) ∼ �θ, θ = 2ζeq + d − α, (437)

and as long as θ > 0 the temperature T is irrelevant at large
scales. On the other hand, if the driving velocity v = 0, and
leaving the system enough time to equilibrate, it is in equilib-
rium. As sketched in figure 38, there are three different fixed
points: equilibrium (v = f = 0, T → 0), depinning (T = 0,
v → 0 or f → fc), and large v or f , for which we expect
ηv = f . Let us now consider perturbations of the equilibrium
fixed point, i.e. T small, and f � fc, commonly referred to as
the creep regime. Scaling arguments first proposed by Ioffe and
Vinokur [372], and Nattermann [373], were later put on more
solid ground via FRG [143, 374]. Scaling arguments compare
the elastic energy (437) with the energy gained through the
advance of the interface, i.e. an avalanche of size S,

E f (�) = − f
∫

x
δu(x) ≡ − f S ∼ − f �d+ζeq. (438)

As ζeq < α, the energy E f (�) dominates over Eel(�) for large
�, and the optimal fluctuation is obtained for ∂�[Eel(�) +

E f (�)]
!
= 0, resulting in �

ζeq−α
opt ∼ f , or

�opt ∼ f −νeq , νeq =
1

α− ζeq
, (439)

Eopt ∼ f −μeq , μeq = νeqθ =
2ζeq + d − α

α− ζeq
. (440)
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Figure 38. Sketch of velocity force curve at vanishing (T = 0,
depinning) and finite temperature (T > 0, creep). For an
experimental test see figure 43.

This identifies the creep law as

v( f , T) = v0 e−
T∗
T

(
fc
f

)μeq

, f � fc. (441)

We remind that for depinning (see equations (304) and (308))

v ∼ ( f − fc)β , f � fc, (442)

and that for large f

v 
 f
η

, f � fc. (443)

There are thus three regimes, sketched in figure 38: f � fc, the
creep regime discussed above, governed by the T = 0 equilib-
rium fixed point; T = 0, and f ≈ fc, the depinning fixed point;
and the large- f and large-v regime, where the disorder resem-
bles a thermal white noise, with amplitude proportional to 1/v.
The latter can be understood from the relation

ΔRF(w) 
 δ(w) = δ(vt) =
1
v
δ(t). (444)

More precisely, for RF it looks like a thermal noise with
temperature

TRF =
1
v

∫ ∞

0
dwΔ(w). (445)

For RB disorder, the noise decays as TRB ∼ 1/v3 [359].
Creep in simulations. In d = 1, the creep law (441) was ver-

ified numerically [327, 376–380] both for RB and RF disorder,
and short-ranged elasticity (α = 2):

ζRB
eq =

2
3

=⇒ μRB
eq =

1
4

, (446)

ζRF
eq = 1 =⇒ μRF

eq = 1. (447)

The numerical work [327, 376, 378–380] was possible through
the realization that for T → 0 the sequence of states, in which
the interface rests, becomes deterministic, and can be found by
a clever enumeration of all possible saddle points.

Creep in experiments. The exponent μRB
eq = 1/4 was first

found experimentally in [84], see figure 39, and later con-

Figure 39. Experimental confirmation of the creep-law ln(v) ∼ f −μ

in an ultrathin PtCoPt film [84]. Tested is the hypothesis μRB
eq = 1/4;

as the added orange line shows, a larger value of μeq ≈ 1/3 should
improve the fit, consistent with a value of ζ > 2/3. One might see
the beginning of the large-scale regime with ζ = ζdep = 5/4, see
e.g. [375]. A recent experiment is shown in figure 43.

firmed in numerous other magnetic domain-wall experiments
[47, 381–384]. These experiments use a Kerr microscopic to
image the domain wall; a sample image is given in figure 1. At
large scales, the domain-wall roughness is expected to cross
over to ζqKPZ = 0.63 or ζdep = 1.25, see the discussion in
section 3.21.

Creep motion was in less depth studied in vortex lattices
[385], fracture experiments [386, 387], and quantum systems
[198, 388, 389].

For f = fc (critical driving), [390] claims that for periodic
disorder

v(T, f = fc) ∼ Tχ, χ =
d + 2
6 − d

. (448)

In the fixed-velocity ensemble, the scaling (304) suggests

lim
v→0

[
〈 f (0, v)〉 − 〈 f (T, v)〉

]
∼ Tχ/β. (449)

3.19. Quench

In most of this review we studied situations where the sys-
tem is equilibrated, either in its ground state, or in the steady
state. One may ask how it reacts to a quench. This question
was first considered for model A (Langevin dynamics for φ4-
theory, classification of [301]) in [391]. There one starts with
a system at T � Tc, where correlations vanish. At t = 0 one
quenches it to T = Tc. The response function R(q, tw, t) then
depends on t where one measures the field, and a waiting time
tw < t at which a small kick was performed. For disordered
elastic manifolds, the state with vanishing correlations is a flat
interface. It can be obtained by imposing u(x, t = 0) = 0, by
moving the interface with a very large velocity v � 1 up to
t = 0, or by switching on the disorder at time t = 0. Scaling
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implies that R takes the form30

R(q, tw, t) =

(
t

tw

)θR

(t − tw)
2−z

z fR(qz(t − tw), t/tw),

fR(x, y) → const ∀ x → 0, or y →∞. (450)

A similar ansatz holds for the correlation function.
Equation (450) would simplify if

θR
?
=

z − 2
z

. (451)

In model A, θR violates equation (451) at two-loop order
[391].31 For disordered elastic manifolds at depinning,
equation (451) is satisfied at two-loop order [393, 394], but
may be violated in simulations in d = 1 [394]; to decide the
matter, larger systems need to be simulated [336].

Technically, the two calculations are rather different:
imposing φ(x, t = 0) = 0 in model A amounts to using
Dirichlet boundary conditions. New divergences then appear
between fields φ(x, t), and their mirror images at t < 0. For
disordered elastic manifolds no mirror images appear, and one
can simply switch on the disorder at t = 0, reducing the pos-
sibility for independent divergences; it may thus well be that
relation (451) remains valid at all orders.

The situation simplifies in the limit of tw → 0. Standard
power counting then implies that (see section 3.1)

〈u̇(t)〉 ∼ t−
β
νz ≡ t

ζ
z −1. (452)

Similarly, the squared interface width grows as〈
L−2d

∫
x,y

[u(x) − u(y)]2

〉
→ t

2ζ
z . (453)

In [304] these relations were used in simulations of system
sizes up to L = 225 to give the most precise (direct) estimation
of the two independent exponents ζ and z in dimension d = 1,
yielding ζ = 1.25 ± 0.005, ν = 1.333 ± 0.007, β = 0.245 ±
0.006, and z = 1.433 ± 0.007. This should be compared to the
values conjectured to be exact reported in table 1.

A quench has also been studied in the Manna model (MM)
[395–397], and interpreted as a dependence of the dynamical
exponent z on the initial condition. As z is a bulk property, this
is hard to believe. It seems [336] that the systems used in the
simulations are too small to be in the asymptotic regime.

3.20. Barkhausen noise in magnets (d = 2)

To our knowledge, domain walls in bulk magnets are the only
system to realize depinning of a two-dimensional manifold.
Two universality classes need to be distinguished [319, 398]:

30 The dimension is R(q, t) ∼ t
2−z

z ∼ 1/(q2 t), s.t.
∫

t R(q, t) ∼ q−2, reflecting
the non-renormalization of the elasticity (STS, section 2.3).
31 Janssen et al [391] does not state the ε expansion for θR, but for a related
object η0. The missing relation is θR = − η0

2z , confirmed in [392].

• magnets with short-ranged elastic interactions, as the
Ising model, for which α = 2 (notations as in section 1.3),
and ε = 2.

• Magnets with strong dipolar interactions, which have LR
elasticity with α = 1, thus dc = 2 is the upper critical
dimension (see section 3.14).

For dynamic properties the influence of eddy currents,
which varies from sample to sample, needs to be taken into
account. A simple model is discussed in section 4.21. Here we
consider the renormalized disorder correlator, for which eddy
currents are less important. The signal obtained experimentally
is the current induced in a pickup coil, which we identify as
u̇(t), the velocity of the center of mass of the interface. Integrat-
ing once yields u(w = vt). Δv(w) is its auto-correlation func-
tion defined in equation (388). Using the deconvolution pro-
cedure of equation (397) (section 3.11), allows one to extract
the zero-velocity limit Δ(w). The latter is plotted in figure 40
for the SR sample, and in figure 41 for the LR sample. For
the SR sample, we expect Δ(w) to be closest to the resummed
loop expansion at ε = 2, as given in equation (376). For the
LR sample, we expect the FRG-fixed point at the upper critical
dimension (section 3.8), equivalent to the one-loop FRG fixed
point (84)–(88). In both cases, the agreement is very good,
and clearly allows us to distinguish between the different uni-
versality classes. Let us stress that while the LR sample has
critical exponents consistent with the ABBM model [319], the
disorder correlator Δ(w) is clearly distinct32 from the one in
ABBM, given in equation (493).

The measured Δ(w) can be compared to the correlator
for RNA-DNA peeling in figure 37 (d = 0), and to contact-
line depinning (d = 1, α = 1) in figure 33. Note that for the
latter the boundary layer due to the finite driving velocity
(section 3.11) was not deconvoluted.

3.21. Experiments on thin magnetic films (d = 1)

Thin magnetic films are appealing, as the position of the
domain wall can be visualized using Kerr microscopy, see
figure 1. There is a long and somewhat controversial interpre-
tation of the results, which we summarize (figure 44):

(a) Guided by a theoretical framework based on creep, the
first experiments were interpreted as a perturbation of
the RB equilibrium fixed point with ζ = 2/3 [84], even
though configurations seem to be frozen.

(b) Creep exponents are reported [382, 384, 401] without a
measurement of the roughness.

(c) A roughness exponent of ζ ≈ 0.6 was reported [402]
together with a plateau of the two-point function for
large distances due to the confining potential, here a con-
sequence of dipolar interactions. (The plateau was inter-
preted as a smaller roughness ζ ≈ 0.17, a conclusion we
do not share.)

32 As Δ(w) for ABBM is not renormalized, we should measure it if the
microscopic disorder were of the ABBM type.
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Figure 40. Measured force–force correlator Δ(w) for a 200 nm
ribbon of FeSiB, a bulk magnet with SR elasticity [323] (in gray,
with error bars in shaded green, arbitrary units), after correcting for
the finite driving velocity (section 3.11). This is compared to several
theoretical curves (from top to bottom): an exponential function
(red, dotted), the DPM correlator (366) (blue, dashed), FRG
resummation (376) for ε = 2 (orange, dashed), and one-loop (black,
dot-dashed). Error bars are at 68% confidence level. The inset shows
theory minus measurement, favoring the FRG fixed point at ε = 2
(with error bars for this curve only).

Figure 41. Measured force–force correlator Δ(w) as in figure 40,
for FeSi 7.8%, a bulk magnet with strong dipolar interactions,
making the elasticity long-ranged [323]. The FRG prediction for
Δ(w) is the one-loop fixed point (section 3.8). For better visibility,
error bars are at 90% confidence level, not accounting for a
remaining oscillation from the power grid with period in w of about
0.4.

(d) Bound pairs of domain walls are reported [403], with no
clear theoretical interpretation in terms of the phenom-
ena discussed here.

(e) Moon et al [404] shows clear evidence for the negative
quenched KPZ (qKPZ) class for current induced depin-
ning, and for the positive qKPZ class for field-induced
depinning. We discuss this experiment in section 5.12.

Figure 42. Experimentally observed scaling of avalanche sizes (left)
and squared width (right) for magnetic domain walls in
ferromagnetic Pt/Co/Pt thin films. The solid lines indicate the
exponent expected from depinning (ζ = 1.25), whereas dashed lines
are for qKPZ (ζ = 0.63). Reprinted figure with permission from
[399], Copyright (2018) by the American Physical Society.

(f ) The authors of [291, 292] give the most complete anal-
ysis of the roughness exponent to date. The beautiful
image shown in figure 45 qualitatively confirms the
findings of [404]. Note the strong up-down asymmetry
which is inconsistent with an equilibrated systems (see
section 3.13). Nevertheless, the equilibrium RB fixed
point with ζeq = 2/3 is still the key theoretical class the
experiments are compared to. In the case of faceting as
in figure 45, the analysis is applied to fluctuations of the
facets itself.

(g) For a thin antiferromagnetic GdFeCo film, exponents
consistent with the one-dimensional RF depinning class
were found: β = 0.30 ± 0.03 and ν = 1.3 ± 0.3 [400],
see figure 43. In particular the determination of β is
remarkable. The sample in question has a vanishing
mass, m2 ≈ 0. Direct confirmation of a roughness ζ >
ζqKPZ is more tentative [399], see figure 42.

(h) Experiments for alternating drive [405].
(i) More experimental results can be found in [406].

To conclude: evidence for the equilibrium RB universality
class with ζ = 2/3 (sections 2.5 and 2.13) seems to evaporate
in favor of the quenched KPZ class with ζ = 0.63 (section 5.7).
At small scales depinning without KPZ-terms is visible [399],
but remains to be confirmed. Our conclusion is that at short
scales KPZ terms are absent, leading to the RF-depinning class
with ζ = 1.25. At larger scales, the KPZ term becomes rele-
vant, and one crosses over to one of the qKPZ classes: pos-
itive qKPZ for field-induced driving, and negative qKPZ for
current-induced driving, see figures 45 and 64 (page 82).

3.22. Hysteresis

As we have seen in sections 3.1, 3.4 and 3.9, hysteresis in a
driven disordered system is a sign of a non-vanishing force
at depinning. In a real magnet the overall magnetization is
bounded, thus the critical force depends on where one is on the
hysteresis loop. This allows one to invent a plethora of proto-
cols: one can try to get as close as possible into equilibrium by
ramping up and down the magnetic field, while reducing the
amplitude of the field in each cycle. One can also study sub-
loops, by varying the applied field in a much smaller range than
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Figure 43. The velocity as a function of applied force f = μ0H for a thin GdFeCo film (top). The sharp transition at T = 20 K is rounded at
T = 295 K. The bottom plot shows the quality of the determination of β = 0.3 ± 0.03. The inset shows the creep law (441) with μeq = 1/4.
Reprinted figure with permission from [400], Copyright (2021) by the American Physical Society.

Figure 44. PMOKE image of a domain wall in the GdFeCo sample
used for figure 43. Reproduced with permission from [407].

necessary for a full magnetization reversal. The reader wishing
to enter the Science of Hysteresis can find a book with this title
[398], or one of the many original research articles [408–411].
There are few analytical result, a notable exception being the
hysteresis curve in the ABBM model [412].

3.23. Inertia, and a large-deviation function

Inertia plays an important role in everyday-life with depin-
ning: when we were children, we pulled a block or a cart with
the help of an elastic string, observing stick-slip motion, with
a certain periodicity. At a higher frequency stick-slip motion
may be observed when breaking a bike or opening a door, often
amplified by a resonance excited in the surrounding medium.
Despite its ubiquity in everyday life, stick-slip motion is absent
in the avalanche phenomenology discussed above. The reason
for this absence is the modeling of the equation of motion (302)
or (310) via an overdamped Langevin equation, neglecting
inertia.

This is a good occasion to remind us how the overdamped
Langevin equation (310) is derived from Newton’s equation of
motion for depinning (w = vt):

M∂2
t u(x, t) = −η∂tu(x, t) + (∇2 − m2)[u(x, t) − w]

+ F (x, u(x, t)) . (454)

Inertia M times acceleration ∂2
t u(x, t) are balanced by friction

−η∂tu(x, t), forces exerted by the elasticity of the interface
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Figure 45. Reprinted figure with permission from [291], Copyright
(2019) by the American Physical Society, showing the time
evolution of the domain-wall shape. (a) Successive positions at
T = 28 K, driven by a magnetic field (H = 0.16 mT, delay between
images t = 0.5 s, total duration 60 s). (b) Successive positions at
T = 28 K, driven by an electric current ( j ≈ 0.5GA m−2, t = 0.5 s,
total duration 16 s) observed at the same sample location. The DW
moves in the direction opposite to the current density, which is
indicated by the arrow. The initial DW position is underlined by a
thick dashed line. The triangles indicate the strongest DW pinning
positions.

(∼∇2u(x, t)), the confining well m2[u(x, t) − w] and disorder
F(x, u). Neglecting inertia, i.e. setting M → 0 yields back the
standard equation of motion (310), written there with η = 1.

Assuming an exponential behavior u(t) ∼ e−t/τ , the time
scale τ satisfies

Mτ−2 − ητ−1 + m2 = 0. (455)

The solution for M → 0 starts with τ = η/m2; when M reaches

Mc =
( η

2m

)2
(456)

this solutions splits into two complex ones, and movement
becomes oscillatory. This can be interpreted as a dynamical
phase transition. One may conjecture that this remains valid
for an extended elastic system. This was indeed observed in
MF theory [413]. A careful scaling analysis shows that this
extends to systems below the upper critical dimension, where
MF theory is no longer valid. Analytic progress was made
[414] for various toy models generalizing ABBM (section 4.3),
i.e. quenched forces which have the statistics of a RW. All
these models share a common large-deviation function (a con-
cept discussed below) for a large driving velocity v. They dif-
fer in how returns, which are difficult to incorporate in the
field theory, are treated. If instead of returning on the same
quenched disorder, new random forces are generated with the
same statistics of a RW, then despite dissipation one finds
a new active steady state in the limit of a vanishing driving
velocity v → 0.

Large-deviation function. An interesting concept, well stud-
ied in the literature of driven systems, is the large-deviation
function, see e.g. [414–418]. Set Fv(x) and Zv(λ) to be

Fv(x) := − ln (P(xv))
v

, Zv(λ) :=
ln
(

eλu̇
)

v
. (457)

Define F (x) and Z(λ) as the large-v limits, if they exist, of the
above functions,

F (x) := lim
v→∞

Fv(x), Z(λ) := lim
v→∞

Zv(λ). (458)

The existence of the second limit can be shown in field the-
ory. In simple models, Zv(λ) is even independent of v, see
equation (522) in a simpler setting. Supposing the latter, we
obtain

eλu̇ = evZ(λ) =

∫ ∞

0
du̇ eλu̇P(u̇)

= v

∫ ∞

0
dx ev[λx−Fv (x)]. (459)

If v is large, the latter integral can be approximated by its
saddle point with λ = ∂xFv(x). We recognize a Legendre
transform,

Z(λ) + F (x) = λx, λ = ∂xF (x), x = ∂λZ(λ).
(460)

As by assumption Z(λ) does not depend on v, this shows
that also the first limit in equation (458) exists, and Fv(x) ≡
F (x), independent of v. The large-deviation function for the
FBM model defined in section 4.5 with an additional inertia
term as in equation (454) can then be constructed. Setting for
simplicity m = η = 1, it reads [414]

F (x, M) = x − ln(x) − 1 + M

[
x
2
− 1

2x
− ln(x)

]
+O(M2),

=
(1 − x)2

2
+

(1 − x)3

3
(1 + M) + . . . , (461)

where on the second line terms of order (1 − x)4 have been
dropped. Units are restored by [414]

Pv�1(u̇) 
 e
−v ηm2

σ F ( u̇
v , Mm2

η2 )
. (462)

A similar form holds for the joint distribution of velocities and
accelerations.

3.24. Plasticity

Most systems and their deformations discussed so far are
elastic, indicating that conformational changes are reversible,
and nearest-neighbor relations fixed. When the experiment is
repeated, it passes through the same configurations, as given by
Middleton’s theorem (section 3.3). There are numerous sys-
tems where this is not the case, as in sheared colloidal sys-
tems, termed plastic for their irreversible deformations. The
question relevant for us is how much of the phenomenology
and methodology developed for disordered elastic manifolds
carries over to plastic systems. The gap has not been bridged
yet, but efforts have been undertaken starting from disordered
elastic manifolds [419–427], and plastic (mostly sheared col-
loidal) systems [428–431]. A good starting point for the latter
is the review [432].

3.25. Depinning of vortex lines or charge-density waves,
columnar defects, and non-potentiality

A vortex line in 3-dimensional space, driven through quenched
disorder, has the statistics of a depinning line in the driving
direction (ζ‖ = 5/4, section 3.13) and Gaussian fluctuations
(ζ⊥ = 1/2) in the transversal direction [357–359]. While the
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dynamical exponent z‖ = 10/7 in the driving direction seems
to be unchanged, the perpendicular dynamical exponent is
argued to be larger,

z⊥ = z‖ + 2 − ζ =
61
28

= 2.178 57 . . . (463)

Note that we updated the values for the exponents of [357, 358]
to today’s best estimates (section 3.13).

A defect line binds a vortex line more strongly than point
disorder. Tilting the sample such that the columnar defect no
longer aligns with the magnetic field, one observes an unbind-
ing transition of the vortex line, known as the transverse Meiss-
ner effect [25, 225, 433–435]. This is also observed as an
effective model for sliding CDWs [436].

In the above setting, forces are assumed to be derivatives of
a potential, i.e. conservative. If they are non-conservative, as
e.g. in presence of stable advecting currents, then a new uni-
versality class is reached, accessible perturbatively [437–439].

In section 2.26 we had shown experimental and theoretical
evidence for the existence of an ordered phase in vortex lattices
(Bragg glass) at weak disorder. The authors of [440, 441] argue
that the Bragg-glass phase is stable w.r.t. slow driving, with the
lattice responding by flowing through well-defined, elastically
coupled, static channels. If the lattice is preserved, then after
it has moved by a full lattice constant, it comes back to its
original configuration. In this case, one expects the velocity to
be periodic in time [442].

In [443] it was found that translational order in the driving
direction can be destroyed.

3.26. Other universal distributions

Exponents are not the only interesting observables: in experi-
ments and simulations, often whole distributions can be mea-
sured, as e.g. the width distribution of an interface at depinning
[50, 444, 445]. Be 〈u〉 its spatial average for a given disorder
configuration, then the width

w2 :=
1
Ld

∫
x

(
u(x) − 〈u〉

)2
(464)

is a random variable, with distribution P(w2). The rescaled
function Φ(z), defined by

P(w2) = 1/w2Φ
(
w2/w2

)
(465)

is expected to be universal, i.e. independent of microscopic
details and the size of the system.

Supposing u(x) to be Gaussian, Φ(z) was calculated ana-
lytically to leading order. It depends on two parameters, the
roughness exponent ζ and the dimension d. Numerical simula-
tions [50, 444] displayed in figure 46 show agreement between
analytical and numerical results. The distribution is distinct
from a Gaussian.

There are more observables of which distributions have
been calculated within FRG, or measured in simulations. Let
us mention fluctuations of the elastic energy [446], and of the
depinning force [48, 277].

Figure 46. Scaling function Φ(z) for the (1 + 1)-dimensional
harmonic model, compared to the Gaussian approximation for
ζ = 1.25. Reprinted figure with permission from [444], Copyright
(2003) by the American Physical Society.

4. Shocks and avalanches

4.1. Observables and scaling relations

When slowly driving a system, according to equation (310),
long times of inactivity are followed by bursts of activity,
which on these long time scales look instantaneous. To be
specific, we start with the system at rest, and instantaneously
increase w → w +Δw. Observables of interest are

• center-of-mass position

u(t) :=
1
Ld

∫
x
u(x, t), (466)

• center-of-mass velocity

u̇(t) := ∂tu(t), (467)

• duration T, see figure 48. This quantity is well-defined, as
every avalanche stops at some point when it is no longer
driven (see section 4.4), so

T := inf
t
{t, u̇(t) > 0} < ∞. (468)

• shape 〈u̇(t)〉.
• Avalanche size S,

S :=
∫

x
δu(x) =

∫
x
u2(x) − u1(x), (469)

where u1(x) is the interface position before, and u2(x) after
an avalanche, see figures 47 and 48.

• The avalanche extension �,

� := sup
x,y

{|x − y|, δu(x) > 0, δu(y) > 0}. (470)

These are the main observables. Setting and language here
are for depinning. Some observables, as the avalanche-size
distribution can also be formulated in the statics: these static
avalanches, also termed shocks, are the changes in the ground-
state configuration upon a change in the applied field, i.e.
the position w of the confining potential. We will comment

60



Rep. Prog. Phys. 85 (2022) 086502 Review

Table 2. Scaling relations discussed in the main text, specifying to SR elasticity (α = 2), and standard LR elasticity α = 1.

ρ(S) ρ(Sφ) ρ(T ) ρ(u̇) ρ(u̇φ) ρ(�)

S−τ S
−τφ
φ T−α̃ u̇−a u̇

−aφ
φ �−k

SR elasticity τ = 2 − 2
d+ζ τφ = 2 − 2

dφ+ζ α̃ = 1 + d−2+ζ
z a = 2 − 2

d+ζ−z aφ = 2 − 2
dφ+ζ−z k = d + ζ − 1

LR elasticity τ = 2 − 1
d+ζ τφ = 2 − 1

dφ+ζ α̃ = 1 + d−1+ζ
z a = 2 − 1

d+ζ−z aφ = 2 − 1
dφ+ζ−z k = d + ζ

Figure 47. Temporal evolution of an avalanche starting at x = 4 at
t = 0, evolving to the top until time T. Interface positions at
intermediate times t = iT/10 are shown for i = 1, 2, . . . , 10.
Reprinted figure with permission from [321], Copyright (2013) by
the American Physical Society.

on differences between these two concepts at the appropriate
positions. Key points are

• avalanches are the response of the system to an increase
in force. They have a typical size

Sm :=

〈
S2
〉

2 〈S〉 ∼ ξd+ζ ∼ m−(d+ζ). (471)

In the literature one sometimes finds the notation D = d +
ζ for the fractal dimension of an avalanche.

• The avalanche-size distribution per unit force δ f =
m2δw,

ρ f (S) :=
δN(S)
δ f


 S−τ fS(S/Sm)gS(S/S0),

S0 � Sm, (472)

has a large-scale cutoff Sm defined in equation (471) due
to the confining potential, and a small-scale cutoff S0 due
to the size of the kick or discretization effects (as in a
spin system). The scaling functions are expected to have
a finite limit when m → 0, i.e. limx→0 fS(x) = const, and
limx→∞ gS(x) = 1.

• An increase δ f in the total integrated force is then on
average given by an increase δu(x) in u, which integrated
over space gives S. On the other hand, we can integrate
equation (472) over S. Together, these relations give

δ f = m2
∫

x
〈δu(x)〉 = m2 〈S〉

= δ f m2
∫ ∞

0
dS Sρ f (S)

∼ δ f m2
[
S2−τ

m −O(S2−τ
0 )

]
. (473)

As we will see below τ < 2, and the last term can
be dropped due to the assumption of S0 � Sm in
equation (472). This gives

m2 ∼ Sτ−2
m . (474)

Inserting Sm from equation (471) yields

τSR = 2 − 2
d + ζ

. (475)

In d = 1 and with ζ = 5/4 this gives

τ d=1
SR =

10
9

= 1.111 . . . (476)

• LR-elasticity. Here one replaces m2 → mα, leading to

τα = 2 − α

d + ζ
. (477)

• Alternative scaling argument. In [447] it was suggested in
the context of sandpile models (see section 6.6) that a sin-
gle grain performs a RW which has to reach the boundary,
implying that 〈S〉 ∼ L2. Using 〈S〉 ∼ S2−τ

m , and L ∼ m−1

leads to (2 − τ )(d + ζ) = 2, equivalent to equation (475).
• Boundary driving. When a (SR-elastic) system is driven

at the boundary (tip driving [448]) there is a drift (advec-
tion) away from this boundary33, leading to a linear scal-
ing, 〈S〉 ∼ L, and as a consequence (2 − τ )(d + ζ) = 1
[448–450],

τ tip
SR = 2 − 1

d + ζ
. (478)

In d = 1 and for ζ = 5/4 this gives

τ tip,d=1
SR =

14
9

= 1.555 . . . >
3
2
. (479)

• the distribution of avalanche sizes in a submanifold φ of
dimension dφ,

ρφf (S
φ) ∼ S−τφ , Sφ

m � Sφ � Sφ
0 ,

τφ = 2 − α

dφ + ζ
.

(480)

The derivation proceeds as for equations (475) and (477).

33 We do not understand the first-return-to-the-origin argument of [449].
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Figure 48. (Left) The mean spatial height in the contact-line depinning experiment of figure 22. (Right) Increasing the time resolution to
resolve a single avalanche (jump, marked by the arrow), the velocity inside a single avalanche can be viewed as a RW with absorbing
boundary conditions at vanishing velocity. This allows us to define observables as the mean avalanche shape, the size S (area under the
curve), or its duration T .

• Avalanche size and duration are related via

Sm ∼ Tγ
m, γ =

d + ζ

z
. (481)

This is obtained from the scaling relations Sm ∼ m−d−ζ ,
and Tm ∼ m−z.

• The (unnormalized) duration distribution per unit force
is34

ρ f (T) ∼ T−α̃, Tm � T � T0, Tm =

〈
T3
〉

〈T2〉 . (482)

The integral relation ρ(S)dS = ρ(T )dT implies S1−τ
m ∼

T1−α̃
m . Using Sm ∼ m−(d+ζ), and Tm ∼ m−z yields with the

help of equation (477)

α̃ = 1 +
d + ζ − α

z
. (483)

• the (unnormalized) velocity distribution

ρf(u̇) ∼ u̇−a, u̇m � u̇ � u̇0, u̇m =
Sm

Tm
. (484)

The exponent a is obtained from arguments similar to
those used in the derivation of equations (475) and (480),
with the result that in the denominator the dimension
of the observable in question appears. For the velocity
distribution it yields

a = 2 − α

d + ζ − z
. (485)

• avalanche extension: in general, avalanches have a well-
defined spatial extension �, allowing us to define their dis-
tribution ρ f (�). If � � ξ = 1/m, then �, and not ξ is the

34 We note the exponent as α̃ instead of the standard notation α to avoid confu-
sion with α for the exponent of LR elasticity in equation (16), and here present
in equations (480), (483), (485)–(487).

relevant scale, and S ∼ �d+ζ . Writing ρ f (S)dS = ρ f (�)d�
allows us to conclude [451] that for extensions between
the lattice cutoff a and ξ = 1/m,

ρ f (�) ∼ �−k, a � � � 1
m

,

k = d + ζ + 1 − α. (486)

• avalanche volume: in higher dimensions, it is difficult
to define the spatial extension of an avalanche, while its
volume is well-defined. Using ρ f (V)dV = ρ f (S)dS, and
S ∼ �d+ζ, V ∼ �d we arrive at

ρ f (V) ∼ V−kV , ad � V � 1
md

,

kV = 2 − α− ζ

d
.

(487)

• differences between static avalanches (shocks) and
avalanches at depinning: a conceptually and practically
important question is whether static avalanches and
avalanches at depinning are in the same universality class.
As the roughness exponent ζ differs from one class to the
other, equation (475) implies that they also have a differ-
ent avalanche-size exponent τ , and thus must be different.
We will see below that this difference is not visible at
one-loop order, but shows up at two-loop order.

• Phenomenology, and a warning: for magnetic domain
walls, where avalanche phenomena were first observed as
Barkhausen noise [68], one distinguishes in general SR
samples (α = 2) from LR samples (α = 1), and samples
with noticeable eddy currents from those without. A good
review is [319]. The reader should realize that the ABBM
model (section 4.3) is often equated with the LR class or
MF, even though this is not true [131, 323]. The line of
theory we develop below starts with the ABBM model,
generalizes it to the BFM (section 4.5), and then proceeds
to short-range correlated disorder (section 4.6).
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4.2. A theory for the velocity

Up to now, our modeling of depinning was based on the
equation of motion (310) for the position of the interface. This
formulation makes it difficult to extract observables involving
the velocity. For this purpose it is better to take a time deriva-
tive of equation (310), to get an equation of motion for the
velocity u̇(x, t),

∂tu̇(x, t) = (∇2 − m2) [u̇(x, t) − ẇ(t)] + ∂tF (x, u(x, t)) .
(488)

4.3. ABBM model

The field theory to be constructed below gives a quantitative
description of avalanches in a force field F(x, u), with short-
ranged correlations in both the x and u-directions. We start
with a toy model for a single degree of freedom, and then
proceed in two steps to short-range correlated forces for an
interface.

The toy model in question is the ABBM model, intro-
duced in 1990 by Alessandro, Beatrice, Bertotti and Montorsi
[316, 317], see also [452, 453]. Setting w(t) = vt, it reads

∂t u̇(t) = m2 [v − u̇(t)] + ∂tF (u(t)) , (489)

∂tF (u(t)) =
√

u̇(t)ξ(t), (490)

〈ξ(t)ξ(t′)〉 = 2σδ(t − t′). (491)

The last equation implies that F(u) is a RW, as can be seen as
follows: as u̇ is non-negative, t is an increasing function of u,
and we can change variables from t to u,

∂uF(u) = ξ̄(u),
〈
ξ̄(u)ξ̄(u′)

〉
= 2σδ(u − u′). (492)

As a RW, F(u) has correlations

Δ(0) −Δ(u − u′) ≡ 1
2

〈[
F(u) − F(u′)

]2
〉
= σ|u − u′|.

(493)
In the language introduced above, the (bare) disorder has a
cusp, with amplitude |Δ′(0+)| = σ.

The ABBM model is traditionally treated [316, 317, 452]
via the associated Fokker–Planck equation (944) (for a deriva-
tion see appendix A.3),

∂tP(u̇, t) = σ
∂2

∂u̇2
[u̇P(u̇, t)] + m2 ∂

∂u̇
[(u̇ − v)P(u̇, t)] . (494)

This approach is difficult for time-dependent quantities, but
efficient for observables in the steady state. As an example,
consider the steady-state distribution of velocities, obtained by
solving ∂tP(u̇, t) = 0,

P(u̇) =
u̇

m2v
σ −1e−u̇ m2

σ

Γ
(

m2v
σ

) (
m2

σ

)m2v
σ

. (495)

Setting σ = m = 1 to simplify the expressions yields

P(u̇) =
u̇v−1 e−u̇

Γ(v)
. (496)

4.4. End of an avalanche, and an efficient simulation
algorithm

It is important to remark that an avalanche stops at a given
well-defined time. To see this, we solve equations (489) and
(490) for m = 0, given that at time t = 0 the velocity is u̇0.
The associated Fokker–Planck equation is

∂tP(u̇, t) = ∂2
u̇ [σu̇P(u̇, t)] . (497)

It can be solved analytically, for given initial distribution
P(u̇, 0) = δ(u̇ − u̇0), as

P(u̇, t) = δ(u̇) exp

(
− u̇0

σt

)

+
exp

(
− u̇0+u̇

σt

)
σt

√
u̇0

u̇
I1

(
2
√

u̇0u̇
σt

)
. (498)

(I1 is the Bessel-function of the first kind.) This can be checked
by inserting the solution into the differential equation (497).
Equation (498) teaches us that for an initial velocity u̇0, with a
finite probability exp(− u̇0

σt ) the velocity will be (strictly) zero
after time t. It also means that the end of an avalanche is well
defined in time, which is crucial to define its duration. This
would not be the case for a particle in a smooth potential: lin-
earizing the potential close to the endpoint of the avalanche
assumed to be u(t = ∞) = 0 yields

∂tu(t) 
 −αu(t) =⇒ u(t) 
 u0 e−αt. (499)

Equation (498) can serve as an efficient simulation algorithm,
replacing t by the time-discretization step δt, and alternately
integrating the forcing term δu̇(t) = m2[v − u̇(t)]δt and the
stochastic process according to equation (498). This is not
straightforward, due to the appearance of multiplicative noise
[454]. We can use an additional trick [455]: observe that the
solution (498) can be written as

P(u̇, t) = δ(u̇) exp

(
− u̇0

σt

)

+

∞∑
n=1

(
u̇0
σt

)n
exp

(
− u̇0

σt

)
n!

× 1
σt

(
u̇
σt

)n−1
exp

(
− u̇

σt

)
(n − 1)!

=
∞∑

n=0

pn
1
σt

Pn

(
u̇
σt

)
. (500)

Here, pn is a normalized probability vector, i.e.
∑∞

n=0 pn = 1,
and each probability Pn(x) is normalized,

∫∞
0 dx Pn(x) = 1.

Explicitly, we have

pn =

(
u̇0
σt

)n
exp

(
− u̇0

σt

)
n!

, (501)

P0(x) = δ(x), (502)

Pn(x) =
xn−1 exp (−x)

(n − 1)!
, n � 1. (503)

Given u̇0, one obtains u̇ with probability P(u̇, t) as follows:
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(a) draw an integer random number n, from the Poisson
distribution pn; the latter has parameter u̇0/(σt),

(b) if n = 0, return u̇ = 0,
(c) else draw a positive real random number x, from the

Gamma distribution with parameter n.
(d) Return u̇ = σtx,

Contrary to a naive integration of the stochastic differential
equation which yields ∂tF (u(t)) δt = ξt

√
δt, 〈ξtξt′ 〉 = δt,t′ , this

algorithm is linear in δt.
This allows us to define the distribution of durations, given

below in equation (546), and the mean temporal shape (552),
without introducing an (arbitrary) small-velocity cutoff.

4.5. Brownian force model (BFM)

The model defined in equations (489) and (490) is a model for
a single degree of freedom, not for an interface. A model for
an interface can be defined by [321]

∂tu̇(x, t) = ∇2u(x, t) + m2 [v − u̇(x, t)]

+ ∂tF (x, u(x, t)) , (504)

∂tF (x, u(x, t)) =
√

u̇(x, t)ξ(x, t), (505)

〈ξ(x, t)ξ(x′, t′)〉 = 2σδ(t − t′)δd(x − x′). (506)

Since each degree of freedom sees a force which is a RW, this
model is termed the BFM [321].

4.6. Short-ranged rough disorder

Both the ABBM model as its spatial generalization, the BFM
model, are pathologic in the sense that the force–force corre-
lator grows for all distances instead of saturating as expected
in short-ranged correlated systems, and as is reflected in the
FRG fixed points discussed in section 2.5. To remedy this, one
can keep the equation of motion (504), but add an additional
damping term in the evolution equation (505) of the force,

∂tF (x, u(x, t)) = −γu̇(x, t)F (x, u(x, t))

+
√

u̇(x, t)ξ(x, t), (507)

〈ξ(x, t)ξ(x′, t′)〉 = 2σδ(t − t′)δd(x − x′). (508)

As u̇(x, t) � 0, the equation of motion for the force is equiva-
lent to

∂uF(x, u) = −γF(x, u)+ ξ̃(x, u), (509)〈
ξ̃(x, u)ξ̃(x′, u′)

〉
= 2σδ(u − u′)δd(x − x′). (510)

This system has the force–force correlator

〈F(x, u)F(x′, u′)〉c
= σδd(x − x′)

e−γ|u−u′|

γ
, (511)

derived in equation (387). For u � γ, we recover the correla-
tions (493).

4.7. Field theory

Consider the equation of motion (488) with generic short-
ranged force–force correlators. The dynamical action is

obtained by multiplying the equation of motion with ũ(x, t),
and averaging over disorder35,

S =

∫
x,t

ũ(x, t)
[
(∂t −∇2)u̇(x, t) + m2

(
u̇(x, t) − ẇ

)]
− 1

2

∫
x,t,t′

ũ(x, t)ũ(x, t′)∂t∂t′Δ
(
u(x, t) − u(x, t′)

)
. (512)

The second line contains

∂t∂t′Δ
(
u(x, t) − u(x, t′)

)
= u̇(x, t)∂t′Δ

′ (u(x, t) − u(x, t′)
)

= u̇(x, t)
[
Δ′(0+)∂t′ sign(t − t′) −Δ′′(0+)u̇(x, t′) + . . .

]
= −2u̇(x, t)Δ′(0+)δ(t − t′)

−Δ′′(0+)u̇(x, t)u̇(x, t′) + . . . (513)

The terms dropped in this expansion are higher derivatives of
Δ(u), and they come with higher powers of u̇(x, t), and its time-
integral u(x, t) − u(x, t′) =

∫ t
t′ dτ u̇(x, τ ), reminding that u̇(x, t)

and not u(x, t) is the variable for which we wrote down the
equation of motion.

This expression is quite remarkable: the leading term is pro-
portional to δ(t − t′), rendering the last term in equation (512)
local in time. It is therefore appropriate to start our analysis of
the theory with this term only. The action we obtain is

SBFM[u̇, ũ]

=

∫
x,t

ũ(x, t)
[
(∂t −∇2)u̇(x, t) + m2

(
u̇(x, t) − ẇ(x, t)

)]
+Δ′(0+)ũ(x, t)2u̇(x, t). (514)

This is the action of the BFM introduced in
equations (504)–(506): as Δ(u) only has a first non-
vanishing derivative, all subsequent terms in equation (513)
vanish. Corrections are obtained by adding the omitted terms
perturbatively. The subleading term is

S[u̇, ũ] = SBFM[u̇, ũ]

+
Δ′′(0+)

2

∫
x,t,t′

ũ(x, t)ũ(x, t′)u̇(x, t)u̇(x, t′) + . . .

(515)

We show below on page 68 several theorems, indicating that
at the upper critical dimension the action (512) leads to the
results of the BFM model, and that the additional term in
equation (515) is sufficient for the one-loop corrections, of
order ε = dc − d.

35 The response field ũ(x, t) is different from that in equations (313) and (314).
One can derive equation (512) by substituting in equation (314) ũ(x, t) →
−∂t ũ(x, t), and then integrating by parts in time.
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4.8. FRG and scaling

The FRG equation (343) for the disorder has the following
structure

∂�Δ̃(u) = (ε− 2ζ)Δ̃(u) + ζuΔ̃′(u)

+

∞∑
n=1

∂2n
u

[
Δ̃(u) − Δ̃(0)

]n+1
. (516)

The n-loop terms are highly symbolic, since the derivatives can
be distributed in different ways on the n + 1 disorder correla-
tors, and we have dropped all prefactors. We now assume that
the microscopic disorder has the form (493), thus Δ̃(0) − Δ̃(u)
has only a term linear in u. This implies that the term of order
n = 1 may contribute a constant to equation (516), while terms
with n � 2 vanish. Thus to all orders, the roughness exponent
is given by

ζBFM = ε = 4 − d. (517)

As a consequence, the unrescaled disorder is scale independent
(does not renormalize), and

ΔBFM(0) −ΔBFM(u) ≡ σ|u|. (518)

Note that Δ(0) is not well-defined, since random forces grow
unboundedly.

Similarly, the dynamical exponent z has corrections propor-
tional to Δ′′(0), which vanish. As a consequence, z = 2, and
all exponents can be obtained analytically,

zBFM = 2, βBFM = aBFM = 1, γBFM = αBFM = 2,

τBFM =
3
2

, κBFM = 3. (519)

4.9. Instanton equation

We want to construct observables for the BFM such as

Z[λ,w] :=
〈

e
∫

x,t λ(x,t)u̇(x,t)
〉

=

∫
D[u̇]D[ũ]e

∫
x,t λ(x,t)u̇(x,t)−SBFM[u̇,̃u]. (520)

This includes the avalanche-size distribution with λ(x, t) =
λ, the velocity distribution with λ(x, t) = λδ(t), the local
avalanche-size distribution with λ(x, t) = λδ(x), a.s.o.

The key observation is that u̇(x, t) appears linearly in the
exponent, thus the path integral over u̇ can be performed
exactly, enforcing an instanton equation for ũ(x, t),(

−∂t −∇2 + m2
)

ũinst(x, t) − σũinst(x, t)2 = λ(x, t). (521)

Here σ ≡ −Δ′(0+) > 0, see e.g. equations (493) and (511).
The expectation (520) simplifies to

Z[λ,w] = e
∫

x,t m2ẇ(x,t)ũ(x,t)
∣∣∣
ũ=ũinst

. (522)

The term with ẇ(x, t) in the exponential is the only one not
proportional to u̇(x, t); the latter vanish due to the instanton
equation (521). Let us consider some examples.

4.10. Avalanche-size distribution

The simplest example is the avalanche-size distribution.
Noting that S =

∫
x,t u̇(x, t), we have to solve the instanton

equation (521) for λ(x, t) = λ. The solution for ũ = ũinst will
be constant in space and time, thus the instanton equation (521)
reduces to

m2ũ − σũ2 = λ. (523)

This quadratic equation has two solutions. The relevant one
vanishing at λ = 0 reads

ũ =
m2 −

√
m4 − 4λσ
2σ

. (524)

We now insert this solution into equation (522). As ũ(x, t)
is constant in space and time, the integral on the rhs of
equation (522) is ũ times

w :=
∫

x,t
ẇ(x, t) > 0. (525)

This yields with ũ given in equation (524)〈
eλS

〉
= em2wũ. (526)

Taking the inverse Laplace transform gives

PS
w(S) = m2w

e−
m4(S−w)2

4σS

2
√
πσS3/2

. (527)

One checks that PS
w(S) is normalized, 〈1〉w =

∫∞
0 dS PS

w(S) =
1, and that the first avalanche-size moment is 〈S〉w =∫∞

0 dS SPw(S) = w. If w(x, t) is constant in x, then 〈S〉w = w
is nothing but the displacement of the confining parabola.

Pw(S) is the response of the system to a displacement w, or
equivalently to a force kick δ f = m2w. We now take the limit
of an infinitesimally small displacementw, and to this purpose
define

PS(S) := lim
w→0

〈S〉w
w

PS
w(S)

= 〈S〉m2 e−
m4S
4σ

2
√
πσS3/2

≡ 〈S〉 e−
S

4Sm

2
√
πSmSτ

, (528)

τ = τABBM =
3
2

, (529)

Sm :=

〈
S2
〉

2 〈S〉 =
σ

m4
. (530)

Since 〈S〉w = w, by construction all moments which do not
necessitate a small-S cutoff, i.e. 〈Sn〉w with n � 1 have a well-
defined small-w limit, given by Equation (528). What one
looses when taking the limit of w → 0 is normalizability, as
formally 〈1〉 = limw→0 w

−1 = ∞.

4.11. Watson–Galton process, and first-return probability

The avalanche size-exponent τ = 3/2 observed in the ABBM
model appears in many contexts: it was first studied in the sur-
vival probability of a noble man’s name (male descendents)
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[456]. The latter has the equations of motion (489)–(491),
where u̇(t) is the number of descendants in a generation, v = 0,
and m2 the mean relative decrease in male descendants in a
generation (which could be negative),

∂tu(t) = −m2u̇(t) +
√

u̇(t)ξ(t), (531)

〈ξ(t)ξ(t′)〉 = 2σδ(t − t′). (532)

As u̇(t) > 0, the total number of descendants u(t) is mono-
tonically increasing, allowing us to write u̇(t) ≡ u̇(u(t)). The
equation of motion (531) then becomes

∂tu̇(u(t)) = u̇(u)∂uu̇(u) = −m2u̇(u) +
√

u̇(u)ξ(t). (533)

As long as u̇ > 0, we can divide both sides by u̇ to arrive at

∂uu̇(u) = −m2 + ξ̃(u), (534)〈
ξ̃(u)ξ̃(u′)

〉
= 2σδ(u − u′). (535)

Note the change of argument in the noise. Thus u̇(u) performs
a RW in ‘time’ u with drift −m2 and absorbing boundary con-
ditions at u̇ = 0. In absence of an absorbing wall, the proba-
bility that u̇(u) starts close to zero at u = 0, and returns to zero
behaves for large u as

Preturn(u) ∼ e−m2u

√
u

. (536)

In presence of an absorbing wall, we need the probability to
arrive at zero for the first ‘time’ u. The latter is obtained by
taking a ‘time’, i.e. u-derivative of Preturn(u),

Pfirst(u) = −∂uPreturn(u) ∼ e−m2u

u
3
2

. (537)

This is again the ABBM avalanche-size distribution (528) with
τ = 3/2, interpreted as first-return probability of a RW.

4.12. Velocity distribution

To simplify further considerations, we set

m2 → 1, −Δ′(0+) ≡ σ → 1. (538)

To obtain the instantaneous velocity distribution, we evaluate
equations (520)–(522) for λ(x, t) = λδ(t), setting ẇ(x, t) = v
(uniform driving). The instanton equation to be solved is

− ∂tũ(t) + ũ(t) − ũ(t)2 = λδ(t). (539)

To impose proper boundary conditions, look at the rhs of
equation (522): driving at times t > 0 does not affect the veloc-
ity distribution at t = 0, thus the instanton solution ũ(t) must
vanish for positive times. Equation (539) with this constraint
is solved by

ũ(t) =
λΘ(−t)

λ+ (1 − λ)e−t
. (540)

With the above solution equation (522) reduces to

〈
eλ

∫
x u̇(x,0)

〉
= evLd∫

t ũ(t) = e−vLd ln(1−λ)

= (1 − λ)−vLd
. (541)

The inverse Laplace transform for the integrated velocity u̇ =∫
x u̇(x, 0) is

Pu̇
v,L(u̇) =

u̇vLd−1 e−u̇

Γ(vLd)
. (542)

Apart from the source vLd , this result is independent of the
dimension d, and agrees with the ABBM result equation (495),
there derived for a single degree of freedom. We can take the
limit of v → 0, and define

Pu̇(u̇) := lim
v→0

Pu̇
v,L(u̇)
vLd

=
e−u̇

u̇
. (543)

4.13. Duration distribution

The probability that the avalanche has velocity zero at time
0 after a kick of size w at time t = −T, with T > 0, can
be obtained from the central result (522) with the instanton
(540) as

P(u̇(x, 0) = 0 ∀ x) = lim
λ→−∞

〈
eλ

∫
x u̇(x,0)

〉
= lim

λ→−∞
ewũλ(−T) = exp

(
− w

eT−1

)
. (544)

This is also the probability that the duration following a kick
of size w is smaller than T . The distribution of durations is
obtained by taking a derivative w.r.t. T,

Pduration
w (T) = ∂T exp

(
− w

eT − 1

)
= w exp

(
− w

eT − 1

)
e−T(

e−T − 1
)2

= w exp

(
− w

eT − 1

)
1

[2 sinh(T/2)]2
. (545)

This distribution is normalized. As at the end of section 4.10,
let us define the (unnormalized) probability density in the limit
of w → 0,

Pduration(T) := lim
w→0

Pduration
w (T)

w
=

1
[2 sinh(T/2)]2

. (546)

4.14. Temporal shape of an avalanche

In order to obtain the temporal shape of an avalanche, we need
to solve the instanton equation

− ∂tũ(t) + ũ(t) − ũ(t)2 = λδ(tf − t) + ηδ(t − tm), (547)

where tf is the final time (where the avalanche stops) and tm the
time at which the velocity is measured. Since we only need its
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first moment, we can construct ũ(t) perturbatively in η. To that
purpose write

ũ(t) = ũ0(t) + ηũ1(t) + η2ũ2(t) +O(η3),

ũ0(t) =
Θ(tf − t)
1 − etf−t

.
(548)

The solution ũ0(t) is the solution (540), translated to stop at
t = tf , in the limit of λ→−∞. Inserting equation (548) into
equation (547) and collecting terms of order η yields

− ∂tũ1(t) + ũ1(t) − 2ũ1(t)ũ0(t) = δ(t − tm). (549)

The solution is

ũ1(t) =
sinh2( tf−tm

2 )

sinh2( tf−t
2 )

θ(tm − t). (550)

Performing a kick of size w at t = 0, and constraining the
avalanche to stop at time tf = T , the shape can be written as

〈u̇(tm)〉 = ∂η|η=0 ln
(
∂tf e

wũ(t)
)∣∣

T=tf

= 4w
sinh2( T−tm

2 )

sinh2( T
2 )

+ 4
sinh( T−tm

2 ) sinh( tm
2 )

sinh( T
2 )

. (551)

Consider now the limit of w → 0, for which the first term van-
ishes: for short durations T , 〈u̇(m)〉 converges to a parabola,

〈u̇(tm)〉 = 2
tm(T − tm)

T
. (552)

For long durations, it settles on a plateau at 〈u̇(t)〉 = 2, see
figure 49.

Pursuing to the next order, one finds for the connected
average

〈
u̇(tm)2

〉c
= 4w

sinh3( T−tm
2 ) sinh( tm

2 )

sinh3( T
2 )

+ 8
sinh2( T−tm

2 )sinh2( tm
2 )

sinh2( T
2 )

. (553)

At w = 0, quite remarkably the ratio〈
u̇(tm)2

〉
〈u̇(tm)〉2 =

3
2

(554)

is time independent.
Further observables, as well as loop corrections are

obtained in [412, 457], and compared to experiments in [70].

4.15. Local avalanche-size distribution

We now consider avalanches on a codimension-1 hyperplane,
i.e. at a point for a line, or on a line for a 2D interface, a.s.o.,
by choosing

λ(x,�x⊥) = λδ(x). (555)

As a consequence, �x⊥ drops from the instanton equation.
Setting again σ = m2 = 1, one arrives at

ũ(x) − ũ′′(x) − ũ(x)2 = λδ(x). (556)

The only solution which vanishes at infinity and satisfies the
instanton equation at λ = 0 is

ũ(x) =
3

1 + cosh(x + x0)
. (557)

It can be promoted to a solution at λ �= 0 by setting ũ(−x) =
ũ(x). The parameter x0 = x0(λ) has to be chosen to satisfy the
instanton equation at x = 0. Integrating equation (556) within
a small domain around x = 0 yields

λ = −2ũ′(0+) =
6 sinh(x0)

[1 + cosh(x0)]2
. (558)

On the other hand, the generating function is

Z :=
∫ ∞

−∞
dx ũ(x) =

12
1 + ex0

. (559)

Solving equation (559) for x0 and inserting into equation (558)
yields

λ =
Z(Z − 6)(Z − 12)

72
. (560)

The inverse Laplace transform is a priori difficult to perform,
as Z(λ) is a complicated function of λ. The trick is to write

Pw(S0) :=
〈
eλS0

〉
=

∫ i∞

−i∞

dλ
2πi

e−λS0ewZ(λ)

=

∫ i∞

−i∞

dZ
2πi

dλ(Z)
dZ

e−λ(Z)S0+wZ

= − 1
S0

∫ i∞

−i∞

dZ
2πi

ewZ d
dZ

e−λ(Z)S0

=
w

S0

∫ i∞

−i∞

dZ
2πi

ewZ e−λ(Z)S0

=
6 e6w w

πS0

∫ ∞

0
dx cos

(
3x(S0x2 + S0 + 2w)

)
=

2 e6ww
√

S0 + 2w

πS3/2
0

K 1
3

(
2(S0 + 2w)3/2

√
3S0

)
.

(561)

This can also be written in terms of the Airy function (formula
(21) of [451]). In the limit of w → 0, it reduces to

P(S0) =
2

πS0
K 1

3

(
2S0√

3

)
. (562)

One can also give analytical expressions for the joint distribu-
tion of avalanche size S and local size S0, as well as of size
S and spatial extension �. The interested reader finds this in
[451].

4.16. Spatial shape of avalanches

We now turn to the spatial shape of avalanches [322]. We
remind that avalanches have a well-defined extension �,
beyond which there is no movement. For a given avalanche,
denote its advance by S(x), and its size by S =

∫
x S(x). We call
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Figure 49. Expectation 〈u̇(t)〉. (Left) T = 10, and from bottom to top w = 0, 1, 2, and 3. (Right) w = 0 (infinitesimal kick), and from
bottom to top T = 1

2 , 2, 5, and 20. Reprinted figure with permission from [321], Copyright (2013) by the American Physical Society.

avalanche extension � the size of the smallest ball into which
we can fit the avalanche. As long as � � m−1,

〈S(x)〉� = �ζg(x/�), (563)

where g(x) is non-vanishing in the unit ball. Integrating over
space yields S ∼ �d+ζ , the canonical scaling relation between
size and extension of avalanches, confirming the ansatz (563).

We now want to deduce how g(x) behaves close to the
boundary. For simplicity of notations, we write our argument
for the left boundary in d = 1, which we place at x = −�/2.
Imagine the avalanche dynamics for a discretized system. The
avalanche starts at some point, which in turn may trigger an
advance of its neighbors, a.s.o. This leads to a shock front
propagating outwards from the seed to the left and to the right.
As long as the elasticity is local, the dynamics of these two
shock fronts is local: if one conditions on the position of the
ith point away from the front, with i being much smaller than
the total extension � of the avalanche (in fact, we only need that
the avalanche started right of this point), then we expect that
the joint probability distribution for the advance of points 1 to
i − 1 depends on i, but is independent of the size �. Thus we
expect that in this discretized model the shape 〈S(x − r1)〉 close
to the left boundary r1 is independent of �. Let us now turn to
avalanches of large size �, so that we are in the continuum limit
studied in the field theory. Our argument then implies that the
shape 〈S(x − r1)〉measured from the left boundary r1 = −�/2,
is independent of �. In order to cancel the �-dependence in
equation (563) this in turn implies that [322]

g(x) = B × (x − 1/2)ζ , (564)

with some amplitude B. For the BFM in d = 1, the roughness
exponent is ζBFM = 4 − d = 3, and one can further show that
B = σ/21 [322].

On the left of figure 50, we show twenty realizations of
avalanches, with mean given by the thick black line. On the
right we compare numerical averages with the theory sketched
below. Note that the latter indeed has a cubic behavior close to
the boundary, as predicted by equation (564).

We now turn to the theory: in order to get the spatial
avalanche shape, one needs to construct a solution of the
instanton equation (521), with a source

λ(x) = −λ1δ(x − r1) − λ2δ(x − r2) + ηδ(x − xc),

λ1,λ2 →∞.
(565)

Looking at our central result (522), this choice implies that
the avalanche kicked at x = x0 does not extend to x = r1,2.
To simplify matters further, one replaces m2w(x) → f (x), and
considers the response to a kick in the force. This allows us to
take the limit of m → 0. Setting further σ = 1, the instanton
equation to be solved is

ũ′′(x) + ũ(x)2 = −λ(x). (566)

The source η generates moments of the avalanche size at
xc. While unsolvable for arbitrary η, equation (566) can
be solved perturbatively in η, allowing us to construct
moments of the spatial avalanche shape. This solution has the
form

ũ(x) = ũ0(x) + ηũ1(x) + η2ũ2(x) + . . . , (567)

ũ0(x) =
1

(r2 − r1)2
f

(
2x − r1 − r2

2(r2 − r1)

)
, (568)

f (x) = −6P
(

x + 1/2; g2 = 0, g3 =
Γ
(

1
3

)18

(2π)6

)
.

(569)

Here P is the Weierstrass-P function, diverging at x = 0 and
x = 1. The subdominant terms in η are obtained by realiz-
ing that if f (x) is solution of the instanton equation (566),
so is κ2 f (κx + c). The details of this calculation are cumber-
some, and can be found in [322]. On the right of figure 50
we show 〈S(X)〉 predicted by the theory, and its numerical
test.

Note that the shape of very large avalanches does not scale
as �3 but �4; it also has a different shape [458].
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Figure 50. (Left) 20 avalanches with extension � = 200, rescaled to � = 1. n = 2871 is the number of samples used for the average.
(Right) The shape 〈S(x)〉 ≡ 〈S(x/�)〉�/�3 averaged for all avalanches with a given � between 40 and 360. To reduce statistical errors, we have
symmetrized this function. Reprinted figure with permission from [322], Copyright (2017) by the American Physical Society.

4.17. Some theorems

Inspired by the calculations done so far, one can show the
following theorems [321]:

Theorem 1. The zero-mode u̇(t) := 1
Ld

∫
x u̇(x, t) of the BFM

field theory (514) is the same random process as in the ABBM
model, equation (489).

Theorem 2. The field theory of this process is the sum of all
tree diagrams, involving Δ′(0+) as a vertex.

Theorem 3. Tree diagrams are relevant at the upper criti-
cal dimension dc. Corrections involve loops and can be con-
structed in a controlled ε, i.e. loop, expansion around the
upper critical dimension dc.

Sketch of proof . One first constructs the generating func-
tion for a spatially constant observable, as the velocity or the
size in the BFM model. As we saw, these generating func-
tions involve instanton solutions constant in space, thus inde-
pendent of the dimension. Graphically this can be understood
by constructing ũ perturbatively, with vertices proportional to
σ = −Δ′(0+), and lines which are response functions, possi-
bly integrated over time. Since by assumption external observ-
able vertices are at zero momentum, all response functions are
at zero momentum. This proves theorems 1 and 2.

We now consider models with one of the fixed points stud-
ied above, be it RB, RF or periodic disorder, at equilibrium or
at depinning. Since each vertex is proportional to ε, the lead-
ing order is again given by trees constructed from Δ′(0+). The
only thing which can be added are loops. Each loop comes
with an additional factor of ε from the additional vertex, of
which the leading one is given in equation (515). As long as
the ensuing momentum integrals are finite, thus do not yield
a factor of 1/ε, these additional contributions are of order εn,
where n is the number of loops. That the momentum integrals
are finite can be checked; it reflects the fact that the theory
is renormalizable, i.e. that all divergences which can possibly

appear have already been taken care of by the counter terms
introduced earlier, see section 3.4 for depinning.

4.18. Loop corrections

Loop corrections are cumbersome to obtain, and prone to
errors. To avoid the latter, one should check the obtained
results by explicitly constructing them perturbatively in Δ(u),
andλ. This is done in the relevant research literature [321, 412,
459, 460]. Here we sketch the generally applicable method of
[321], to which we refer for details.

Simplified model. Consider the action (515). To leading
order, we can decouple the term in addition to the BFM via

e−S[u̇,̃u] =
〈
e−Sη[u̇,̃u]

〉
η

(570)

Sη[u̇, ũ] = SBFM[u̇, ũ] +
∫

x,t
η(x)ũ(x, t)u̇(x, t). (571)

η(x) is an (imaginary) Gaussian disorder to be averaged over,
with correlations

〈η(x)η(x′)〉η = −Δ′′(0)δd(x − x′). (572)

For each realization η(x), the theory has the same form as in
the preceding sections. In particular, the total action (including
the sources) is linear in the velocity field, and the only change
is an additional term in the instanton equation (521),(

−∂t −∇2 + m2
)

ũ(x, t) − σũ(x, t)2

= λ(x, t) + η(x)ũ(x, t). (573)

Our central result (522) remains unchanged.
Perturbative solution. To simplify notations, we set m =

σ = 1. We expand the solution of equation (573) in powers
of η(x), denoting by ũ(n)(x, t) the term of order ηn,

ũ(x, t) = ũ(0)(x, t) + ũ(1)(x, t) + ũ(2)(x, t) + . . . (574)
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The hierarchy of equations to be solved is[
−∂t −∇2

x + 1
]

ũ(0)(x, t) = λ(x, t) + ũ(0)(x, t)2,

(575)[
−∂t −∇2

x + 1 − 2ũ(0)(x, t)
]

ũ(1)(x, t)

= ηxũ(0)(x, t), (576)[
−∂t −∇2

x + 1 − 2ũ(0)(x, t)
]

ũ(2)(x, t)

= ũ(1)(x, t)2 + η(x)ũ(1)(x, t). (577)

The first line is the usual instanton equation (521). Let us
introduce the dressed response kernel[

−∂t −∇2
x + 1 − 2ũ(0)(x, t)

]
Rx′ t′,xt

= δd(x − x′)δ(t − t′). (578)

It has the usual causal structure of a response function, and
obeys a backward evolution equation. It allows us to rewrite
the solution of the system of equations (575) to (577) as

ũ(1)(x, t) =
∫

x′

∫
t′>t

η(x′)ũ0(x′, t′)Rx′ t′,xt, (579)

ũ(2)(x, t) =
∫

x′

∫
t′>t

[
ũ1(x′, t′)2 + η(x′)ũ(1)(x′, t′)

]
× Rx′ t′,xt. (580)

Consider now the average (572) over η(x). Since 〈ũ(1)(x, t)〉η =
0, the lowest-order correction is given by the average of
ũ(2)(x, t),

Z[λ] = Ztree[λ] +
∫

xt
〈ũ(2)(x, t)〉η + . . . (581)

Inserting equation (579) into equation (580), and performing
the average over η, one finds

〈ũ(2)(x, t)〉η

= −Δ′′(0)
∫

t<t1<t2,t3

∫
x1,x′

ũ(0)(x′, t2)ũ(0)(x′, t3)

× Rx′ t2,x1t1Rx′ t3,x1 t1Rx1 t1,xt

−Δ′′(0)
∫

t<t1<t2

∫
x′

ũ(0)(x′, t2)Rx′t2,x′ t1Rx′t1,xt. (582)

It admits the following graphical representation

(583)

The symbols are as follows: (i) a wiggly line represents
ũ(0)(x, t), the MF solution; (ii) a double solid line is a dressed
response function R, advancing in time following the arrow

(upwards), thus times are ordered from bottom to top. We now
define the combination

Φ(x′, x, t) :=
∫

t′>t
ũ(0)(x′, t′)Rx′t′,xt, (584)

in terms of which

〈ũ(2)(x, t)〉η

=

∫
t′,x′

[∫
y
Φ(y, x′, t′)2 +Φ(x′, x′, t′)

]
Rx′ t′,xt. (585)

There are several additional terms: (i) a counter-term for the
disorder, showing up in a change of Δ′(0+) to its renormalized
value. (ii) A counter-term to friction. (iii) A missed boundary
term, due to the replacement of Δ′′(ut − ut′ ) which decays to
zero for large times by Δ′′(0), which does not.

One-loop corrections to the avalanche-size distribution.
Let us construct the one-loop corrections to the avalanche-size
distribution, following the formalism developed above. For
λ(x, t) = λ, the solution of the unperturbed instanton equation
was given in equation (524). For m = σ = 1, it reads

ZMF(λ) ≡ ũ(0) =
1
2

(
1 −

√
1 − 4λ

)
. (586)

The dressed response kernel in Fourier representation becomes

Rk,t2,t1 = e−(k2+1−2ũ(0))(t2−t1)θ(t2 − t1). (587)

It is the bare response function up to the replacement m2 →
m2 − 2ũ(0)(λ). The combination in the exponential simplifies,

k2 + 1 − 2ũ(0) = k2 +
√

1 − 4λ. (588)

Formula (584) then gives

Φ(k, t1) = ũ(0)
∫

t1<t2

Rk,t2,t1 =
ũ(0)

k2 + 1 − 2ũ(0)
. (589)

With the additional integral overR in equation (585), the latter
becomes

〈ũ(2)〉η = − Δ′′(0+)
1 − 2ũ(0)

×
∫

k

(
ũ(0)

k2 + 1 − 2ũ(0)

)2

+
ũ(0)

k2 + 1 − 2ũ(0)
. (590)

Adding the proper counter-terms, and replacing the bare dis-
order by the renormalized one [321], the full generating
function is

Z(λ) ≡ ũ = ũ(0) − Δ̃′′(0+)
1 − 2ũ(0)

1
εI1∫

k

[(
ũ(0)

k2 + 1 − 2ũ(0)

)2

+
ũ(0)

k2 + 1 − 2ũ(0) − ũ(0)

k2 +1
− 3(ũ(0))2

(k2 + 1)2

]
.

(591)

Avalanche-size distribution at one-loop order. The gener-
ating function (591) can be inverted analytically [459]. The
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result for avalanches larger than a microscopic cutoff S0 is to
O(ε)

P(S) =
〈S〉

2
√
π

Sτ−2
m AS−τ exp

(
C

√
S

Sm
− B

4

[
S

Sm

]δ)
. (592)

The coefficients are to O(ε)

A = 1 +
1
8

(2 − 3γE)α, B = 1 − α
(

1 +
γE

4

)
,

C = −
√
π

2
α, α =

ζ − ε

3
, (593)

and γE = 0.577 216 is Euler’s number. The exponent τ is con-
sistent with the scaling relation (475), while the new exponent
δ reads

δ = 1 +
ε− ζ

12
. (594)

4.19. Simulation results and experiments

Avalanche-size distribution. The result for the avalanche-size
distribution has been verified numerically, both for the statics
[288] as for depinning [461].

For the statics (equilibrium) [288], we show plots on
figure 51. The simulations are for a three-dimensional RF
magnet, with weak disorder s.t. only a single domain wall
appears, yielding d = 2, ε = 2, and ζ = ζRF = 2/3. The gen-
erating function Z(λ) is verified with high precision. For
the avalanche-size distribution, the agreement is good, even
though there is appreciable noise due to binning, which is
absent from the generating function Z(λ).

At depinning, avalanches are simulated for an elastic string
in d = 1 [461]. The results for system sizes up to L = 4000 are
shown on figure 52. The statistics is good, allowing to verify
equation (592) in the tail region, with δ = 7/6.

The temporal avalanche shape at fixed duration T. The tem-
poral shape at fixed duration T is predicted by the theory [412,
457] as

〈u̇ (t = ϑT)〉T = 2N [Tϑ(1 − ϑ)]γ−1

× exp

(
−16ε

9dc

[
Li2(1 − ϑ) − Li2

(
1 − ϑ

2

)
+

ϑ ln(2ϑ)
ϑ− 1

+
(ϑ+ 1) ln(ϑ+ 1)

2(1 − ϑ)

])
. (595)

The exponent γ is given in equation (481). The temporal shape
is well approximated by

〈u̇(t = ϑT)〉T 
 [Tϑ(1 − ϑ)]γ−1 exp

(
A
[

1
2
− ϑ

])
. (596)

The asymmetryA ≈ −0.336(1 − d/dc) is negative for d close
to dc, skewing the avalanche toward its end, as observed
in numerical simulations in d = 2 and 3 [462]. For d = 1
the asymmetry is positive in numerical simulations [463]. In
experiments on magnetic avalanches (Barkhausen noise), and
in fracture experiments, the asymmetry is difficult to see [463].

The temporal avalanche shape at fixed size S. The temporal
shape can also be calculated at fixed size S. Scaling suggests
that

〈u̇(t)〉S =
S
τm

(
S

Sm

)− 1
γ

f

(
t
τm

(
Sm

S

)1
γ

)
, (597)

with
∫∞

0 dt f (t) = 1, where f(t) may depend on S/Sm. In MF,
the scaling function f(t) is independent of S/Sm [464], and
reads

f0(t) = 2t e−t2 , γ = 2. (598)

To one loop one obtains f (t) = f0(t) − ε
9δ f (t).Expressions for

arbitrary S/Sm are lengthy. The universal small-S limit reads

δ f (t) =
f0(t)

4

[
π
(
2t2 + 1

)
erfi(t) + 2γE

(
1 − t2

)
− 4

− 2t2
(
2t2 + 1

)
2F2

(
1, 1;

3
2

, 2; t2

)
− 2 et2

(√
πt erfc(t) − Ei

(
−t2

))]
.

(599)

It satisfies
∫∞

0 dt δ f (t) = 0. The asymptotic behaviors are

f (t) 
t→0 2Atγ−1, A = 1 +
ε

9
(1 − γE), (600)

f (t) 
t→∞ 2A′tβ e−Ctδ , δ = 2 +
ε

9
, β = 1 − ε

18
,

A′ = 1 +
ε

36
(5 − 3γE − ln 4), C = 1 +

ε

9
ln 2. (601)

The amplitude A leads to the same universal short-time behav-
ior as in equation (595). To properly extrapolate to larger
values of ε, we use

f (t) ≈ 2t e−CtδN exp

(
− ε

9

[
δ f (t)
f0(t)

− t2 ln(2t)

])
, (602)

with the normalization N chosen s.t.
∫∞

0 dt f (t) = 1.
Equation (602) is exact to O(ε) and satisfies the asymptotic
expansions (600) and (601).

This result has beautifully been measured in the Barkhausen
noise experiment of [70], see figure 53.

The spatial avalanche shape (in d = 1). The spatial
avalanche shape for the BFM was shown on figure 50. For
systems with SR-correlated disorder, it was measured for two
different driving protocols: tip driven (driving at a single
point), and spatially homogeneous driving by the parabola,
the protocol used above. For tip-driven avalanches at the non-
driven end, as well as for homogeneously driven avalanches,
equation (564) predicts that the avalanche shape at fixed exten-
sion � grows close to the boundary point b as

〈S(x)〉� ∼ |x − b|ζ . (603)

For ζ = 1.25 one thus expects this curve to have a slightly pos-
itive curvature at these points, consistent with plots 3 and 5 of
[448].
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Figure 51. Results of [288] for RF disorder, d = 2. (Left) Numerically measured Z̃(λ) (blue dots). MF result (586) (green dashed), one-loop
result (591) (orange solid). The latter is rather precise, almost up to the singularity at λ = 1/4. (Right) Avalanche-size distribution P(S),
multiplied by Sτ with τ = 1.25 from equation (475) (dots). The orange solid curve is the prediction from equation (592). The dashed line is
a constant (guide to the eye). (Inset) Blow-up of main plot.

Figure 52. (Left) Avalanche-size distribution for RF in d = 1 at depinning. The variable s = S/Sm. Blow up of the power-law region. The
red solid curve is given by the MF result equation (528), the black dashed line by equation (592), with A = 0.947, B = 1.871 and
C = 0.606. (Right) The same for the tail. Reprinted figure with permission from [461], Copyright (2009) by the American Physical Society.

Let us also mention the studies of [458] for avalanches
with a large aspect ratio in the BFM which are rare, and with
fixed seed position [465] which are difficult to realize in an
experiment.

The velocity distribution. The velocity distribution was ana-
lytically obtained in [321, 467], and numerically checked in
[466]. The scaling relation of equation (485) actually predicts
a negative exponent a = −10/23, implying P(u̇) ∼ u̇10/23.
Despite the change in sign, this is beautifully verified in
figure 54.
4.20. Correlations between avalanches

In section 2.10, we had asked how avalanche moments are
encoded in Δ(w), and found the key relation (104). We can
further ask how avalanches at w1 and w2 are correlated. This
can be evaluated along the same lines [468]: on one hand,

[uw1+δw1 − uw1 ][uw2+δw2 − uw2 ]

= 〈Sw1Sw2〉 δw1δw2ρ2(w1 − w2) +O(δw3), (604)

where ρ2(w) is the probability density to have two shocks a
distance w apart. On the other hand,

[uw1+δw1 − uw1][uw2+δw2 − uw2 ] − δw1δw2

=
1

m4Ld
[Δ(w1 + δw1 − w2 − δw2) −Δ(w1 − w2 − δw2)

−Δ(w1 + δw1 − w2) +Δ(w1 − w2)]

= −δw1δw2
Δ′′(w1 − w2)

m4Ld
+O(δw3). (605)

Using equation (99) in equation (604), and comparing to
equation (605) for small δw implies

〈Sw1Sw2〉
c

〈S〉2 ≡ 〈Sw1Sw2〉
〈S〉2 − 1 = −Δ′′(w1 − w2)

m4Ld
. (606)
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Figure 53. Scaling collapse of the average shape at fixed avalanche
sizes 〈u̇(t)〉S, according to equation (597), in the FeSiB thin film.
The continuous line is the prediction for the universal SR scaling
function of equation (602). The insets show comparisons of the tails
of the data with the predicted asymptotic behaviors of equations
(600) and (601), setting ε = 2, with A = 1.094, A′ = 1.1, β = 0.89,
C = 1.15, and δ = 2.22. Consistent with scaling relations, the
measured γ = 1.76. Reprinted figure with permission from [70],
Copyright (2016) by the American Physical Society.

Figure 54. The center-of mass velocity distribution P(u̇). The
weight of the peak at u̇ = vkick is δt

〈T〉 ∼ L−z ∼ mz, where T is the
duration of an avalanche and δt the time discretization step. The
analytic result (black dashed line) is from equation (385) of [321],
the dotted gray line the pure power law P(u̇) ∼ u̇−a, with
a = − 10

23 = −0.435 as given in equation (485). There is no
adjustable (fitting) parameter, thus convergence to the theory
including all scales is read off from the plot. Plot from [466].

Since 〈Sw1Sw2〉 � 0, the rhs is bounded from below by −1, or

Δ′′(w)
m4Ld

� Δ′′(0+)
m4Ld

� 1. (607)

For the Kida and Sinai models, this yields the bounds
Δ̃′′(0+) � 1, which are indeed satisfied by equations (191)

and (203). At depinning, the DPM has Δ̃′′(0+) = 0.5, see
equation (367). In the perturbative FRG, equations (63) and
(341), extended by the two-loop results of [124], imply

Δ′′(0+)
m4Ld



(

2
9
+ 0.107533ε+O(ε2)

)
1

m4LdI1
. (608)

The diagram I1 defined in equation (58) as an integral, here
depends both on m and L, and is evaluated as a discrete sum
over momenta ki = ni2π/L, ni ∈ Z. One shows that m4LdI1 �
1, the bound is saturated for mL → 0, and deviations from the
bound remain smaller than 10% for mL � 3.2 in d = 1, mL �
2.4 in d = 2, mL � 1.8 in d = 3, and mL � 0.6 in d = 4, indi-
cating optimal choices for the sample size. The experiments
[323] shown on figure 55 satisfy (606), and almost saturate the
bound (608). Further relations are studied in [468, 469].

4.21. Avalanches with retardation

In magnetic systems, a change in the magnetization induces an
eddy current, which in turn can reignite an avalanche which
had already stopped [470]. The simplest model exhibiting this
phenomenon, and which remains analytically solvable [464]
reads

∂tu(t) = F
(

u(t)
)
+ m2 [w(t) − u(t)] − ah(t), (609)

τ∂th(t) = ∂tu(t) − h(t). (610)

While many observables can be obtained analytically [464]
and measured, e.g. the temporal shape given S, other ones are
not well-defined, as the duration of an avalanche. As due to the
eddy current h(t), an avalanche can restart, this complicates the
data-analysis in real magnets [319].

4.22. Power-law correlated random forces, relation to
fractional Brownian motion

Fractional Brownian motion (fBm) is the unique Gaussian
process Xt which is scale and translationally invariant, see
e.g. [471–474]. It is uniquely characterized by its two-point
function

〈XtXs〉 = σ
(
t2H + s2H − |s − t|2H

)
. (611)

The Hurst exponent H may take values between 0 and 1,

0 < H � 1. (612)

Note that Xt is non-Markovian, since the two-time correlations
of increments at times t �= s

〈∂tXt∂sXs〉 = 2H(2H − 1)σ|s − t|2H−2 (613)

do not vanish, except for H = 1/2, for which the fBm reduces
to standard Brownian motion.

Since Xt is a Gaussian process, many observables can be
calculated analytically. This is interesting, since one can access
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Figure 55. Anticorrelation of avalanches as a function of w, for two samples with eddy currents, SR (a), and LR (b). The solid line is the
prediction for −Δ′′(w)/(m4Ld) from equation (606), as obtained from the experiment. The dashed lines are bounds on the maximally
achievable reduction from the ε-expansion (608), with error bars in cyan for SR. There are no fitting parameters.

analytically, in an expansion in H − 1/2, most variables of
interest for extremal statistics [474–484]. An example of such
an observable is the maximum relative height of elastic inter-
faces in a random medium [485]. fBm is also the simplest
choice if one only knows the scaling dimension H of a process,
without further insight into higher correlation functions.

Returning to depinning, suppose that random forces are
Gaussian and correlated as a fBm

Δ(0) −Δ(u) = σ|u|2H. (614)

Solving equation (343), and realizing that loop corrections are
subdominant36 in the tail for H < 1, we obtain similar to the
derivation of equation (517)

ζ =
ε

2(1 − H)
. (615)

As a consequence of equation (475), the avalanche-size expo-
nent is

τ = 2 − 2
d + ζ

= 2 − 4(1 − H)
4 + d(1 − 2H)

. (616)

Interestingly, in d = 0, i.e. for a particle, this reduces to

τ |d=0 = 1 + H. (617)

This is consistent with the first-return probability derived
in [474, 476]. Indeed, the probability to return to the ori-
gin of a fBm Xt with Hurst exponent H is P(t) = 〈δ(Xt)〉 ∼
t−H , equivalent to equation (40) of [476]. The probability
to return for the first time is ∂tP(t) ∼ t−(1+H), equivalent to
Equation (617). These considerations generalize those lead-
ing to equations (536) and (537), and in d = 0 confirm
equations (615) and (616).

36 Corrections in the FRG equation (69) are δ[Δ(0) −Δ(u)] ∼ u4H−2 � u2H

for u →∞.

Figure 56. Shocks in a two-dimensional system with short-ranged
correlated disorder, size L = 500, and periodic boundary conditions,
for two different masses m2 = 10−3 (left) and m2 = 10−4 (right).
Decreasing m2, shocks merge. Shock fronts are almost straight.

4.23. Higher-dimensional shocks

Little is known about higher-dimensional shocks or
avalanches. As in our understanding of the cusp, the
two-dimensional toy model (96) is helpful here, with V(u)
drawn as uncorrelated Gaussian random variables with vari-
ance 1 on a unit grid. On figure 56 we show the shocks, i.e.
the locations where the minimizer u in equation (96) changes
discontinuously. Principle properties are

(a) V̂(u) can be interpreted as a decaying KPZ height field,
and F̂(u) := −∇V̂(u) as a decaying Burgers velocity, see
section 7.7.

(b) Decreasing m2, i.e. increasing time t ∼ m−2 in the
KPZ/Burgers formulation, shocks merge and annihilate.

(c) Shock fronts are straight lines.
(d) When crossing a shock line, the minimizer u of

equation (96) jumps perpendicular to the shock.

Properties (c) and (d) suggest to write (with S = |�S |
)

[486]

P(�S)dS1 dS2 = P(S)dS cos(θ)dθ. (618)
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Using dS1 dS2 = S dS dθ yields

P(S1, S2) =
P(S)

S
cos(θ). (619)

On the other hand, one can again solve the problem in the
MF limit [486, 487], valid if the microscopic disorder R(0) −
R(u) ∼ |u|3. In this limit, shocks are an infinitely divisible
process [460]. As a consequence,

e�λ[�u(�w)−u(�0)−�w] = ewZ(�λ) =

∫
dN�S e

�λ�SP(�S, �w). (620)

As in section 3.23, the large-deviation function F(�x) can be
defined as

F(�x) := − lim
w→∞

ln P(�xw, �w)
w

. (621)

Inserting this expression into equation (620) yields

ewZ(�λ) = wN
∫

dN�x ew[�λ�x−F(�x)]. (622)

This shows that the generating function Z(�λ) and the large-
deviation function F(�w) are Legendre-transforms of each
other,

Z(�λ) + F(�x) = �λ�x, (623)

λi =
∂

∂xi
F(�x), xi =

∂

∂λi
Z(�λ). (624)

It is non-trivial to show [486, 487] that

F(x1, x2) =
2x2

2 +
[
x2

2 + (x1 − 1) x1
]2

4
(
x2

1 + x2
2

)3/2 . (625)

Measuring only a single component, equivalent to setting x2 =
λ2 = 0, this reduces to

F(x, 0) =
(1 − x)2

4x
, Z(λ, 0) =

1
2

(
1 −

√
1 − 4λ

)
.

(626)
This is the same generating function as in equation (524),
thus the probability distribution for the longitudinal compo-
nent S1 is as given in equation (527) (standard Watson–Galton
process [315, 456]). The transversal avalanche-size distribu-
tion is more involved, but a parametric representation for
Z̃2(λ) :=Z(0,λ) can be given [487],

λ(θ) = sin(θ)

√
5 − cos(4θ) + 2[

1 − cos(2θ) +
√

5 − cos(4θ)
]2 ,

Z̃2(θ) =
cos(θ)

2

√
5 − cos(4θ) − 2

1 − cos(2θ) +
√

5 − cos(4θ)
.

(627)

This allows one to obtain the graph of Z̃2(λ), and even to
Laplace-invert it. The results and numerical tests are shown
in figure 57.

4.24. Clusters of avalanches in systems with long-range
elasticity

When elasticity is long-ranged, avalanches can nucleate away
from the part of the avalanche including the first point to have
moved. This is an old problem, with many references, see e.g.
[488–493].

Suppose that each avalanche of size S is composed of Nc(S)
clusters, distributed as

P(Sc|S) ∼ S−τc
c Θ(Sc < S), τc < 2. (628)

Then the typical size of clusters, given avalanche size S, is

〈Sc〉S =

∫ ∞

0
dSc ScP(Sc|S) ∼ S2−τc. (629)

There are

Nc(S) 
 S
〈Sc〉

∼ Sτc−1 (630)

clusters. Suppose that the number of clusters scales as

P(Nc) ∼ N−μ
c Θ(Nc < Nc(S)). (631)

On dimensional grounds, P(S)dS ∼ P(Nc)dNc. Inserting the
above relations yields

τc − 1 =
τ − 1
μ− 1

. (632)

If one further supposes [491–493] that the generation of a new
cluster is a Galton–Watson process (section 4.11), then

μ = 3/2, (633)

simplifying equation (632) to [491–493]

τcluster = 2τ − 1. (634)

Numerically it was checked [491, 492] that this scaling relation
works for all 0 � α < 2; it might actually continue to work
for α = 2, if one keeps a finite value for Aα

d in equation (17b)
avoiding to reduce the power-law kernel to short-ranged cor-
relations in that limit (see section 1.3). These results have
recently been questioned [494].

4.25. Earthquakes

Gutenberg and Richter [75, 97] first reported that the magni-
tude of earthquakes in California follows a power-law, equiv-
alent to an avalanche-size exponent37 of τ = 3/2. Due to its
enormous impact on society, much research is done in the
domain, both by geophysicists with the aim of predicting
the next big earthquake, and by theoretical physicists, trying
to put earthquakes into the framework of disordered elastic
manifolds. The latter is successful to a certain extend:

• the elastic object depinning is a two-dimensional fault
plane, to which the relative movement is confined, often
with sub-mm precision (localization),

37 Geophysicist usually consider the cumulative distribution of magnitude.
The magnitude was originally defined as ‘proportional to the log of the
maximum amplitude on a standard torsion seismometer’ [495].
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Figure 57. (Left) Measured Z̃2(λ) (squares) compared to the prediction (627) (solid line). (Right) Plot of s2
x p1(sx) (top curve) and

s2
⊥[p2(s⊥) + p2(−s⊥)] (bottom curve). Solid lines represents the analytical predictions. Reproduced from [487]. © IOP Publishing Ltd. All

rights reserved.

• driving is through the tectonic plates, equivalent to the
parabolic confining potential of equation (5),

• the elastic interactions on the fault plane are long-ranged
since elasticity is mediated by the bulk. The calculation is
essentially the same as for contact lines in section 1.3, and
yields α = 1 in equation (16),

• the critical dimension dc(α) = 2α = 2 is the dimension of
the fault plane. The system is in its critical dimension. As a
consequence ζ = 0, z = 2, and τ = 3/2, which correctly
predicts the Gutenberg–Richter law.

But there is an additional element: after an earthquake, the fault
is damaged, rendering it less resistant to further movement
before the damage is healed, which happens on a much longer
time scale (see e.g. [496]). As a consequence, immediately
after a big earthquake, the likelihood of another earthquake is
increased. It is indeed found that the probability for an after-
shock to appear decays (roughly) as 1/t in time t, known today
as Omori’s law [497].

For further reading, we refer to the original literature [80,
496, 498–509] and to some of the relevant concepts discussed
in this review, LR correlated elasticity (section 4.24), and
inertia (section 3.23).

4.26. Avalanches in the SK model

The ABBM model, the BFM, or any other approach based on a
RW, and commonly summarized as ‘MF’ gives an avalanche-
size exponent τ = 3/2 (defined in equation (472)), bound-
ing from above all experiments and simulations on disordered
elastic manifolds

ζABBM = ζBFM = ζMF =
3
2

� ζd
dep ≡ 2 − 2

d + ζ
> 1. (635)

On the other hand, since d + ζ > 2, even in dimension d = 1,
there seems to be a lower bound on τ as well, indicated above.
Note that for τ � 1 the avalanche-size distribution becomes
non-integrable at large S in absence of an IR cutoff.

It is thus quite surprising to learn that in the SK model [59]
the exponent τ is smaller [510, 511],

τ equilibrium
SK = τ dynamic

SK = 1. (636)

This result for the equilibrium was obtained [510, 511] within
a full-RSB scheme, relevant for SK. Curiously, exactly the
same exponent is found in numerical simulations [512] out
of equilibrium, where one simply increases the magnetic field
until one spin becomes unstable, which is then flipped. While
finding the ground-state is an NP-hard problem, this dynamic
algorithm is trivial to implement. Still, the exponent τ is the
same. It is also counterintuitive to learn that avalanches in the
SK model involve a finite fraction of its N spins, changing the
magnetization on average by

√
N for an increase in external

field by order 1/
√

N, i.e.

Styp :=

〈
S2
〉

〈2S〉 =
√

N. (637)

This means that on the complete hysteresis curve each spin
flips on average an order of

√
N times. This is very differ-

ent from magnetic domain walls, where each spin flips exactly
once. It is compatible with the non-integrable tail in the size
distribution, P(S) ∼ 1/S, knowing that there is no natural IR
cutoff other than the system size.

5. Sandpile models, and anisotropic depinning

5.1. From charge-density waves to sandpiles

While nowadays sandpile models constitute a domain of statis-
tical physics and mathematics on their own, it is worth remind-
ing that they originated in the study of CDWs. In the seminal
paper [513], the authors considered an array of rotating pen-
dula elastically coupled to their neighbors via weak torsion
springs, a mechanical analogue of a CDW. In any equilibrium
state the pendulum will almost point down. Consider a decom-
position of the positions ui of the pendula, into their integer part
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ū(i) and a rest δu(i),

u(i) = ū(i) + δu(i), ū(i) ∈ Z. (638)

The limit considered in [513] is that of weak springs as com-
pared to the gravitational forces, implying that δu(i) is small.
The forces acting on pendulum i are

z(i) = g cos
(

2πu(i)
)
+

∑
j∈nn(i)

u( j) − u(i) + F(i)

= g cos
(

2πδu(i)
)
+

∑
j∈nn(i)

ū( j) − ū(i)

+
∑

j∈nn(i)

δu( j) − δu(i) + F(i). (639)

F(i) are u-independent applied forces, and g is the gravitational
constant (with mass and length of the pendula set to 1). The
sum runs over the nearest neighbors j of i, denoted nn(i). If a
pendulum becomes unstable, ū(i) → ū(i) + 1. The model (639)
can also be viewed as a CDW at depinning (sections 1.2, 2.9
and 3.5).

Supposing that the δu(i) are small, the update rule for z(i)
can be written as

z(i) → z(i) − 2d,

z( j) → z( j) + 1, for j ∈ nn(i).
(640)

Again neglecting δu(i), the condition for the event (640) is

z(i) > zc, (641)

with zc = g.

5.2. Bak–Tang–Wiesenfeld, or Abelian sandpile model

The Bak–Tang–Wiesenfeld (BTW) model [513], also known
as the Abelian sandpile model (ASM), uses the update rules
(640) combined with

zc = 2d. (642)

It is interpreted as a sandpile of height z(i). A site topples, i.e.
the rule (640) is performed, when its height exceeds zc. If sev-
eral sites become unstable at the same time, one has to choose
an order of the topplings. Considering the original model in
terms of the u(i), and using Middleton’s theorem, it is clear
that the final state is independent of the order of updates. Stated
differently, the topplings commute. For this reason the model
is also referred to as the ASM. Its algebra was studied in detail,
especially by Dhar [514–517].

In this model, one starts from z(i) = 0 for all i, chosen to
belong to a finite lattice with open boundaries, as a chess board.
Grains are added at random sites. If a site becomes unstable, it
topples. If this toppling renders one of its neighbors unstable, it
topples in turn. Grains fall off at the boundary. When topplings
have stopped, a new grain is added.

In the interface formulation, grains falling off at the bound-
ary correspond to an interface where u(i) = 0 outside the finite
lattice (‘on the boundary’). As a result, the system is automati-
cally in a critical state. This phenomenon called self-organized

Figure 58. Stable configuration in a rice pile experiment. (Photo by
the author.) The grains are between two glass plates 5 mm apart. The
pile was prepared by slowly increasing the inclination of the plates
from horizontal to vertical. Brighter grains sit at the top and are
more likely to topple.

criticality, made the BTW model [513] popular. It is now rec-
ognized that if a system can become critical, slowly driving it
achieves criticality. In the language developed in this review,
it is velocity-controlled depinning, instead of force-controlled
depinning (section 3.1). Many natural phenomena are self-
organized critical, and a large literature exists on the topic
[54, 83, 356, 512, 513, 515–540].

Configurations in the ASM can be classified as recurrent
or not. Recurrent configurations can be realized in the steady
state, while non-recurrent ones cannot. An example for a non-
recurrent configuration is the initial state u(i) = 0. Recurrent
configurations can be mapped one-to-one onto uniform span-
ning trees (USTs), and the q-states Potts model in the limit of
q → 0. There further is an injection onto LERWs. We discuss
this in more depth in section 8.9. We refer the reader to the
cited literature and especially [83, 515] for details.

5.3. Oslo model

Albeit we used the term ‘sandpile’, we did not yet motivate its
use. To this aim, consider figure 58. The system is in a stable
configuration, characterized by a mean slope, plus fluctuations.
A grain may start to slide, depending on the local slope, the
friction between the neighbors, and its orientation. The ASM
does not contain any randomness, but instead is determinis-
tic. Randomness enters only through the driving, i.e. the order
in which grains are added. Any realistic model for a sandpile
must contain some randomness. A simple one-dimensional
model to accomplish this is the Oslo model.

It is defined as follows [533, 541]: consider the height func-
tion h(i) of the sand or rice pile as shown in figure 59. To each
height profile h(i) is associated a stress field z(i) defined by

z(i) := h(i) − h(i + 1). (643)

A toppling is invoked if z(i) > zc(i), i > 1. The toppling rules
are equivalent to those of equation (640),

z(i) → z(i) − 2, z(i ± 1) → z(i ± 1) + 1. (644)
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Figure 59. A stable configuration of the Oslo model. The latter is a
cellular automaton version of the right half of the rice pile in
figure 58. The red lines indicate the particle positions of particles
used in section 5.4. Note that there is one plateau where two
particles sit on top of each other, drawn here slightly apart.

They can be interpreted as moving a grain from the top of the
pile at site i to the top of the pile at site i + 1,

h(i) → h(i) − 1, h(i + 1) → h(i + 1) + 1. (645)

After such a move, the threshold zc(i) for site i is updated,

zc(i) → new random number. (646)

In its original version, the random number is 1 or 2 with proba-
bility 1/2. To obtain figure 59 we used a random number drawn
uniformly from the interval [0, 2]. This reduces the critical
slope, and the result looks closer to the experiment in figure 58.

The function h(i) is not one of the usual random-manifold
coordinates. If we use the interpretation in equation (640) that
z(i) is the discrete Laplacian of the interface position u(i), then

the interface position u(i) is given by

h(i) = u(i − 1) − u(i). (647)

The random force sits in the threshold zc. The variable u(0) can
be identified as the total number of grains added to the pile. The
Oslo model can thus be viewed as an elastic string, pulled at
i = 0. Its average profile is parabolic,

〈u(i)〉 ≈ 〈z〉
2

(L − i)2 +#{grains fallen off at the right}.
(648)

As the disorder is renewed after each displacement, it falls into
the RF universality class.

Is this model realistic for the rice pile of figure 58? Accord-
ing to [534], this depends on the shape of the grains and their
friction. If the grains are round, the system goes into a self-
organized critical state, described by the Oslo model. On the
other hand, if the grains are longish (as on our photo), this does
not work. It appears that the direction of the grains is a relevant
variable, to be incorporated.

For further reading on the Oslo model, we refer to [305,
524, 542–544].

5.4. Single-file diffusion, and ζdep
d=1 = 5/4

Let us consider the heights h(i) of the plateaus in figure 59.
They are marked on the left as red lines, which we interpret
as particles. If a plateau has length n � 2, then n particles
are at the same position. (In the figure there is one plateau of
length 2, for which we have drawn the two particle positions
slightly apart.) As h(i) is a monotonically decreasing function,
h(i) � h(i + 1). This induces a half-order h(i) � h(i + 1) on
the particle positions. We can extend this to an order by the
convention that if i < i + 1, and h(i) � h(i + 1), then h(i) �
h(i + 1). Topplings preserve this order. If we identify this pro-
cess as single-file diffusion [545–547], then its Hurst exponent
is HSFD = 1/4. The additional advection term (grains always
topple to the right) converts the temporal correlations into spa-
tial ones, resulting into

〈
[h(i) − h( j)]2

〉c ∼ |i − j|2HSFD. Using
that according to equation (647) h is the discrete gradient of u,
we conclude that [548]

〈
[u(i) − u( j)]2

〉c ∼ |i − j|2ζ , (649)

ζdep
d=1 = 1 + HSFD =

5
4
. (650)

A roughness exponent ζdep
d=1 = 5/4 is indeed conjectured in

[305].

5.5. Manna model

We introduced the ASM with toppling rules (640), i.e. if z(i) �
2d, then one grain is moved to each of the 2d neighbors of site
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i. In 1991, Manna [537] proposed a stochastic variant38

z(i) � 2 : move 2 grains to randomly chosen neighbors.
(651)

The chosen neighbors may be identical. Again, we wish to
introduce a random-manifold variable u(i), s.t. a toppling on
site i corresponds to u(i) → u(i) + 1, while the remaining
u( j) remain unchanged. To do so, let us define the discrete
Laplacian of u(i) as

∇2u(i) :=
∑

j∈nn(i)

u( j) − u(i). (652)

Write

z(i) :=
1
d

[
∇2u(i) + F(i)

]
. (653)

Suppose two grains from site i go to sites i1 and i2, possibly
identical. Then choose for the site i and its nearest neighbors j

u(i) → u(i) + 1, F(i) unchanged, (654)

F( j) → F( j) + δF( j), (655)

δF( j) = d(δ j,i1 + δ j,i2 ) − 1. (656)

The total random force remains constant,
∑

j∈nn(i) δF( j) = 0.
We may think of this process as distributing 2d grains onto
the 2d neighbors, but instead of doing this uniformly as in the
ASM, twice d grains are moved collectively to a randomly cho-
sen neighbor. Equations (651) and (653) imply that the inter-
face position u(i) increases by 1 if the rhs of equation (653) is
larger than 2. This can be interpreted as a cellular automaton
for the equation of motion (302), if F(i) has the statistics of a
random force. One can show that in any dimension d

δF(i) = ∇[u̇(i)�η(i)], (657)

where �η(i) is a white noise in space and time39.
As a result, for each i the variable F(i) performs a RW,

which due to equation (657), and the equation of motion,
cannot grow unboundedly. This suggests that the MM is in
the same universality class as disordered elastic manifolds. In
section 6.6 we give a more formal two-step mapping of the
MM onto disordered elastic manifolds.

5.6. Hyperuniformity

Consider a stationary random point process on the line. It is
said to be hyperuniform [305], if the number nL of points in an
interval of size L has a variance which scales with L as

var(nL) ∼ Lζh , 0 � ζh � 1. (658)

A Poisson process has ζ = 1, a periodic function ζ = 0.
For sandpile models, this property was first observed in

[549], and later verified in [550–552]. Recent references ana-
lyzing or using hyperuniformity include [305, 553, 554].

38 The original version moves all the grains to randomly selected neighbors.
This version is not Abelian, whereas equation (651) is. Some authors call it
the Abelian Manna model.
39 In d = 1 it is uncorrelated in space and time, whereas in d = 2 it has a
non-trivial spatial structure, but remains short-ranged correlated.

Figure 60. The cellular automaton model TL92. Blocking cells, i.e.
cells above the threshold are drawn in cyan; those below in white.
The initial configuration is the string at height 1 (dark blue). The
interface moves up. An intermediate configuration is shown in red,
the final configuration in black. Open circles represent unstable
points, i.e. points which can move forward; closed circles are stable.

Hyperuniformity renders simulations much better convergent,
allowing for results from the Manna or Oslo model to exceed
in size those obtained directly for the depinning of a disordered
elastic manifold.

5.7. A cellular automaton for fluid invasion, and related
models

There are intriguing connections between invasion of porous
media, directed percolation (DP), and depinning of disordered
elastic manifolds when the nearest-neighbor interactions grow
stronger than linearly. Let us start our considerations with the
cellular automaton model proposed in [555]. Variants of this
model can be found in [556], where it is applied to experi-
ments on fluid invasion, both numerically and experimentally;
see also [557].

The model TL92 proposed in [555] uses a square lattice
as shown in figure 60. To each cell (i, j) is assigned a random
variable f (i, j) ∈ [0, 1]. If f (i, j) < fc, the cell is considered
closed (blocking), drawn in cyan. Open cells (not blocking)
are drawn in white. The interface starts as a flat configuration
at the bottom (dark blue in figure 60). A point (i, h(i)) on this
interface is unstable and can move forward by 1, h(i) → h(i) +
1, according to the following rule in meta code:
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Figure 61. Simulation of the continuous version of the cellular
automaton model TL92. The continuous configurations (in color)
converge reliably against the DP solution (black, with filled circles).

This cellular automaton models a fluid invading a porous
medium. Invasion takes place if a cell is open (second ‘if’
above), or can be invaded from the side (third ‘if’). The pro-
cess stops if all points (i, h(i)) are stable. As is illustrated in
figure 60, this stopped configuration is a directed path from left
to right passing only through blocked sites, commonly referred
to as a DP path. One can convince oneself that upon stopping
the algorithm yields the lowest-lying DP path. This can be
implemented both for open and periodic boundary conditions.
The latter are chosen in figure 60. The automaton TL92 can
straightforwardly be generalized to higher dimensions [558],
but there is a priori no DP process in the orthogonal direction.

Two continuous equations of motion may be associated
with this surface growth. The first is the (massive) quenched
KPZ equation,

∂tu(x, t) = c∇2u(x, t) + λ[∇u(x, t)]2 + m2[w − u(x, t)]

+ F(x, u(x, t)). (659)

This is almost the equation of motion (302) for a disordered
elastic interface; the additional non-linear term proportional
to λ is referred to as a KPZ-term, due to its appearance in the
famous KPZ equation of non-linear surface growth [560]. The
latter accounts for the surface growing in its normal direction,
and not in the direction of h. For a derivation see section 7.1.
For an early reference see [561]. In the present context it was
first observed in simulations [562], where an increase in the
drift-velocity was found upon tilting the interface.

The second model one can associate with the automaton
TL92 is depinning of an elastic interface (figure 61). As TL92
makes no distinction between nearest-neighbor distances 0 or
±1, has strong interactions at distance 2, and forbids larger
distances, the corresponding elastic energy Hel[u] must be
strongly anharmonic. Our choice is (with u(L + 1) = u(1))

Hel[u] =
L∑

i=1

Eel

(
u(i) − u(i + 1)

)
, (660)

Eel(u) =

⎧⎪⎨⎪⎩
0, |u| � 1

1
24

(u2 − 1)2, |u| > 1.
(661)

This implies an elastic nearest-neighbor force

fel(u) := − ∂uEel(u) =

⎧⎪⎨⎪⎩
0, |u| � 1

−1
6

u(u2 − 1), |u| > 1.
(662)

It evaluates to −1 at u = 2, which is sufficient to overcome any
obstacle; and to −4 at u = 3, making the latter unattainable.
The full equation of motion for site i then reads

∂tu(i, t) = fel (u(i, t) − u(i + 1, t)) + fel (u(i, t) − u(i − 1, t))

+ F(i, u(i, t)). (663)

The last term is the disorder force, which we choose to be
f (i, j) − f c if u is within δ close to j. Thus disorder acts as
an obstacle close to an integer h. To mimic TL92, we wish
the manifold to advance freely between obstacles, setting there
F = f+. Formally

F(i, u) :=

{
f (i, j) − fc, ∃ j, |u − j| < δ,

f+, else.
(664)

The f (i, j) are the threshold forces of TL92. The parameter δ
is a regulator. One checks that δ = 10−3, and f+ = 2 repro-
duces the time evolution of TL92, if movement is restricted to
a single degree of freedom i, and one stops when u(i) hits the
next barrier. This is not how Langevin evolution works: the lat-
ter being parallel, we cannot expect trajectories to go through
the same states. However, due to Middleton’s theorem (see
section 3.2), the blocking configurations of both algorithms
are the same. We have verified with numerical simulations that
the Langevin equation of motion finds exactly the same block-
ing configurations as the cellular automaton TL92. This proves
that the critical configurations of the former are states of DP.

While this statement was proven above for a specific non-
linearity, we expect that it is more generic, and applies to any
convex elastic energy which at large distances grows stronger
than a parabola. This was numerically verified for several
anharmonicities in [53].

5.8. Brief summary of directed percolation

DP is a mature domain of statistical physics [543, 563, 564].
Consider figure 62. Sites are empty or full with probability p,
which in our discussion above equals p = fc. A site (i, h) is
said to be connected to the left boundary, if it is occupied, and
at least one of its three left neighbors (i − 1, h), (i − 1, h ± 1) is
connected to the left boundary. The system is said to percolate,
if at least one point on the right boundary is connected to the
left boundary. For small p, this is unlikely, whereas for large p
this is likely. There is a transition at p = pc. What is commonly
considered are the three independent exponents β, ν‖, and ν⊥,
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Figure 62. DP from left to right. A site (i, h) is defined to be
connected if it is occupied, and at least one of its left neighbors
(i − 1, h), (i − 1, h ± 1) is connected. The index i takes the role of
time t.

defined via

ρ(t) :=

〈
1
H

∑
h

sh(t)

〉
t→∞−−−→ ρstat, (665)

where sh(t) = 1 if site (t, h) is occupied and 0 else.

ρstat ∼ (p− pc)β , p > pc, (666)

ξ‖ = |p− pc|−ν‖ , (667)

ξ⊥ = |p− pc|−ν⊥ . (668)

The last two relations imply

ξ⊥ ∼ ξζ‖ , ζ :=
ν⊥
ν‖

. (669)

Hinrichsen [543] gives in d = 1:

ν‖ = 1.733847(6), ν⊥ = 1.096854(4),

β = 0.276486(8), ⇒ ζ = 0.632613(3). (670)

In d = 2:

ν‖ = 1.295(6), ν⊥ = 0.734(4), β = 0.584(4). (671)

In d = 3:

ν‖ = 1.105(5), ν⊥ = 0.581(5), β = 0.81(1). (672)

For TL92 (d = 1), the exponent ζ is interpreted as the rough-
ness exponent. Simulations in dimensions d = 1 to 4 yield
[543]:

ζ =
ν⊥
ν‖

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.632613(3), d = 1

0.566(7), d = 2

0.526(7), d = 3

0.5, d � 4

(673)

Field-theory for DP is derived in section 6.5. At two-loop order
[565–568] it reads40

ν‖ = 1 +
ε

12
+

ε2
[
109 − 110 ln( 4

3 )
]

3456
+O(ε3), (674)

ν⊥ =
1
2
+

ε

16
+

ε2
[
107 − 34 ln( 4

3 )
]

4608
+O(ε3), (675)

β = 1 − ε

6
+

ε2
[
11 − 106 ln( 4

3 )
]

1728
+O(ε3). (676)

This yields

ζ :=
ν⊥
ν‖

=
1
2
+

ε

48
+

ε2
[
79 + 118 ln

(
4
3

)]
13824

+O(ε3). (677)

In d = 1 (ε = 3), these values are in decent agreement with
those of equation (670).

5.9. Fluid invasion fronts from directed percolation

To avoid confusion, let us define

〈
[u(x, t) − u(0, t)]2

〉
∼
{|x − x′|2ζ for |x − x′| � ξm,

m−2ζm for |x − x′| � ξm.
(678)

In d = 1, the scaling of x and u as a function of p− pc is

x ∼ ξ‖ ∼ |p− pc|−ν‖ , (679)

u ∼ ξ⊥ ∼ |p− pc|−ν⊥ . (680)

This implies

u ∼ xζ , ζ =
ν⊥
ν‖

. (681)

The exponent ν defined for depinning in equation (307) is
identified from equation (680) as

ν ≡ νdep = ν‖. (682)

If we drive with a parabolic confining potential,

m2u 
 |p− pc|. (683)

This yields

u ∼ m−ζm , ζm =
2ν⊥

1 + ν⊥
. (684)

Let us define the correlation length ξm as the x-scale at which
the crossover between the two regimes of equation (678) takes
place. This yields

ξm ∼ m− ζm
ζ ,

ζm

ζ
=

2ν‖
1 + ν⊥

. (685)

40 Note that the notations in these papers are somehow contradictory. The
dynamical critical exponent z is related to our roughness ζ via z = 1/ζ. The z
defined in [566, 567, 569] is in Reggeon field theory, and equals zReggeon = 2ζ.
Partial results at three-loop order are reported in [570].
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Table 3. The exponents of qKPZ.

d = 1 d = 2 d = 3

ζ 0.63 [555] 0.45 ?
z 1 [555] 1.15 ± 0.05 [571] 1.36 ± 0.05 [571]

(We remind that in contrast for qEW ζ = ζm, and ξm =
1/m, see equation (312).) The avalanche-size exponent also
changes. An avalanche scales as

Sm = ξd+ζ
m ≡ ξd

mm−ζm . (686)

Since equation (474) was derived under the sole assumption
that the avalanche density has a finite IR-independent limit for
m → 0, it remains valid, implying

τ = 2 − 2
d + ζ

ζ

ζm
. (687)

In dimension d = 1, the dynamical exponent z = 1 (see
below). The depinning scaling relation (308) can be rewritten
with equation (681) and z = 1 as

βdep = ν‖(z − ζ) ≡ ν‖ − ν⊥. (688)

Using the values of [543] combined with the above scaling
relations, the numerical values in d = 1 are

νdep ≡ ν‖ = 1.733847(6) (689)

ν⊥ = 1.096854(4) (690)

ζ = 0.632613(3), (691)

ζm = 1.04619(2), (692)

ζm

ζ
= 1.47955(3), (693)

τ = 1.259246(2), (694)

βdep = 0.636993(7), (695)

z = 1. (696)

The dynamic exponent z. In [571] it was proposed that the
dynamical exponent z is related to the fractal dimension dmin

of the shortest path connecting two points a distance r apart
in a percolation cluster. Denoting its length by � ∼ rdmin , the
conjecture is

z = dmin. (697)

This relation was confirmed numerically, and yielded the
dynamical exponents z reported in table 3. Curiously, the upper
critical dimension of percolation is d = 6, whereas the the-
ory for DP used in the preceding section has an upper critical
dimension of d = 4. As a consequence, constructing a field
theory encompassing both seems challenging.

5.10. Anharmonic depinning and FRG

Let us finally study anharmonic depinning within FRG, and
to this purpose consider the standard elastic energy (4),

supplemented by an additional anharmonic (quartic) term,

Hel[u] =
∫

x

1
2

[
∇u(x)

]2
+

c4

4

[(
∇u(x)

)
2
]2
. (698)

The corresponding equation of motion reads

∂tu(x, t) = ∇2u(x, t) + c4∇
{
∇u(x, t)[∇u(x, t)]2

}
+ F

(
x, u(x, t)

)
+ f . (699)

Since the rhs of equation (699) is a total derivative, it is surpris-
ing that a KPZ-term can be generated in the limit of a vanish-
ing driving-velocity. This puzzle was solved in [572], where
the KPZ term arises by contracting the non-linearity with one
disorder, following the rules of section 3.4 (setting m = 0):

(700)

As u(x, t + t′) − u(x, 0) � 0, equation (700) can be written as

δλ = − c4

p2

∫
t

∫
t′

∫
k
e−(t+t′)k2 (

k2 p2 + 2(kp)2
)
Δ′(0+). (701)

Integrating over t, t′ and using the radial symmetry in k yields

δλ = −c4

(
1 +

2
d

)∫
k

Δ′(0+)
k2

. (702)

This shows that in the FRG a KPZ term is generated from the
non-linearity. Field theory does not yet permit to calculate the
ensuing roughness exponent, nor explain the mapping onto DP,
even though a mechanism for the generation of a branching-
like process was found [572].

5.11. Other models in the same universality class

Many models nowadays are recognized as being in the univer-
sality class of DP. This started with work by Janssen [565] and
Grassberger [574], who conjectured that the findings ‘suggest
another type of universality, comprising all critical points with
an absorbing state and a single order parameter in one univer-
sality class’ [574]. As a general rule, a model belongs to the
universality class of DP, as long as it has no additional sym-
metry. A notable exception is the MM (see section 6.6). Note
that additional conserved quantities are not enough, as exem-
plified by DP with many absorbing states [518, 575–578]. The
reader wishing to explore the large literature further can find a
lot of material in the context of phase transitions into absorb-
ing states, see [299, 543] for review, as well as [518, 528, 576,
579–582].
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Figure 63. (Left) Successive experimental fronts at constant time intervals in a self-sustained reaction, propagating in a disordered
environment made by polydisperse beads [573]. Color represents local front velocity. (Top left) Upward propagating front near F+

c . (Bottom
left) Backward propagating front near F−

c . (Right) Front velocity V f versus the applied force F, in adverse flow. (a) Experiments (black dots
with error bars), (b) numerics. Dashed lines are a linear extrapolation of the advancing branch. To put all data on one plot, axes are rescaled
according to F → F/|F|1/2, V f → V f/|V f |1/2. (Inset) Log–log plot of front velocity versus F̂ − F̂c+ . The continuous line corresponds to
v(F̂) ∝ (F̂ − F̂c+ )0.8±0.05. Reprinted figure with permission from [573], Copyright (2015) by the American Physical Society.

Figure 64. Magnetic domain walls in a two-dimensional Pt-Co-Pt thin film. (a)–(d) Images for current-driven walls at increasing times.
(e)–(h) Images for field-driven walls at increasing times. (i) Measurement of the angle-dependent force as extracted from an analysis of the
creep laws. Reprinted figure with permission from [404], Copyright (2013) by the American Physical Society.

5.12. Quenched KPZ with a reversed sign for the
non-linearity
As long as the disorder F(x, u) is statistically invariant under
u →−u, the qKPZ equation (659) is invariant under u →
−u, λ→−λ, and f →− f . This leads to two distinct cases:
λ f > 0 the positive qKPZ class, and λ f < 0 the negative
qKPZ class. Consider f > 0, and λ > 0, then the KPZ term
facilitates depinning. In the opposite case, assuming a tilted
configuration allows the interface to remain pinned for larger
applied forces. It then assumes a sawtooth shape, with the
bottom kinks at the strongest pinning centers, and the slope

given by f ≈ (−λ)(∇u)2. This was first observed numerically
[583, 584], and later confirmed experimentally [404, 573], as
beautifully illustrated in figures 63 and 64, and discussed in
the next section.

5.13. Experiments for directed percolation and quenched
KPZ

Experiments for DP seem to be scarce [543]. A notable excep-
tion is [585, 586], where a transition between two topo-
logically different turbulent states, called dynamic scattering
modes 1 and 2 (DSM1 and DSM2), is observed upon an
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increase in the applied voltage. This allows them to measure
directly the exponent β as

βd=2
DP = 0.59(4). (703)

The remaining exponents are obtained from a quench. Citing
only the most precise values,

ν‖ = 1.18+(14)
−(21) , (704)

ν⊥ = 0.77(7). (705)

The theory values are given in equation (671).
More experiments have been done for the qKPZ class. A

particularly nice example are self-sustained reaction fronts
propagating in a disordered environment made by polydisperse
beads [573], as depicted on figure 63. The measured spatial and
temporal fluctuations are consistent with three distinct univer-
sality classes in dimension d = 1 + 1, controlled by a single
parameter, the mean (imposed) flow velocity. The three classes
are

(a) the KPZ class for fast advancing or receding fronts, with
a roughness exponent of ζ ≈ 0.5, see equation (817).
(Purely diffusive motion with the same roughness expo-
nent is excluded by the temporal correlations.)

(b) The quenched Kardar–Parisi–Zhang class (positive-
qKPZ) when the mean-flow velocity almost cancels the
reaction rate. It has a roughness of ζ ≈ 0.63, in agree-
ment with our discussion in section 5.9. A depinning
transition with a non-linear velocity-force characteristics,
v ∼ |F − Fc|β is observed, see figure 63.

(c) The negative-qKPZ class for receding fronts, close to the
lower depinning threshold F̂c− . One observes characteris-
tic saw-tooth shapes, see figure 63, bottom left.

To our knowledge, this system is the only one where all
three KPZ universality classes have been observed in a single
experiments.

The qKPZ phenomenology is also observed in domain
walls in thin magnetic films [404] (see section 3.21), either
driven by an applied field (positive qKPZ) or a current (neg-
ative qKPZ). The experiment performed in [404] cleverly
extracts the slope-dependent mean force as a function of the
angle, see figure 64 (right). This firmly establishes the rele-
vance of the two qKPZ classes for domain wall experiments.
It would be interesting to drive the system both with a magnetic
field and a current, chosen s.t. the two effects cancel.

6. Modeling discrete stochastic systems

6.1. Introduction

In discrete stochastic processes the elementary degrees of free-
dom are discrete variables. This can be the number of colloids
in a suspension, the number of bacteria, fishes and their preda-
tors in the ocean, or the grains in sandpile models. There are
two powerful methods to treat these systems (for a pedagogical
introduction see [587])

(a) the coherent-state path integral [587–591],

(b) effective stochastic equations of motion.

The first method, the coherent-state path integral, is an exact
method, and as such a natural starting point in a field-theoretic
setting, i.e. to construct a dynamic action, similar to the Mar-
tin–Siggia–Rose action (appendix A.4). As we will see in the
next section 6.2, despite the fact that it is an exact method, or
maybe due to it, it has its problems. They arrive when decou-
pling the non-linear terms via an auxiliary noise. This noise
is in general imaginary, leading to problems both in the inter-
pretation, as in simulations. As a caveat to the reader, let us
mention that things sometimes get messed up in the litera-
ture: starting with the coherent-state path integral, one sees
emerging an effective stochastic equation of motion with real
noise. We show below why this is in general not possible.

Real noise appears in a different modeling of stochastic sys-
tems, via effective stochastic equations of motion. Here the
noise stems from the fact that one tries to approximate a dis-
crete random process by a continuous one, and one has to add
back the appropriate shot noise.

Another important question we need to deal with is the
notion of the MF approximation in stochastic equations. We
will give a simple and precise definition of the latter. To our
astonishment, we have not found a discussion of this in the
literature prior to [588].

6.2. Coherent-state path integral, imaginary noise and its
interpretation

The coherent-state path-integral [587–591] is constructed by
using creation and annihilation operators familiar from quan-
tum mechanics,

[
â, â†] = 1, |n〉 := (â†)n |0〉 . (706)

The state |n〉 is interpreted as n-times occupied. Eigenstates
of â are coherent states. They are the building blocks of the
formalism, giving it its name

|φ〉 := eφâ† |0〉 ⇒ â |φ〉 = φ |φ〉 . (707)

Taylor expanding eφâ† |0〉, one sees that coherent states are
Poisson distributions with n-fold occupation probability given
by

p(n) = e−φ φ
n

n!
. (708)

Note that 〈n〉 =
〈
n2
〉c

= φ, thus the parameter φ characteriz-
ing a coherent state is both its mean and variance.

Consider the reaction–diffusion process with diffusion con-
stant D and reaction rate A + A

ν−→A. The action, see (equation
(112) of [587]) reads

S′[φ∗,φ] =
∫

x,t
φ∗(x, t)

[
∂tφ(x, t) − D∇2φ(x, t)

]
+

∫
x,t

ν

2

[
φ∗(x, t)φ(x, t)2 + φ∗(x, t)2φ(x, t)2

]
. (709)
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The first two terms are similar to those appearing in the
Martin–Siggia–Rose (MSR) formalism for diffusion, identi-
fying the tilde fields there with star fields here. The next term
φ∗(x, t)φ(x, t)2 is also intuitive: two particles are destroyed,
and one is created. The only surprising term is the last one. It
appears in the formalism to ensure that the probability is con-
served, and can be interpreted as a first-passage time problem
[587]. If the last term were not there, then we could inter-
pret the action as an equation of motion for φ(x, t). To include
the latter, let us decouple the quartic term by introducing an
auxiliary field ξ(x, t), to be integrated over in the path integral,

S′[φ∗,φ, ξ] =
∫

x,t
φ∗(x, t)

[
∂tφ(x, t) − D∇2φ(x, t)

+
ν

2
φ(x, t)2 − i

√
νξ(x, t)φ(x, t)

]
+

1
2
ξ(x, t)2. (710)

The corresponding equation of motion and noise correlations
are

∂tφ(x, t) = −ν

2
φ(x, t)2 + D∇2φ(x, t)

+ i
√
νφ(x, t)ξ(x, t), (711)

〈ξ(x, t)ξ(x′, t′)〉 = δ(t − t′)δ(x − x′). (712)

This noise is imaginary. It has puzzled many researchers
whether this is unavoidable [579, 592–594], or could even be
beneficial [595].

For the moment, let us restrict our considerations to a single
site, starting at time t = ti with the initial state, φti = φi,

∂tφ(t) = −ν

2
φ(t)2 + i

√
νφ(t)ξ(t),

〈ξ(t)ξ(t′)〉 = δ(t − t′).
(713)

This equation is integrated from t = ti to tf . On the left of
figure 65 we show the result for φtf for different realizations
of the noise ξ(t). Since φtf is complex, the question is how to
interpret these states. The answer is that the probability distri-
bution is given, in generalization of equation (708), by [587]

pSEM
t (n) :=

〈
e−φt

φn
t

n!

〉
ξ

. (714)

A complex φ(t) is necessary, since the final distribution is nar-
rower than a Poissonian41. The problem with the stochastic
average (714) is that when arg(φt) grows in time, it is dom-
inated by those φt with the smallest real part, and the esti-
mate (714) breaks down. A stochastic equation of motion for
the coherent-state path integral is thus not a valid simula-
tion tool. This is similar to what happens in the REM model
(section 2.24): in both cases rare events give a substantial
contribution to the observable we want to calculate, which is
missed in any finite sample or simulation.

41 First, large particle numbers have a higher probability to annihilate, thus
the tail of the distribution is suppressed, making it decay faster than an expo-
nential. Second, it is impossible to construct a probability distribution which
is narrower than a Poissonian by a superposition of Poissonians with positive
coefficients.

In the next sections, we follow a different strategy: we give
up on the discreteness of the number n(t) of particles, and
replace it by a continuous variable n̂(t). In exchange we need
to introduce a stochastic noise.

6.3. Stochastic noise as a consequence of the discreteness
of the state space

We want to derive a stochastic differential equation with real
noise. To this aim let us simulate directly the random process
A + A

ν−→ A. Each simulation run gives one possible realiza-
tion of the process, in the form of an integer-valued monotoni-
cally decreasing function n(t). Averaging over these runs, one
samples the final distribution Pf(n), or, equivalently, moments
of nf . We ask the question: is there a continuous random
process n̂(t) which has the same statistics as n(t)?

Let us consider a more general problem: be n(t) the num-
ber of particles at time t. With rate r+ the number of particles
increases by one, and with rate r− it decreases by one. This
implies that after one time step, as long as r±δt are small,

〈n(t + δt) − n(t)〉 = (r+ − r−)δt, (715)〈
[n(t + δt) − n(t)]2

〉
= (r+ + r−)δt. (716)

The following continuous random process n̂(t) has the same
first two moments as n(t), 42

dn̂(t) = (r+ − r−)dt +
√

r+ + r−ξ(t)dt, (717)

〈ξ(t)ξ(t′)〉 = δ(t − t′). (718)

This procedure can be modified to include higher cumulants
of n(t + δt) − n(t), leading to more complicated noise corre-
lations. Results along these lines were obtained in [568] by
considering cumulants generated in the effective field theory.

6.4. Reaction-annihilation process

For the reaction-annihilation process, the rate r+ = 0, and
r− = ν

2 n̂(t)(n̂(t) − 1); the latter, in principle, is only defined on
integer n̂(t), but we will use it for all n̂(t). Thus the best we can
do to replace the discrete stochastic process with a continuous
one is to write

dn̂(t)
dt

= −ν

2
n̂(t)(n̂(t) − 1) +

√
ν

2
n̂(t)(n̂(t) − 1)ξ(t),

〈ξ(t)ξ(t′)〉 = δ(t − t′).

(719)

Using ni = 15, and ν = 1, we have shown two typical trajec-
tories on figure 65 (right), one for the process n(t) (red, with
jumps), and one for the process n̂t (blue-grey, rough). While
by construction both processes have (almost) the same first
two moments, clearly n̂(t) looks different: it is continuous,
which n(t) is not, and it can increase in time, which n(t) can-

42 Despite our best efforts, we have not been able to locate a source for this
simple argument in the literature prior to [588]. It is applied in [565], but the
cited source [596] drily states ‘our whole work depends on the use of stochastic
master equations, which, we believe, have a better conceptual and intuitive
basis than the fluctuating force formalism of Langevin equations’.
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Figure 65. (Left) Result of the integration of equation (558), with ν = 1, total time tf − ti = 0.5, and initial state φi = 15. The black circle
has radius φf = 3.6614, obtained by integrating the drift term ∂tφt = −φ2

t + φt + t/2. Using an algorithm which splits points which are
likely to contribute more to the final result, the color codes less probable values, from yellow over green, cyan, blue, magenta to red. (Thus a
red point has 2−5 times the weight of a yellow point.) (Right) One trajectory each for process nt, i.e. a direct numerical simulation of
A + A → A (red, with jumps), and n̂t, equation (719) (blue-grey, continuous, rough). The rate is ν = 1. We have chosen two trajectories
which look ‘similar’. Note that n̂t is not monotonically decreasing. Reprinted figure with permission from [587], Copyright (2016) by the
American Physical Society.

Figure 66. Result of a numerical simulation, starting with ni = 15 particles, and evolving for tf − ti = 0.025. Blue diamonds: direct
numerical simulation of the process A + A → A with rate ν = 1. Cyan: distribution of the continuous RW (719). Red: the latter distribution,
when rounding nf to the nearest integer. Black boxes: the size of the boxes in n-direction to obtain the result of the direct numerical
simulation of the process A + A → A. Both processes have first moment 3.511 ± 0.001, and second connected moment 1 ± 0.05; the third
connected moments already differ quite substantially, 0.75 versus 0.2. Reprinted figure with permission from [587], Copyright (2016) by the
American Physical Society.

not. One can also compare the distribution for tf − ti = 0.5,
see figure 66. While the distribution of nf is discrete (blue dia-
monds), the one for n̂f is continuous (cyan). Rounding nf to
the nearest integer gives a different distribution (red). We have
also drawn (black lines) the size of the boxes which would pro-
duce p(n) from p(n̂). Clearly, there are differences. On the other
hand, it is also evident that these differences diminish when
increasing ni.

6.5. Field theory for directed percolation

There are several paths to a field theory for reaction–diffusion
or DP. A beautiful derivation is given by Cardy and Sugar
[567]. The authors start from an exact microscopic modeliza-
tion, before introducing an auxiliary field resulting into the
action given below in equation (726). They then use pertur-
bative results obtained for the equivalent action in Reggeon
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Figure 67. A coarse-grained lattice with box-size � = 4. The yellow
box contains n = 4 particles. Reprinted figure with permission from
[587], Copyright (2016) by the American Physical Society.

field theory. The latter is an effective theory for deep-inelastic
scattering [569], quantum gravity (simplicial gravity) [597],
vortices in He-II [598], and many more43.

For pedagogic reasons, we apply the formalism developed
in section 6.3 [339]: denote n ≡ n(x, t) the number of particles
inside a box located around (x, t) with size �d , see figure 67.
There we could draw time as coming out of the plane.

In figure 62 a different view is taken: here n(x, t) is the
coarse-grained number of occupied sites connected to the left
border, there drawn in red. Going one step in t to the right, n
grows with rate

n
r+−−→n + 1, r+ = α+n, (720)

α+ ≈ 3p. (721)

Here 3 is the number of left neighbors per site, and p is the
probability that the site itself is not empty, and thus can be
connected. The rate to reduce n by one is given by

n
r−−−→n − 1, r− = α−n + βn2, (722)

α− = 1 − p, β ≈ 1
�d
. (723)

The first term takes into account that if the site itself is empty,
it cannot be connected. The second term proportional to n2

ensures that the fraction of connected sites cannot grow beyond
1. According to equation (717), this leads to the stochastic
equation of motion

∂tn̂(x, t) = ∇2n̂(x, t) + (α+ − α−)n̂(x, t) − βn̂(x, t)2

+
√

n̂(x, t)
√

α+ + α− + βn̂(x, t)ξ(x, t).

(724)

43 Note however, that different theories are associated with the name ‘Regge’:
sometimes the cubic vertex is an antisymmetrized combination of a field with
two field derivatives, as in [598].

Note that we have added a diffusive term (rescaling x if neces-
sary to set its prefactor to 1). In DP (figure 62) it arises since
the left neighbor to which a site is connected can be one up or
down on the lattice.

Multiplying equation (724) with a response field ñ(x, t), and
averaging over the noise ξ(x, t) yields the dynamic action

S[ñ, n̂]

=

∫
x,t

ñ(x, t)
[
∂tn̂(x, t) −∇2n̂(x, t) + (α− − α+)n̂(x, t)

]
+

∫
x,t
βñ(x, t)n̂(x, t)2

−
∫

x,t

1
2

[
α+ + α− + βn̂(x, t)

]
ñ(x, t)2n̂(x, t). (725)

Let us rewrite this action. As one can see from the equation
of motion, the combination m2 :=α− − α+ measures the dis-
tance to criticality (without perturbative corrections). The term
proportional to β in the last line gives a quartic term, which is
irrelevant. Finally, one can change normalization of the fields,
setting n̂ → λφ, ñ → λ−1φ̃, which leaves the quadratic terms
invariant, but changes the relative magnitude of the two cubic
terms. As a result, we obtain the action with coupling const
g =

√
β(α+ + α−)/2,

S[ñ, n̂] =
∫

x,t
φ̃(x, t)

[
∂tφ(x, t) −∇2φ(x, t) + m2φ(x, t)

]
+

∫
x,t

g
[
φ̃(x, t)φ(x, t)2 − φ̃(x, t)2φ(x, t)

]
. (726)

Note the relative sign change w.r.t. equation (709). It has four
renormalizations, one for each of the three quadratic terms,
plus one for the coupling constant g. This leads to three inde-
pendent exponents given in section 5.8. Results at two-loop
order can be found in [565–568]. Partial three-loop results are
given in [570]. The action (726), known as Regge field the-
ory [569], is also used as an effective field theory for deep
inelastic scattering. There φ and φ̃ are interpreted as particle
annihilation and creation operators43.

6.6. State variables of the Manna model

In this section, we apply our considerations to a non-trivial
example, the stochastic Manna model, following [587]. We
will see that our formalism permits a systematic derivation of
its effective stochastic equations of motion. While the result is
known in the literature [518, 525, 580, 599], it is there derived
by symmetry principles, which are convincing ‘up to a cer-
tain degree’. Furthermore, they leave undetermined all coef-
ficients. While many of them can be eliminated by rescaling,
our derivation ‘lands’ on a particular line of parameter space,
characterized by the absence of additional memory terms, see
section 6.9.

The MM, introduced in 1991 by Manna [537], is a stochas-
tic version of the BTW sandpile [513]. Let us recall its
definition given in section 5.5:

Manna model (MM). Randomly throw grains on a lattice.
If the height at one point is greater or equal to two, then with
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Figure 68. (Thick lines) The order parameters of the MM, as a function of n, the average number of grains per site, obtained from a
numerical simulation of the stochastic MM on a grid of size 150 × 150 with periodic boundary conditions. We randomly update a site for
107 iterations, and then update the histogram 500 times every 105 iterations. Plotted are the fraction of sites that are: unoccupied (black),
singly occupied (blue), double occupied (green), triple occupied (yellow), quadruple occupied (orange). The activity ρ =

∑
i>1 ai(i − 1) is

plotted in purple. No data were calculated for n < 0.5, where a0 = e = 1 − n, a1 = n, and ai>2 = 0 (inactive phase). Note that before the
transition, a0 = 1 − n and a1 = n. The transition is at n = nc = 0.702. (Thin lines) The MF phase diagram, as given by equation (736) and
the following equations. For n � 1

2 , and by equation (737) ff. for n � 1
2 . We checked the latter with a direct numerical simulation. Reprinted

figure with permission from [587], Copyright (2016) by the American Physical Society.

rate 1 move two grains from this site to randomly chosen
neighboring sites. Both grains may end up on the same site.

We start by analyzing the phase diagram. We denote by ai

the fraction of sites with i grains. It satisfies the sum rule∑
i

ai = 1. (727)

In these variables, the number of grains n per site can be written
as

n :=
∑

i

aii. (728)

The empty sites are
e := a0. (729)

The fraction of active sites is

a :=
∑
i�2

ai. (730)

We also define the (weighted) activity as

ρ :=
∑
i�2

ai(i − 1). (731)

Note that ρ satisfies the sum rule

n − ρ+ e = 1. (732)

In order to take full advantage of this sum rule, we change the
toppling rules of the MM to those of the

Weighted Manna model (wMM). If a site contains i � 2
grains, randomly move these grains to neighboring sites with
rate (i − 1).

On figure 68 (thick lines), we show a numerical simula-
tion of the MM in a two-dimensional system of size L × L,

with L = 150. There is a phase transition at n = nc = 0.702.
Close to nc, the fraction of doubly occupied sites a2 grows
linearly with n − nc, and higher occupancy is small. Indeed,
we checked numerically that for n > nc the probability pi to
find i grains on a site decays exponentially with i, i.e. pi ∼
exp(−αni), where αn depends on n, see figure 69. This is to
be contrasted with the initial condition, where we randomly
distribute n × L2 grains on the lattice of size L × L. It yields a
Poisson distribution, the coherent state |n〉, for the number of
grains on each site, see inset of figure 69 (left). This result sug-
gests that coherent states may not be the best representation for
this system. It further implies that close to the transition, ρ ≈ a,
and we expect that the wMM and the original MM have the
same critical behavior. We come back to this question below.

6.7. Mean-field solution of the Manna model

In order to make analytical progress, we now study the topple-
away or MF solution of the stochastic Manna sandpile, which
we can solve analytically:

Mean-field Manna model (MF-MM). If a site contains two
or more grains, move these grains to any randomly chosen sites
of the system.

The rate equations are, setting for convenience a−1 := 0:

∂tai = −aiΘ(i � 2) + ai+2 + 2

⎡⎣∑
j�2

a j

⎤⎦ (ai−1 − ai). (733)

Using the sum rule (727), they can be rewritten as

∂tai = −aiΘ(i � 2) + ai+2 + 2(1 − a0 − a1)(ai−1 − ai).
(734)

We are interested in the steady state ∂tai = 0. One can
solve these equations by introducing a generating function.
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Figure 69. (Left) (Unnormalized) histogram after many topplings for n = 2; the probability that a site has i grains decays as e−0.585i, for
all i � 1. (Inset) The initial distribution, a Poissonian. (Right) The exponential decay coefficient α as a function of n. The dots are
from a numerical simulation. The dashed red line is the MF result (738). The green dashed line is a fit corresponding to α ≈ 2

3 ln(
(n + nc)/(n − nc)

)
. (Inset) Blow-up of main plot. Reprinted figure with permission from [587], Copyright (2016) by the American Physical

Society.

An simpler approach consists in realizing that for i � 2,
equation (734) admits a steady-state solution of the form

ai = a2κ
i−2, i > 2. (735)

This reduces the number of independent equations ∂tai = 0 in
equation (734) from infinity to three. Furthermore, there are
the equations

∑∞
i=0 ai = 1, and

∑∞
i=0 iai = n. Thus there are

five equations for the four variables a0, a1, a2, and κ. The rea-
son we apparently have one redundant equation is due to the
fact that we already used the normalization condition (727) to
go from equation (733) to equation (734).

These equations have two solutions: for 0 < n < 1, there is
always the solution for the inactive or absorbing state,

a0 = 1 − n, a1 = n, ai�2 = 0. (736)

For n > 1/2, there is a second non-trivial solution,

a0 =
1

1 + 2n
, ai>0 =

4n
(

2n−1
2n+1

)i

4n2 − 1
. (737)

(Note that a2/a1 has the same geometric progression as ai+1/ai

for i > 2, which we did note suppose in our ansatz.) Thus
the probability to find i > 0 grains on a site is given by the
exponential distribution

p(i) =
4n

4n2 − 1
exp (−iαn) , αn = ln

(
2n + 1
2n − 1

)
. (738)

Using these two solutions, we get the MF phase diagram plot-
ted on figure 68 (thin lines). This has to be compared with the
simulation of the MM on the same figure (thick lines). One sees
that for n � 2, MF solution and simulation are almost indistin-
guishable. We also checked with simulations that the MM has
a similar exponentially decaying distribution of grains per site,
with a decay-constant α plotted on the right of figure 69.

6.8. Effective equations of motion for the Manna model:
CDP theory

In this section, we give the effective equations of motion for the
MM. Let us start from the MF equations for ρ(t) and n(t). For
simplicity we use the wMM. The physics close to the transition
should not depend on it. Let us start from the hierarchy of MF
equations for the wMM. These are similar to equation (734),
and can be rewritten as

∂tai = (1 − i)aiΘ(i � 2) + (i + 1)ai+2 + 2ρ(ai−1 − ai).
(739)

Let us write explicitly the rate equation for the fraction of
empty sites e ≡ a0,

∂te = a2 − 2ρe. (740)

The first term, the gain r+ = a2 comes from the sites with two
grains, toppling away, and leaving an empty site. The second
term, the loss term, is the rate at which one of the toppling
grains lands on an empty site, r− = 2ρe.

The formalism developed in section 6.3, equations
(715)–(718), demands to add an additional noise:

∂te = a2 − 2ρe +
√

a2 + 2ρeξ̄t, (741)

where
〈
ξ̄tξ̄t′

〉
= δ(t − t′)/�d, and � is the size of the box which

we consider. Close to the transition, a2 ≈ ρ. Inserting this into
the above equation, we arrive at

∂te ≈ ρ(1 − 2e) +
√
ρ
√

1 + 2eξ̄t. (742)

Next we approximate
√

1 + 2e by the value of e at the transi-
tion, i.e. e → eMF

c = 1
2 , see the MF phase diagram in figure 68,

leading to
∂te ≈ ρ(1 − 2e) +

√
2ρξ̄t. (743)

This equation consistently gives back eMF
c = 1

2 , used above in
the simplification of the noise term.
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As the number n of grains is conserved, with the help of the
sum rule n + e = ρ+ 1 we can write two more equations,

∂tn = 0, ∂tρ = ∂te. (744)

Finally, we do not have a single box of size �, but a lattice
of boxes, indexed by a d-dimensional label x. Each toppling
moves two grains from a site to neighboring sites, equivalent
to a current

J(x, t) = −D∇ρ(x, t) +
√

2Dρ(x, t)ξ(x, t). (745)

The diffusion constant is D = 2 × 1
2d = 1

d . The first factor of 2
is due to the fact that two grains topple. The factor of 1

2d is due
to the fact that each grain can topple in any of the 2d directions,
thus the rate D per direction is 1

2d , resulting into D = 1/d. As
discussed above, we drop the noise term as subdominant.

This current corrects both the activity ρ(x, t), as the num-
ber of grains n(x, t), resulting into the same contribution for
both ∂tρ(x, t), and ∂tn(x, t). It does not couple to the density
of empty sites. This is consistent with the sum-rule (732) n −
ρ+ e = 1, which implies that ∂tρ(x, t) ≡ ∂tn(x, t) + ∂te(x, t).

In conclusion, we have the set of equations

∂te(x, t) = [1 − 2e(x, t)]ρ(x, t) +
√

2ρ(x, t)ξ(x, t),

(746)

∂tρ(x, t) =
1
d
∇2ρ(x, t) + ∂te(x, t), (747)

〈ξ(x, t)ξ(x′, t′)〉 = δd(x − x′)δ(t − t′). (748)

Instead of writing coupled equations for e(x, t) and ρ(x, t),
with the help of the sum rule (732) we can also write coupled
equations for ρ(x, t) and n(x, t):

∂tρ(x, t) =
1
d
∇2ρ(x, t) + [2n(x, t) − 1] ρ(x, t) − 2ρ(x, t)2

+
√

2ρ(x, t)ξ(x, t), (749)

∂tn(x, t) =
1
d
∇2ρ(x, t). (750)

Equations (749) and (750) are known as the equations of
motion for the conserved directed percolation (C-DP) class.
They were obtained in the literature [518, 525, 580, 599] by
means of symmetry principles. This leaves all coefficients
undefined, and does not ensure that equation (746) is local.
This locality will prove essential in the next section. The
derivation above is due to [587].

6.9. Mapping of the Manna model to disordered elastic
manifolds

It had been conjectured for a long time that the MM and depin-
ning of disordered elastic manifolds are equivalent, and much
work was devoted to clarify this connection [518, 520, 600].
The identification of fields which finally led to a simple proof
of this equivalence is given in [601], followed by [602],

ρ(x, t) = ∂tu(x, t) (the velocity of the interface), (751)

Figure 70. The renormalized disorder correlator Δ(u), rescaled to
Δ(0) = 1 and

∫
u Δ(u) = 1, for several situations: RF and RB

disorder for a disordered elastic manifolds, the Oslo and MMs, as
well as C-DP, all in d = 1. Reprinted figure with permission from
[518], Copyright (2009) by the American Physical Society.

e(x, t) = F (x, t) (the force acting on it). (752)

The second equation (747) is the time derivative of the
equation of motion of an interface, subject to a random force
F (x, t),

∂tu(x, t) =
1
d
∇2u(x, t) + F (x, t). (753)

Since ρ(x, t) is positive for each x, u(x, t) is monotonously
increasing. Instead of parameterizing F (x, t) by space x and
time t, it can be written as a function of space x and inter-
face position u(x, t). Setting F (x, t) → F (x, u(x, t)), the first
equation (746) becomes

∂tF (x, t) → ∂tF (x, u(x, t))

= ∂uF (x, u(u, t))∂tu(x, t)

= [1 − 2F (x, u(x, t))] ∂tu(x, t)

+
√

2∂tu(x, t)ξ(x, t). (754)

For each x, this equation is equivalent to the Orn-
stein–Uhlenbeck [603] process F(x, u), defined by

∂uF(x, u) = 1 − 2F(x, u) +
√

2ξ(x, u), (755)

〈ξ(x, u)ξ(x′, u′)〉 = δd(x − x′)δ(u − u′). (756)

It is a Gaussian Markovian process with mean 〈F(x, u)〉 = 1/2,
and variance in the steady state of, see equation (387)〈[

F(x, u) − 1
2

] [
F(x′, u′) − 1

2

]〉
=

1
2
δd(x − x′)e−2|u−u′|. (757)

Writing the equation of motion (753) as

∂tu(x, t) =
1
d
∇2u(x, t) + F (x, u(x, t)) , (758)

it is interpreted as the motion of an interface with position
u(x, t), subject to a disorder force F (x, u(x, t)). The latter is
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Figure 71. (Left) An interface growing in its normal direction, with phase A invading phase B. (Right) An experimental realization using
two phases of a nematic liquid crystal. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer. J. Stat.
Phys. [606] (c) 2012.

δ-correlated in the x-direction, and short-ranged correlated in
the u-direction. In other words, this is a disordered elastic
manifold subject to RF disorder. As a consequence, the field-
theoretic results of sections 3.2–3.5 are also valid for the MM.

Equation (749) has a quite peculiar property, namely the
factor of 2 in front of both n(x, t)ρ(x, t) and −ρ(x, t)2. As a
consequence, equation (746) does not contain a term∼ρ2(x, t),
which would spoil the simple mapping presented above. The
absence of this term cannot be induced on symmetry argu-
ments only. How this additional term, if present, can be treated
is discussed in [601].

The mapping of the MM on disordered elastic manifolds
implies that properties of the latter should be measurable
in the former. As we discussed in sections 2.5 to 2.11, and
sections 3.2 to 3.5, a key feature of the theory of disordered
elastic manifolds is the existence of a renormalized disorder
correlator with a cusp. Its existence in the MM, and equiva-
lence to the one measured at depinning was established in the
beautiful work [518]. The resulting (rescaled) disorder corre-
lators Δ(w) are shown in figure 70: it confirms the equivalence
of depinning with both RB and RF disorder, C-DP, Oslo, and
several sandpile automata.

Remarks on the short-time dynamics of the Manna model.
The short-time dynamics of the MM has been measured in
several publications [395–397], and was interpreted as the
dynamical exponent z depending on the initial condition. We
cannot follow this logic: the critical exponent z is a bulk
property of the system, and as such is defined only after mem-
ory of the initial state is erased. What is possible is that the
initial-time critical exponent discussed in section 3.19 depends
on the initial condition. Simulations for much larger systems
are needed to settle this question.

7. KPZ, Burgers, and the directed polymer

In this section we review basic properties for the non-linear
surface growth known as the KPZ equation [560]. KPZ matters
for disordered systems and the subject of this review for its
multiple connections:

• mapping of the N-dimensional KPZ equation to the
N-component directed polymer (random manifold with
d = 1),

• mapping of the N-dimensional decaying Burgers or KPZ
equation to a particle (formally a random manifold with
d = 0) in N dimensions,

• non-linear surface growth terms à la KPZ appear for disor-
dered systems, producing the distinct quenched KPZ class
discussed in section 5.7.

For further reading on non-linear surface growth we refer to
the 1997 review by Krug [604]. A short summary of modern
developments can be found in [605].

Notation. We use N for the dimension of the KPZ equation
instead of d, keeping d for the random-manifold dimension
with N components, i.e. living in N dimensions. The N-
dimensional KPZ equation will be shown to be equivalent to
the directed polymer (d = 1) in N dimensions.

7.1. Non-linear surface growth: KPZ equation

Consider figure 71. What is seen is an interface between two
phases, A and B. Phase A is stable, while phase B is unstable.
The interface grows with a velocity λ(u, t) in its normal direc-
tion, increasing phase A, while diminishing phase B. Using
the Monge representation {u, h(u, t)}, u ∈ RN the growth in h
direction is given by (see figure)

δh =
√

1 + [∇h(u, t)]2λ(u, t)δt. (759)

Assume that the growth is due to a discrete process. Following
the prescription in section 6.3, the growth velocity λ(u, t) has
a mean λ plus fluctuations η(u, t),

λ(u, t) = λ+ η(u, t),

〈η(u, t)η(u′, t′)〉 = 2Dδ(t − t′)δN(u − u′).
(760)

This leads to

∂th(u, t) = λ+
λ

2
[∇h(u, t)]2 + η(u, t) + . . . , (761)

where the dots indicate higher-order terms in (∇h)2. This is
(almost) the famous KPZ [560] equation. To derive the latter,
we first subtract the growth for a flat interface, setting h →
h − λt, and finally add one more term to the equation

∂th(u, t) = ν∇2h(u, t) +
λ

2
[∇h(u, t)]2 + η(u, t). (762)

91



Rep. Prog. Phys. 85 (2022) 086502 Review

The additional term proportional to ν describes diffusion along
the interface, rendering it smoother.

One typically measures the two-point function〈
[h(x, t) − h(x′, t′)]2

〉

 |x − x′|2ζKPZ f (xzKPZ/t), (763)

where f goes to a constant for t → 0 (x →∞), and together
with its prefactor becomes independent of x for x → 0. This
defines two exponents, the roughness ζKPZ and the dynamic
exponent zKPZ. The added index allows us to distinguish it from
the exponents of the directed polymer, especially since we will
see later that zKPZ = 1/ζdirected polymer.

7.2. Burgers equation

Taking one spatial derivative of equation (762) yields Burgers’
equation [607]. Define

v(u, t) :=∇h(u, t). (764)

Burgers’ equation reads

∂tv(u, t) = ν∇2v(u, t) +
λ

2
∇[v(u, t)2] +∇η(u, t),

(765)

〈η(u, t)η(u′, t′)〉 = 2Dδ(t − t′)δN(u − u′). (766)

The non-linear term satisfies the identity

1
2

∑
i

∂ j

[
vi(u, t)2

]
≡ 1

2

∑
i

∂ j

[
∂ih(u, t)2

]
=
∑

i

[∂ih(u, t)]
[
∂ j∂ih(u, t)

]
≡
∑

i

[vi(u, t)∂i] v j(u, t).

(767)

Equation (765) can be written as

∂tv(u, t) = ν∇2v(u, t) + λ [v(u, t) · ∇] v(u, t) +∇η(u, t).
(768)

This is identical to Navier–Stokes’ equation for incom-
pressible fluids, with the crucial difference that Burgers’
velocity is a total derivative, v(u, t) = ∇h(u, t), whereas for
Navier–Stokes it is divergence free, ∇v(u, t) = 0. For this rea-
son, Burgers equation does not describe turbulence encoun-
tered e.g. in a fast-flowing river. It has, however, applications
to the large-scale structure of galaxies [608–610].

7.3. Cole–Hopf transformation

Consider the N-dimensional KPZ equation (762) in Itô dis-
cretization, with noise as given in Equation (760). We can
eliminate the non-linear term by the so-called Cole–Hopf
transformation [611, 612]

Z(u, t) := e
λ

2ν h(u,t)−D λ2

4ν2 t

⇐⇒ h(u, t) =
2ν
λ

ln Z(u, t) +
Dλ

2ν
t.

(769)

(The reader might see this transformation without the term
−Dλ2t/(4ν2); this is then done in mid-point, i.e. Stratonovich

discretization [2, 298, 299], see appendix A.4). Using Itô
calculus (appendix A.2), we obtain

dZ(u, t) =
λ

2ν
Z(u, t)dh(u, t) +

λ2

8ν2
Z(u, t)dh(u, t)2

− Dλ2

4ν2
Z(u, t)dt

=
λ

2ν
Z(u, t)

{(
ν∇2h(u, t) +

λ

2
[∇h(u, t)]2

)
dt

+ dη(u, t)

}
= ν∇2Z(u, t)dt + Z(u, t)

λ

2ν
dη(u, t). (770)

Noting λη(u, t) ≡ V(u, t) this can be written as

∂tZ(u, t) = ν∇2Z(u, t) +
1

2ν
V(u, t)Z(u, t), (771)

〈V(u, t)V(u′, t′)〉 = δ(t − t′)R(u − u′), (772)

R(u) = 2λ2DδN(u). (773)

7.4. KPZ as a directed polymer

The equation of motion (771) can be solved by

Z(u, t|V) =
∫ u=u(t)

u(ti)=ui

D[u] e−
1
T

∫ t
ti

dτ 1
2 u′(τ )2−V(u(τ ),τ ),

T = 2ν.

(774)

This is the path integral of a directed polymer in the quenched
random potential V(u), also referred to as the Feynman–Kac
formula [613, 614]. To average over disorder, we use the
formalism with n replicas introduced in section 1.5,

Z(u1, . . . , un, t)

=

n∏
α=1

∫ uα(t)=uα

uα(ti)=uα,i

D[uα]
∫

D[V]

× e−
1
T

∫ t
ti

dτ
∑n

α=1

[
1
2 u′α(τ )2+V(uα(τ ))

]
e−

1
4λ2D

∫
u,τV(u,τ )2

=

n∏
α=1

∫ uα(t)=uα

uα(ti)=uα,i

D[uα]

× e
−

∫ t
ti

dτ
∑
α

1
2T u′α(τ )2− 1

2T2
∑
α,β

R(uα(τ )−uβ (τ ))

. (775)

We had discussed its solution in the T → 0-limit in section 1.5,
see equation (30).

Using equations (774) and (769), the free energy of a
directed polymer is related to the KPZ height field h(u, t) via

F (u, t) := − T ln Z(u, t) ≡ −λh(u, t) +
Dλ2

2ν
t. (776)

Apart from the (last) drift term which is due to the discretiza-
tion scheme and which can always be subtracted, this relation
is valid in the inviscid limit ν → 0, equivalent to T → 0, i.e. for
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the ground state of the directed polymer. For further reading we
refer to [615].

7.5. Galilean invariance, and scaling relations

A scaling analysis of the KPZ equation (762) starts at [604]

h̃(u, t) = b−ζKPZh(bu, bzKPZt) (777)

with a roughness exponent ζKPZ and a dynamical exponent
zKPZ defined in equation (763). The rescaled field h̃ satisfies
a KPZ equation (762) with rescaled coefficients

ν̃ = bzKPZ−2ν, D̃ = bzKPZ−d−2ζKPZD,

λ̃ = bzKPZ+ζKPZ−2λ.
(778)

If λ = 0, the scaling of the diffusion equation ζKPZ = (2 −
N)/2, and zKPZ = 2 yields a fixed point of the coarse grain-
ing transformation (777). For λ �= 0, the non-linearityλ grows
if the combination ζKPZ + zKPZ − 2 → 2−N

2 is positive. This is
always the case in dimension N < 2. As we will see below in
section 7.8 for dimension N > 2 there is a transition between
a weak-coupling and a strong-coupling regime.

The KPZ equation has an important invariance in any
dimension N [560, 604, 616]. Consider the tilt transformation
parameterized by an N-dimensional vector c,

h′(u, t) = h(u + λct, t) + cu +
λ

2
c2t. (779)

For λ→ 0, this reduces to the STS (66). It is reminiscent of the
full rotational invariance of the growing surface before pass-
ing to the Monge representation (759). As a consequence, we
expect the KPZ equation to remain invariant under this trans-
formation. Indeed, h′ satisfies the same KPZ equation (762) as
h, with a shifted noise

η′(u, t) = η(u + λct, t). (780)

As long as the temporal correlations of η are sufficiently short
ranged, the shift does not affect the statistical properties of the
noise [617], and the statistics of h is invariant under the trans-
formation (779). In the literature this property is referred to
as Galilean invariance, as in the context of the stirred Burgers
equation (765), where it was first discussed in [616], it appears
as a shift in the velocity, v → v′ = v + λc.

As the tilt transformation explicitly contains the non-
linearity λ, the latter should not change under rescaling. From
equation (778) we conclude that at a fixed point with λ �= 0
[617–619]

ζKPZ + zKPZ = 2. (781)

To make contact with the scaling properties of the directed
polymer, we remind the exponent relation (47) for the free
energy of an elastic manifold, F ∼ Lθ, with θ = d − 2 + 2ζ.
The directed polymer has internal dimension d = 1. Using that
according to equation (769) the free energy identifies with h,
and that the length L of the directed polymer is the time in the
KPZ equation, we arrive at h =̂F ∼ Lθ =̂ tθ . On the other hand

h ∼ uζKPZ and u ∼ t1/zKPZ , such that

θ = 2ζ − 1 =
ζKPZ

zKPZ
=

2 − zKPZ

zKPZ
, (782)

where for the last identity equation (781) was used. This
implies that

zKPZ =
1
ζ
. (783)

While the notations in the literature are somehow divergent,
the prevailing ones seem to be

α ≡ χ ≡ ζKPZ, β =
ζKPZ

zKPZ
≡ θ, z = zKPZ ≡ 1

ζ
. (784)

7.6. A field theory for the Cole–Hopf transform of KPZ

Another possibility to obtain a field theory for
equations (771)–(773) is to write the partition function
for the n-times replicated field Zα, α = 1, . . . , n, i.e. Z ∈ Rn,
as

Z =

∫
D[Z]D[Z̃]D[V] e−SCH[Z,Z̃,V], (785)

SCH[Z, Z̃, V]

=

∫
u,t

Z̃(u, t)

[
∂tZ(u, t) − ν∇2Z(u, t)− 1

2ν
V(u, t)Z(u, t)

]

+
1

4λ2D

∫
u,t

V(u, t)2. (786)

Performing the integral over V we obtain

Z =

∫
D[Z]D[Z̃]e−SCH[Z,Z̃], (787)

SCH[Z, Z̃] =
∫

u,t
Z̃(u, t)

[
∂tZ(u, t) − ν∇2Z(u, t)

]
− λ2D

4ν2

[
Z̃(u, t)Z(u, t)

]2
. (788)

Replacing t → t/ν, we arrive at

SCH[Z, Z̃] =
∫

u,t
Z̃(u, t)

[
∂tZ(u, t) −∇2Z(u, t)

]
− g

2

[
Z̃(u, t)Z(u, t)

]2
, (789)

g =
λ2D
2ν3

. (790)

Note that we do not need to take the limit of n → 0 at the
end. This is allowed as in Itô calculus the partition function
Z = 1. To study the flow of the effective coupling constant g,
we need at least two distinct ‘replicas’, which can be thought
of as ‘worldlines’ of two particles, starting at different initial
positions.
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Figure 72. (Left) Evolution of a random initial condition (black) at times λt = 0 (black, bottom), 1/16 (orange), 1/4 (green), 1 (red), and 4
(blue). (Right) Evolution of a random initial condition (black) at times λt = 0 (black, bottom) for the Burgers velocity v(u) := h′(u).

Figure 73. A geometrical solution to equation (793) is obtained by
moving a parabola of curvature 1/(2λt) and centered at u (in red)
down until it hits h0(u′) in blue. Its minimum is then at h(u, t). (This
construction is already discussed in the 1979 paper by Kida [187].)

7.7. Decaying KPZ, and shocks

To better understand the behavior of the KPZ equation (762),
let us consider equation (762) for given initial condition
h0(u) := h(u, t = 0), in absence of the noise η(u, t), i.e. D = 0.
The Cole–Hopf transformed KPZ equation (771) reduces to a
diffusion equation, solved as

Z(u, t) =
∫

u′

e−
(u−u′)2

4νt

(4πνt)d/2
Z(u′, 0). (791)

Putting back the definition (769) of Z in terms of
h0(u) := h(u, t = 0), we obtain, since D = 0,

e
λ
2ν h(u,t) =

∫
u′

e
λ
2ν

[
h0(u′)− (u−u′)2

2λt

]

(4πνt)d/2
. (792)

It is interesting to consider the limit of ν → 0, equivalent to
T → 0 for the directed polymer (774). Then the solution to
equation (792) is

h(u, t) = max
u′

[
h0(u′) − (u − u′)2

2λt

]
. (793)

This solution is formally equivalent to the solution (96) of the
toy model introduced in section 2.10, replacing

−h0(u) → V(u) (microscopic disorder) (794)

1
λt

→ m2 (795)

−h(u, t) → V̂(u) (effective disorder at scale m2 =
1
λt

).

(796)

As observed there and shown in figure 72 for a random initial
condition, the function h(u, t) is composed of almost parabolic
pieces, continuous everywhere but not differentiable at the
junctures. Geometrically, this can be obtained by approaching
a parabola of curvature m2 = 1/(λt) from the top, and report-
ing as a function of its center u the position h(u, t) at which
it first touches the initial condition h0(u′). This construction is
shown in figure 73. More can be learned via this approach, see
[82].

7.8. All-order β-function for KPZ

As we had seen after equation (778), the Gaussian fixed point
(λ = 0) is stable for weak disorder as long as the number N of
dimensions is larger than 2. We now show that for N > 2 there
exists a phase transition between the weak-coupling phase
(Gaussian fixed point), and a strong-coupling phase. This tran-
sition is accessible to a standard perturbative RG treatment,
contrary to the strong-coupling phase which is not.

Perturbative RG treatments of the KPZ equation are
numerous, starting with the original work [560]. They
were extended to two-loop order in [620–624], leading
to some controversy finally resolved in [625]. The treat-
ment is much easier for the Cole–Hopf transformed version
[626, 627], allowing us to resum perturbation theory to all
orders. We now calculate the β-function associated to the
model (789) and (790), following [627]. To this aim we intro-
duce the graphical notation

(797)
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Then the only diverging diagrams are chains of , of the
form , and so on. Higher-order vertices are
irrelevant in perturbation theory. As a result, the effective
coupling constant is

(798)
In Fourier-representation with incoming momentum p and fre-
quency ω, each chain in equation (798) factorizes, i.e. can be
written as a product of the vertex times a power of the
elementary loop diagram (which is a function of p and ω):

(799)

Equation (798) is a geometric sum which yields the effective
four-point function

(800)

The elementary diagram is

(801)
This integral is divergent for any p and ω when N → 2.
Renormalization means to absorb this divergence into a
reparametrization of the coupling constant g: we claim that
the four-point function (the effective coupling geff) is finite
(renormalized) as a function of gr instead of g, upon setting

g = Zggrμ
−ε, Zg =

1
1 + agr

, ε = N − 2. (802)

μ is an arbitrary scale, the renormalization scale. As a function
of gr, the four-point function reads

(803)

Since 1
ε

(
1
2 p2 + iω

)ε/2
μ−ε is finite for ε > 0 as long as the

combination 1
2 p2 + iω is finite, it can be read off from

equation (803) thatΓZZZ̃Z̃ |p,ω is finite even in the limit of ε→ 0.
(If useful, either p = 0 or ω = 0 may safely be taken.) This
completes the proof. Note that this ensures that the model
is renormalizable to all orders in perturbation-theory, what is
normally a formidable task to show [112–115, 118, 628, 629].

The β-function that we calculate now is exact to all orders
in perturbation theory. It is defined as the variation of the
renormalized coupling constant, keeping the bare one fixed

β(gr) = −μ
∂

∂μ

∣∣∣∣
g

gr. (804)

From equation (803) we see that it gives the dependence of the
four-point function on p and ω for fixed bare coupling. The
relation between g and gr is

g =
grμ

−ε

1 + agr
⇔ gr =

g
μ−ε − ag

, (805)

and hence
β(gr) = −εgr(1 + agr). (806)

Using a from equation (801), our final result is

β(gr) = (2 − N)gr +
2

(8π)N/2
Γ

(
2 − N

2

)
g2

r . (807)

This equation has a perturbative, IR repulsive, fixed point at

g∗
r =

2(8π)N/2

(N − 2)Γ
(
2 − N

2

) . (808)

For N > 2 it describes the phase transition between the weak-
coupling phase where the KPZ term is irrelevant (g = 0), and
a strong coupling phase, for which g →∞. This is the only
fixed point available for N � 2; especially, the perturbative
treatment above does not describe KPZ in dimension N = 1.

As a consequence, standard perturbation theory fails to pro-
duce a strong-coupling fixed point, a result which cannot be
overemphasized. This means that any treatment of the strong
coupling regime has to rely on NP methods. The FRG approach
discussed above qualifies as NP in this sense, since FRG fol-
lows more than the flow of a single coupling constant. It does
of course not rule out the possibility to find an exactly solvable
model, distinct from KPZ, for which it is possible to expand
toward the strong-coupling regime of KPZ.

Let us also note that the β-function is divergent at N =
4, and therefore our perturbation expansion breaks down at
N = 4. To cure the problem, a lattice regularized version of
equation (771) may be used. However, then the lattice cut-off
a will enter into the equations and the result is no longer model-
independent. This may be interpreted as N = 4 being the upper
critical dimension of KPZ, or as a sign for a simple technical
problem. See [412, 630], and the discussion in section 7.11.

7.9. Anisotropic KPZ

A special case is the anisotropic KPZ equation in two dimen-
sions, for which the KPZ-nonlinearity is positive in one direc-
tion, and negative in the other. This competition produces a
perturbative fixed point [631].

7.10. KPZ with spatially correlated noise

When the noise η(u, t) in equation (762) is LR correlated,

〈η(u, t)η(u′, t′)〉 = δ(t − t′)|u − u′|2ρ−N, ρ > 0, (809)
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Table 4. Growth exponent estimates of the d-mer model (d-mer)
[656]; the results in d = 1 are exact. The last column represents the
results for the RSOS model, always taking the most recent and
precise values [643–645, 647, 648, 657]. At least some of the error
bars seem overly optimistic.

d ζKPZ(d-mer) ζKPZ
zKPZ

(d-mer) zKPZ(d-mer) ζKPZ(RSOS)

1 1/2 1/3 3/2 1/2
2 0.395(5) 0.245(5) 1.58(10) 0.393(3)
3 0.29(1) 0.184(5) 1.60(10) 0.3135(15)
4 0.245(5) 0.15(1) 1.91(10) 0.2537(8)
5 0.22(1) 0.115(5) 1.95(15) 0.205(15)

a different exponent is expected. Using equation (23) with
γ = N − 2ρ and d = 1, we find ζLR

Flory = 3
4+N−2ρ , and as a

consequence of equation (783) and (781)

zLR
KPZ =

4 + N − 2ρ
3

, ζLR
KPZ =

2 − N + 2ρ
3

. (810)

This LR fixed point, which is exact as long as the disorder does
not get renormalized, is in competition with the SR (RB) fixed
point for which disorder renormalizes. As a rule of thumb, the
fixed point with the larger ζ or ζKPZ, and smaller zKPZ dom-
inates. In dimension N = 1 where ζKPZ = 1/2, the LR fixed
point dominates for ρ > ρc =

1
4 . These results can already be

found in [632, 633], and were reanalyzed via RG in [634, 635].

7.11. An upper critical dimension for KPZ?

A lot of work has been devoted to either proving or disproving
the existence of an upper critical dimension Nc ≈ 4. The argu-
ments in favor are via proof by consistency or contradiction
[636–638], Nc = 4, or mode-coupling: Nc = 4 [639–641],
Nc = 3.7 or Nc = 4.3, depending on the UV regularization
[642]. If these are wrong, presumably one of the underlying
assumptions fails.

The arguments against are mostly from numerical simu-
lations, either directly on the KPZ in its rigid-solid-on-solid
(RSOS) representation [643–648] or on the directed polymer
[649]. The criticism voiced is that they are not in the asymp-
totic regime, or break the rotational symmetry of the KPZ
equation. Mode-coupling solutions without an upper critical
dimension have been proposed [650], as well as approximate
RG schemes [651], or NPRG [652].

The issue is far from settled, and only few distinct argu-
ments can be found: FRG for the directed polymer favors a
critical dimension Nc ≈ 2.5 [150], approximately also found
in [653]. While the work by [626, 627] indicates the necessity
for an UV-cutoff in dimension N = 4 (see above), an addi-
tional scale may appear at all even N, i.e. N = 6, 8, etc [412].
Closure relations in CFT lead to simple fractions for the critical
exponents [654, 655], not favored by numerical simulations.
From the newer developments, let us mention the mapping
to d-mer diffusion [656], which seems to give rather precise
numerical estimates, see table 4. Let us conclude with a quote
from the recent review [605]: the ‘equation proposed nearly
three decades ago by Kardar, Parisi and Zhang continues to
inspire, intrigue and confound its many admirers’.

7.11.1. Quenched KPZ. The quenched KPZ equation was dis-
cussed in section 5.7.

7.12. The KPZ equation in dimension d = 1

The KPZ equation (762) is formally a Langevin equation. The
corresponding Fokker–Planck equation for the evolution of its
measure Pt[h], derived in equation (946), reads

∂tPt[h] = D
∫

u

δ2

δh(u)2
Pt[h]

−
∫

u

δ

δh(u)

(
ν∇2h(u) +

λ

2
[∇h(u)]2Pt[h]

)
. (811)

At least for λ = 0, a steady-state solution can be found by
asking that

D
δ

δh(u)
Pt[h] = ν∇2h(u)Pt[h]. (812)

This is solved by44

Pt[h] = N exp

(
− ν

2D

∫
u
[∇h(u)]2

)
. (813)

Unsurprisingly, this is the measure for a diffusing elastic string.
What are the additional terms for λ �= 0? Inserting the measure
(813) into equation (811) yields

∂tPt[h] = −
∫

u

δ

δh(u)

(
λ

2
[∇h(u, t)]2Pt[h]

)
=

λν

2D

∫
u
[∇h(u)]2∇2h(u)Pt[h]. (814)

While written in continuous notation, the calculation should
be made on the discretized version, with proper symmetriza-
tion of the [∇h]2 term. To go to the second line, we dropped
the direct derivative of the latter, as it integrates to 0. In
dimension N = 1, the integrand is a total derivative, thus inte-
grates to zero. In higher dimensions, this is not the case.
The simplest explicit counterexample for periodic bound-
ary conditions (L = 2π) in dimension N = 2 we found is
h(u1, u2) = [a + cos(u1)][b + cos(u2)], for which the last inte-
gral in equation (814) evaluates to −abL2.

The measure (813) implies that equal-time correlation func-
tions of the nonlinear (λ > 0) theory are given by those of the
linear theory (λ = 0), first in Fourier and then in real space,

〈
h̃(q)h̃(q′)

〉
= 2πδ(q + q′)

Dq2

ν
(815)

⇔
〈
[h(x) − h(x′)]2

〉
=

D
ν
|x − x′|2ζKPZ , (816)

ζd=1
KPZ =

1
2
. (817)

44 Note that some authors [604] use a different normalization for
equation (760) 2Dhere = Dthere, reflected in the invariant measure.
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Figure 74. (Left) Numerical verification of the universal distributions for KPZ in one dimension as explained in the text. Reprinted by
permission from Springer Nature Customer Service Centre GmbH: Springer. J. Stat. Phys. [605] (c) 2015. (Right) Experimental verification
in [606]. The blue circles and red diamonds display the histograms for the circular interfaces at t = 10 s and 30 s, respectively, while the
turquoise up-triangles and purple down-triangles are for the flat interfaces at t = 20 s and 60 s, respectively.

Moreover, the measure (813) is Gaussian. This can be
viewed as due to a fluctuation-dissipation theorem [658].
Equation (781) further implies

zd=1
KPZ =

3
2
. (818)

As a consequence,

ζd=1
RB =

1
zd=1

KPZ

=
2
3

(819)

is the roughness exponent of a directed polymer in 1 + 1
dimensions, and the roughness of domain walls in dirty 2D
magnets. Their energy-fluctuation exponent is

θ = d − 2 + 2ζ =
1
3
. (820)

This can also be obtained via Bethe ansatz [108, 617].

7.13. KPZ, polynuclear growth, Tracey–Widom and
Baik–Rains distributions

Since the introduction of the KPZ equation in 1986 [560],
much progress has been made in one dimension. This started
in 2000 with the groundbreaking work by Prähofer and Spohn
[659–661] introducing the polynuclear growth (PNG) model:
one starts from a flat configuration. Steps of vanishing size
are deposited as a Poisson process upon the already con-
structed surface. Steps then grow with unit velocity at both
ends. When steps meet, they merge. Heuristically it seems
clear that this process belongs to the KPZ universality class,
similar to its discrete cousin, the RSOS model. Independently,
Johansson introduced the single-step model [662], relating sur-
face growth to the combinatorial problem of finding the longest
increasing subsequence in a random permutation [663] and
random matrix theory [664], relating to older work in this
domain [665]. The key observables are constructed from the

spatially averaged mean height h(t), which for large times
is assumed to grow with velocity v∞, limt→∞ 〈h(t)〉 − v∞t =
const. As the mean height is proportional to the free energy
of a directed polymer, see equation (776), results for the
height fluctuation have an immediate interpretation in terms
of free-energy fluctuations of a directed polymer.

Key observables are

χ0 =
h(t0 + t) − h(t0) − v∞t(

D2λ
2ν2 t

)1/3 , (821)

χ1 =
h(t) − v∞t(

D2λ
2ν2 t

)1/3 , (flat initial conditions), (822)

χ2 =
h(t) − v∞t(

D2λ
2ν2 t

)1/3 , (circular initial conditions). (823)

Each of these observables has a unique universal distribution:

χ0 is distributed according to the Baik–Rains F0 distribution,
χ1 is distributed according to the Tracy–Widom (TW) Gaus-

sian orthogonal ensemble distribution,
χ2 is distributed according to the TW Gaussian unitary ensem-

ble distribution.

The reader wishing to test these laws himself can find a
Mathematica implementation online [666].

The Bethe-ansatz for the directed polymer was introduced
in 1987 by Kardar to obtain the roughness exponent of a
directed polymer, ζ = 2/3 and θ = 1/3. A revival started in
2010, when physicists succeeded [667–671] to first reproduce
the work of [659–661] via the Bethe ansatz, and then extend it
to other situations [672]. At the same time, a new generation of
mathematicians developed complementary tools [673–676],
joining the work of Sasamoto and Spohn [677, 678].

97



Rep. Prog. Phys. 85 (2022) 086502 Review

Extraordinarily, Takeuchi and Sano [606, 679] succeeded
to extract the universal distributions from a turbulent liquid-
crystal experiment. A snapshot is shown in figure 71, and the
two Tracey–Widom distributions for circular and flat initial
conditions in figure 74.

Let us conclude by mentioning pedagogical presentations
[680–682], as well as attempts to port this at least numerically
to higher dimensions [683, 684].

7.14. Models in the KPZ universality class, and experimental
realizations

In all dimensions:

• KPZ [560],
• PNG [659–661],
• RSOS models [643–648].
• Directed polymer in quenched disorder (section 7.4).

In one dimension:

• longest growing subsequence in a random permutation
[663],

• the asymmetric simple exclusion process [685–687].

Experimental realizations (one dimension only):

• slow combustion of paper [688, 689],
• turbulent liquid crystals [606, 679],
• particle deposition (with crossover to qKPZ) [690],
• bacterial growth [691],
• chemical reaction fronts [573].

7.15. From Burgers’ turbulence to Navier–Stokes
turbulence?

In Burgers’ turbulence velocity profiles are locally linear (see
e.g. the right of figure 72), interrupted by jumps. Phenomeno-
logically it is similar to the force field in disordered systems.
This implies that, if non-vanishing, at small distances

〈[v(u, t) − v(u′, t)]n〉 
 An|u − u′|ζn , (824)

and for Burger ζn = 1, independent of n. In Navier–Stokes tur-
bulence, the exponent ζ3 = 1, as predicted by Kolmogorov in
1941 [692]. Other moments obey

ζn =
n
3
+ δζn, (825)

where δζn is small. Calculating δζn analytically is the out-
standing problem of turbulence research. One can try to use
FRG for this problem [693], but something crucial is missing:
while FRG correctly deals with shocks, the weaker singulari-
ties responsible for equation (825) are not captured by FRG. (It
may work in dimension d = 2, though [693].) It is possible that
the FRG fixed point which typically has a cusp, and which usu-
ally is implemented for the second cumulant, instead applies
to the third cumulant, as ζ3 = 1. How to implement this idea
remains an open problem.

8. Links between loop-erased random walks,
CDWs, sandpiles, and scalar field theories

8.1. Supermathematics

Supermathematics, introduced in [694] and nicely reviewed
in [695] is an alternative way to average over disorder. In
this technique, additional fermionic or Grassmannian degrees
of freedom are introduced to normalize the partition func-
tion to Z = 1, even before averaging over disorder. We start
by reviewing basic properties of Grassmann variables, before
using them for disorder averages. Most of the material is stan-
dard, and the reader familiar with it, or wishing to advance may
safely do so.

Two points should be retained: while supermathematics is
usually referred to as supersymmetry technique, this is a mis-
nomer as supersymmetry is broken at the Larkin scale, i.e.
when a cusp appears. The name is due to historical reasons,
stemming from a time when people believed that supersym-
metry is not broken. To avoid this confusion, we prefer the
term supermathematics.

Braking of supersymmetry, and the cusp, can be found in
this framework, as long as one considers at least two physically
distinct copies. The technical reason is that to assess the nth
cumulant of a distribution, one needs at least n distinct copies.
Even when supposing the disorder to be Gaussian distributed,
the variance, i.e. the second cumulant needs to be assessed,
thus two distinct replicas.

Apart from these more formal considerations, the technique
has proven powerful in the mapping of CDWs onto a φ4-type
theory (section 8.6).

8.2. Basic rules for Grassmann variables

Grassmann variables are anticommuting variables which allow
one to write a path-integral for fermions, in the same way as
one does for bosons. There are only few rules to remember. If
χ and ψ are Grassmann variables, then

χψ = −ψχ. (826)

This immediately implies that

χ2 = 0. (827)

One introduces derivatives, and integrals through the same
formula, known as Berezin integral [694],∫

dχχ ≡ d
dχ

χ = 1. (828)

One checks that they satisfy the usual properties associated to
‘normal’ derivatives, and integrals. An important property is∫

dχ̄ dχ e−aχ̄χ = a. (829)

This is easily proven upon Taylor expansion. The minus
sign in the exponential cancels the minus sign obtained when
exchanging χ̄ with χ, which is necessary since an integral
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or derivative is defined to act directly on the variable follow-
ing it. Equation (829) can be generalized to integrals over an
n-component pair of vectors �̄χ, and �χ:∫

d�̄χ d�χ e−�̄χA�χ :=
n∏

a=1

∫
dχ̄a dχa e−�̄χA�χ = det(A). (830)

It is proven by changing coordinates s.t. A becomes diagonal.
For comparison we give the corresponding formula for normal
(bosonic) fields, noting φa :=φa

x + iφa
y , φ̃a :=φa

x − iφa
y ,∫

d�̃φ d�φ e−
�̃
φA�φ :=

n∏
a=1

∫
dφa

x dφa
y

π
e−

�̃
φA�φ =

1
det(A)

. (831)

When combining normal and Grassmannian integrals over the
same number of variables into a product, the contributions
from equations (830) and (831) cancel. This will be used
below.

8.3. Disorder averages with bosons and fermions

The above formulas permit a different approach to average
over disorder. For concreteness, define

H[u, V] =
∫

x

{
1
2

[∇u(x)]2 +
m2

2
u(x)2 + U

(
u(x)

)
+ V

(
x, u(x)

)}
. (832)

The disorder-average of an observable O is defined as

O[u] :=
∫

r∏
a=1

D[ua]O[u1]e−
1
T H[ua,V]

∫
r∏

a=1
D[ua]e−

1
T H[ua,V]

. (833)

The function U(u) is an arbitrary potential, e.g. the non-
linearity in φ4-theory, U(u) = gu4. The random potential
V(x, u) is the same one used in section 1.2, with correlations
given by equation (9). Its average is indicated by the overline.
We remind that the difficulty in evaluating (833) comes from
the denominator. The replica trick used in section 1.5 allowed
us to set r = 0, effectively discarding the denominator. Here
we follow a different strategy.

In the limit of T → 0 only configurations which minimize
the energy survive. These configurations satisfy δH[ua,V]

δua(x) = 0,
and we want to insert a δ-distribution enforcing this condition
into the path-integral. This has to be accompanied by a factor

of det
[

δ2H[ua,V]
δua(x)δua(y)

]
, such that the path integral is normalized to

1. The latter can be achieved by an additional integral over
Grassmann variables, i.e. fermionic degrees of freedom, using
that

det

(
δ2H[u, V]
δu(x)δu(y)

)
=

∫
D[ψ̄a]D[ψa] exp

(
−
∫

x
ψ̄(x)

δ2H[u, V]
δu(x)δu(y)

ψ(x)

)
.

(834)

This allows us to write the disorder average of any observable
O[u] as

O[u] =
∫ r∏

a=1

D[ũa]D[ua]D[ψ̄a]D[ψa]O[u]

× exp

[
−
∫

x
ũa(x)

δH[ua]
δua(x)

+ ψ̄a(x)
δ2H[ua]

δua(x)δua(y)
ψa(y)

]
.

(835)

This method was first introduced in [32, 696]. An alternative
derivation and insight are offered by Cardy [697–699], see also
[700, 701].

Averaging over disorder with the force–force correlator
Δ(u) := − R′′(u) yields

O[u] =
∫ ∏

a

D[ua]D[ũa]D[ψ̄a]D[ψa]

exp
(
−S[ua, ũa, ψ̄a,ψa]

)
,

S[ũa, ua, ψ̄a,ψa]

=

∫
x

r∑
a=1

{
ũa(x)

[(
−∇2 + m2

)
ua(x) + U′

(
ua(x)

)]

+ ψ̄a(x)
[
−∇2 + m2 + U′′

(
ua(x)

)]
ψa(x)

}

−
r∑

a,b=1

[
1
2

ũa(x)Δ
(

ua(x) − ub(x)
)

ũb(x)

− ũa(x)Δ′
(

ua(x) − ub(x)
)
ψ̄b(x)ψb(x)

− 1
2
ψ̄a(x)ψa(x)Δ′′

(
ua(x) − ub(x)

)
ψ̄b(x)ψb(x)

]
.

(836)

We first analyze the special case of n = 1. Suppose that Δ(u)
is even and analytic to start with, then few terms survive from
equation (836),

SSusy[u, ũ, ψ̄,ψ]

=

∫
x

{
ũ(x)

[
(−∇2 + m2)u(x) + U′

(
u(x)

)]
+ ψ̄(x)

[
−∇2 + m2 + U′′

(
u(x)

)]
ψ(x) − 1

2
ũ(x)Δ(0)ũ(x)

}
.

(837)

(We have used that ψ̄2
a = ψ2

a = 0 to eliminate the four-
fermion-term.) A particularly simple case are random mani-
folds, for which U(u) = 0. Then bosons ũ and u, and fermions
ψ̄ and ψ do not interact, all expectation values are Gaus-
sian, perturbation theory gives equation (38), and dimensional
reduction holds. WhenU(u) �= 0, things are more complicated,
but as we will see in the next section, dimensional reduction
still holds, at least formally.

The reason is that the action (837) possesses an apparent
supersymmetry, made manifest by grouping all fields into a
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(bosonic) superfield,

Φ(x, Θ̄,Θ) := u(x) + Θ̄ψ(x) + ψ̄(x)Θ− Θ̄Θũ(x). (838)

Both Θ̄ and Θ are Grassmann numbers. The action (837) can
then be written with the super Laplacian Δs as

SSusy =

∫
dΘ̄dΘ

∫
x

1
2
Φ(x, Θ̄,Θ)(−Δs + m2)Φ(x, Θ̄,Θ)

+ U(Φ(x, Θ̄,Θ)), (839)

Δs :=∇2 +Δ(0)
∂

∂Θ

∂

∂Θ̄
. (840)

As we will see in section 8.5, the action is invariant under the
two supergenerators

Q := x
∂

∂Θ
− 2

Δ(0)
Θ̄∇, Q̄ := x

∂

∂Θ̄
+

2
Δ(0)

Θ∇,{
Q, Q̄

}
= 0.

(841)
This is sufficient to ‘prove’ dimensional reduction.

8.4. Renormalization of the disorder

For more than r = 1 replicas, the theory is richer, and we can
recover the renormalization ofΔ(u) itself. To simplify matters,
set U(u) = 0, and write

S[ũa, ua, ψ̄a,ψa] =
∑

a

∫
x

[
ũa(x)(−∇2 + m2)ua(x)

+ ψ̄a(x)(−∇2 + m2)ψa(x) − 1
2

ũa(x)Δ(0)ũa(x)

]
−
∑
a �=b

∫
x

[
1
2

ũa(x)Δ (ua(x) − ub(x)) ũb(x)

− ũa(x)Δ′ (ua(x) − ub(x)) ψ̄b(x)ψb(x)

− 1
2
ψ̄a(x)ψa(x)Δ′′ (ua(x) − ub(x)) ψ̄b(x)ψb(x)

]
.

(842)

Corrections to Δ(u) are constructed by remarking that the
interaction term quadratic in ũ is almost identical to the treat-
ment of the dynamics in the static limit (i.e. after integration
over times). The diagrams in question are

(843)
where an arrow indicates the correlation-function, x−→−−−y =
〈ũ(x)u(y)〉 = C(x − y). This leads to (in the order given above)

δΔ(u) =
[
−Δ(u)Δ′′(u) −Δ′(u)2 +Δ′′(u)Δ(0)

]
×
∫

x−y
C(x − y)2. (844)

The last term of equation (843) is odd, and vanishes.
Equation (844) is equal to the results of equations (323)–(331).

A non-trivial ingredient is the cancellation of the acausal
loop (332) in the dynamics, equivalent to the three-replica term
in the statics:

(845)

The first diagram comes from the contraction of two terms pro-
portional to ũaΔ(ua − ub)ũb. The second is obtained from con-
tracting all fermions in two terms proportional to ũaΔ

′(ua −
ub)ψ̄bψb. Since the fermionic loop (oriented wiggly line in the
second diagram) contributes a factor of −1, both cancel.

One can treat the interacting theory completely in a super-
space formulation. The action is

S[Φ] =
∑

a

∫
Θ̄,Θ

∫
x

1
2
Φa(x, Θ̄,Θ)(−Δs + m2)Φa(x, Θ̄,Θ)

− 1
2

∑
a �=b

∫
x

∫
Θ̄,Θ

∫
Θ̄′,Θ′

R
(
Φa(x, Θ̄,Θ) − Φb(x, Θ̄′,Θ′)

)
.

(846)

‘Non-locality’ in replica-space or in time is replaced by ‘non-
locality’ in superspace. Corrections to R(u) all stem from
superdiagrams, which result into bilocal interactions in super-
space, not trilocal, or higher. The latter find their equivalent in
three-local terms in replica-space in the replica-formulation,
and three-local terms in time, in the dynamic formulation.

Supersymmetry is broken, once Δ(0) changes, i.e. at
the Larkin length. A seemingly ‘effective supersymmetry’,
or ‘scale-dependent supersymmetry’ appears, in which the
parameter Δ(0), which appears in the Susy-transformation,
changes with scale, according to the FRG flow equation (64)
for Δ(u), continued to u = 0.

8.5. Supersymmetry and dimensional reduction

Let us study invariants of the action. Since total derivatives
both in x and θ or θ̄ vanish, the crucial term to focus on is the
super-Laplacian. To simplify notations, we set

ρ :=Δ(0). (847)

By explicit inspection, we find that the two generators of super-
translations

Q := x
∂

∂Θ
+

2
ρ
Θ̄∇, Q̄ := x

∂

∂Θ̄
− 2

ρ
Θ∇ (848)

both commute with the super-Laplacian, and anti-commute
with each other,

[Δs, Q] =
[
Δs, Q̄

]
= 0,

{
Q, Q̄

}
= 0. (849)

The following combination is invariant under the action of Q
and Q̄,

Q̄

(
x2 +

4
ρ
Θ̄Θ

)
= Q

(
x2 +

4
ρ
Θ̄Θ

)
= 0. (850)
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Applying the super-Laplacian (840) gives45

Δs

(
x2 +

4
ρ
Θ̄Θ

)
= 2(d − 2). (851)

To obtain the super-propagator, inverse of the super-Laplacian
plus mass term in equation (839), we remark that(

m2 −∇2 − ρ
∂

∂Θ̄

∂

∂Θ

)(
m2 −∇2 + ρ

∂

∂Θ̄

∂

∂Θ

)
= (m2 −∇2)2. (852)

This implies that

(
m2 −Δs

)−1
=

m2 −∇2 + ρ ∂
∂Θ̄

∂
∂Θ

(m2 −∇2)2
. (853)

Therefore

C(x − x′,Θ−Θ′, Θ̄− Θ̄′)

=
m2 −∇2 + ρ ∂

∂Θ̄
∂
∂Θ

(m2 −∇2)2
δ(x − x′)δ(Θ−Θ′)δ(Θ̄− Θ̄′).

(854)

The Grassmanian δ-functions are defined as∫
dΘδ(Θ−Θ′) f (Θ) = f (Θ′). (855)

By direct calculation one finds

δ(Θ−Θ′) = Θ′ −Θ =

∫
dχ̄ eχ̄(Θ′−Θ). (856)

One can transform (854) into a representation in dual spaces
of momentum (k-space) and super-coordinates (χ-space) as

C(k, χ̄,χ) =
m2 + k2 + ρχ̄χ

(m2 + k2)2
≡ 1

m2 + k2 + ρχχ̄

≡
∫ ∞

0
ds e−s(m2+k2+ρχχ̄). (857)

The final proof of dimensional reduction is performed with this
representation of the super-correlator46. Any diagram can be
written as∫

k1

∫
χ̄1χ1

. . .

∫
kn

∫
χ̄nχn

n∏
i=1

[∫ ∞

0
dsi e−si(m

2+k2
i +ρχiχ̄i)

]
, (858)

where some δ-distributions have already been used to elimi-
nate integrations over k’s, i.e. some of the ki’s appearing in the
exponential are not independent variables, but linear combina-
tions of other k j’s, and the same holds for the corresponding

45 This relation comes out incorrectly in [32].
46 Note that one can also work in position-space [32]. Then the super-
correlator is explicitly d-dependent, and one should check that this d-
dependence comes out correctly.

χi and χ̄i. The product of exponential factors can be written as

n∏
i=1

[
e−si(m

2+k2
i +ρχiχ̄i)

]
= exp

⎛⎜⎜⎝−

⎛⎜⎜⎝
k1

k2

. . .
kn

⎞⎟⎟⎠W

⎛⎜⎜⎝
k1

k2

. . .
kn

⎞⎟⎟⎠
⎞⎟⎟⎠

× exp

⎛⎜⎜⎝−

⎛⎜⎜⎝
χ1

χ2

. . .
χn

⎞⎟⎟⎠W

⎛⎜⎜⎝
χ̄1

χ̄2

. . .
χ̄n

⎞⎟⎟⎠
⎞⎟⎟⎠ .

(859)

Integration over the k’s gives∫
k1

. . .

∫
kn

e−
�k·W·�k =

(
1

4π

)ld/2

det (W)−d/2, (860)

where l is the number of loops. Integration over χ̄ and χ gives∫
χ̄1χ1

. . .

∫
χ̄nχn

e−ρ�χ·W·�̄χ = (ρ)l det(W). (861)

The product of the two factors (860) and (861) is the same as
for a standard bosonic diagram in dimension d − 2. Remark-
ing that the expansion is in powers of T , and combining these
relations, we obtain after integration over the si:

l-loop super-diagram in dimension d

=
( ρ

4πT

)l
× l-loop standard-diagram in dimension d−2.

(862)

This implies that for any observable O(T)

Od
disordered(ρ) = Od−2

thermal

(
T =

ρ

4π

)
. (863)

The above proof can be extended to theories with derivative
couplings. The rules are as follows: consider Hs[Φ] given in
equation (839). To this we can add an interaction in derivatives,
for a total of

Hs[Φ] =
∫
Θ̄,Θ

∫
x

[
1
2
Φ(x, Θ̄,Θ)(−Δs + m2)Φ(x, Θ̄,Θ)

+ U
(
Φ(x, Θ̄,Θ)

)
+A1

(
Φ(x, Θ̄,Θ)

)
(−Δs + m2)A2

(
Φ(x, Θ̄,Θ)

)]
.

(864)

This theory is supersymmetric: calculating diagrams in pertur-
bation theory, we get additional vertices. The corresponding
diagrams can be calculated from the same type of generating
function (859). The trick is to use instead of an integral w.r.t. s
a derivative w.r.t. s, taken at s = 0,(

m2 + k2 + ρχχ̄
)
= − d

ds

∣∣∣∣
s=0

e−s(m2+k2+ρχχ̄). (865)
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8.6. CDWs and their mapping onto φ4-theory with two
fermions and one boson

Consider the fixed point (94) for CDWs. It has the form

Δ(u) =
g

12
− g

2
u(1 − u) =

g
2

u2 + lower-order terms in u.

(866)
The renormalization, encoded in g, can be gotten by retaining
only terms of order u2, and dropping lower-order terms which
do not feed back into terms of order u2. To this aim, consider
the action (842) with two replicas, replacing Δ(u) → g

2 u2. We
further go to center-of-mass coordinates for the bosons by
introducing

u1(x) = u(x) +
1
2
φ(x), u2(x) = u(x) − 1

2
φ(x), (867)

ũ1(x) =
1
2

ũ(x) + φ̃(x), ũ2(x) =
1
2

ũ(x) − φ̃(x).

(868)

The action (836) can then be rewritten as

S =

∫
x
φ̃(x)(−∇2 + m2)φ(x) + ũ(x)(−∇2 + m2)u(x)

+

2∑
a=1

ψ̄a(x)(−∇2 + m2)ψa(x)

+
g
2

ũ(x)φ(x)
[
ψ̄2(x)ψ2(x) − ψ̄1(x)ψ1(x)

]
− g

8
ũ(x)2φ(x)2

+
g
2

[
φ̃(x)φ(x) + ψ̄1(x)ψ1(x) + ψ̄2(x)ψ2(x)

]2
.

(869)

Note that only ũ(x), but not the center-of-mass u(x) appears in
the interaction. While u(x) may have non-trivial expectations,
it does not contribute to the renormalization of g, and the lat-
ter can be obtained by considering solely the fist and last line
of equation (869): this is a φ4-type theory, with one complex
bosonic, and two complex fermionic fields. It can equivalently
be viewed as complex φ4-theory at N = −1, or real φ4-theory
with n = −2 [310].

8.7. Supermathematics: a critical discussion

When supersymmetry was first proposed [32, 696], it was
believed to produce an exact result, namely dimensional reduc-
tion. While the latter was found earlier [101, 104, 106] by
inspection of diagrams and a combinatorial analysis, super-
mathematics proved to be a clever tool to show it efficiently.
Supermathematics got discredited when it was realized that
dimensional reduction breaks down at the Larkin scale. As a
remedy, breaking of replica symmetry was invoked, or FRG.
As we have seen in section 2.20, RSB and FRG fit together,
and the applied field inherent to FRG explicitly breaks replica
symmetry, and as a consequence supersymmetry. As shown in
section 8.4, supermathematics can be used to obtain the FRG

Figure 75. Example of a LERW on the hexagonal lattice with 3000
steps, starting at the black point to the right and arriving at the green
point to the left.

flow equation for the disorder. Thus dimensional reduction
beyond the Larkin length is not a problem of supermathemat-
ics, but of its improper application.

It has been argued that equation (835) is inappropriate as
it sums over all saddle points, not only the minima, and for
this reason it fails. The objection per se can not be discarded.
But does it invalidate the formalism put in place above? We
believe not: the formalism makes numerous predictions, espe-
cially for such non-trivial observables as the FRG fixed-point
function Δ(w) (sections 2.2–2.13). Our intuition is that each
RG step merges pairs of close minima, without invoking any
of the higher-lying states present in the above argument. And
that by this the objection becomes irrelevant.

8.8. Mapping loop-erased random walks onto φ4-theory
with two fermions and one boson

Introduction. A LERW is defined as the trajectory of a RW
in which any loop is erased as soon as it is formed [702].
An example is shown on figure 75, where the underlying RW
is drawn in red, and the LERW remaining after erasure in
blue. Similar to a self-avoiding walk it has a scaling limit in
all dimensions, e.g. the end-to-end distance R scales with the
intrinsic length � as R ∼ �1/z, where z is the fractal dimension
[703]. It is crucial to note that while both LERWs and SAWs
are non-selfintersecting, their fractal dimensions do not agree
since they have a different statistics on the same set of allowed
trajectories. LERWs appear in many combinatorial problems,
e.g. the shortest path on a UST is an LERW. We have col-
lected the many connections in figure 77, together with other
identities, which we discuss in the next section.

In contrast to SAWs, LERWs have no obvious field-
theoretic description. In three dimensions LERWs have been
studied numerically [704–707], while in two dimensions they
are described by SLE with κ = 2 [708, 709], predicting a
fractal dimension zLERW(d = 2) = 5

4 . Coulomb-gas techniques
link this to the 2d O(n)-model at n = −2 [163, 710]. It was
recently shown that LERWs can be mapped in all dimensions
to the theory of two complex fermions and one complex boson,
equivalent to the O(n) model at n = −2 [310–312, 711].

Perturbative argument. This mapping was first established
perturbatively [310, 311]. Consider perturbation theory for the
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complex N-component φ4 theory

(870)

The drawing on the lhs of equation (870) is an LERW starting
at x, ending in z, and passing through the segments numbered
1 to 3. Due to the crossing at y, the loop labeled 2 is erased;
we draw it in red. The rhs of equation (870) gives all diagrams
of φ4 theory up to order gs. The first term is the free-theory
result, proportional to g0. The second term ∼g cancels the first
term, if one puts g → 1. Here it is crucial to have the same
regularization for the interaction as for the conditioning. The
third term is proportional to N, due to the loop, indicated in
red. Setting N →−1 compensates for the subtracted second
term. Thus setting g → 1 and N →−1, the probability to go
from x to z remains unchanged as compared to the free theory.
This is a necessary condition to be satisfied. Since the first two
terms cancel, what remains is the last diagram, corresponding
to the drawing for the trajectory of the LERW we started with.

Continuing to higher orders, one establishes a one-to-one
correspondence between traces of LERWs and diagrams in
perturbation theory. We still need an observable which is 1
when inserted into a blue part of the trace, and 0 within a red
part. This can be achieved by the operator

O(y) :=Φ∗
1(y)Φ1(y) − Φ∗

2(y)Φ2(y). (871)

When inserted into a loop, it cancels, whereas inserted into
the backbone (LERW, blue), it yields one for each point. The
fractal dimension z of an LERW is extracted from the length
of the walk after erasure (blue part) as〈∫

y,zΦ
∗
1(x)O(y)Φ1(z)

〉
〈∫

zΦ
∗
1(x)Φ1(z)

〉 ≡ m2

〈∫
y,z
Φ∗

1(x)O(y)Φ1(z)

〉
∼ m−z . (872)

Proof via Viennot’s theorem. This section is a shortened
version of [312], itself inspired by [711]. The main tool is a
combinatorial theorem due to Viennot [712]. It is part of the
general theory of heaps of pieces (online lectures [713]). Here
it reduces to a relation between LERWs, and collections of
loops. To state the theorem, we need some definitions.

Consider a RW on a directed graphG. The walk moves from
vertex x to y with rate βxy, and dies out with rate λx = m2

x . The
coefficients {βxy}x,y∈G are weights on the graph. In particular,
when βxy is positive,G contains an edge from x to y. Denote by
rx :=λx +

∑
y βxy the total rate at which the walk exits from

vertex x.
A path is a sequence of vertices, denoted ω = (ω1, . . . ,ωn).

The probability P(ω) that the RW selects the path ω and then

stops is

P(ω) =
λωn

rωn

q(ω), (873)

q(ω) =
βω1ω2

rω1

βω2ω3

rω2

. . .
βωn−1ωn

rωn−1

. (874)

A loop is a path ω = (ω1, . . . ,ωn−1,ωn = ω1) where the
first and last points are identical, and all other vertices dis-
tinct, so it cannot be decomposed into smaller loops. Loops
obtained from each other via cyclic permutations are consid-
ered identical.

A collection of disjoint loops is a set L = {C1, C2, . . . } of
mutually non-intersecting loops. We denote the set of all such
collections by L.

To formulate the theorem, fix a self-avoiding47 path γ.
Define the set Lγ to consist of all collections of disjoint loops
in which no loop intersects γ. Then Viennot’s theorem can be
written as (|L| being the number of loops)

A(γ) := q(γ)
∑
L∈Lγ

(−1)|L|
∏
C∈L

q(C) = P(γ) ×Z , (875)

P(γ) =
∑

ω:L(ω)=γ

q(ω), (876)

Z =
∑
L∈L

(−1)|L|
∏
C∈L

q(C). (877)

For A(γ) one sums over the ensemble of collections of loops
which do not intersect γ, giving each collection a weight
(−1)|L|

∏
C∈L q(C). The rhs contains two factors. The first,

P(γ), is the weight to find the LERW path γ, our object of
interest. The second is the partition function Z . Condition-
ing the walk to stop at x, this relation can be read as P(γ) =
A(γ)/Z .

To prove equation (875) consider a pair {ω, L} constructed
as follows: take a path ω such that L(ω) = γ and an arbitrary
collection L of disjoint loops. Our goal is to construct another
pair {ω′, L′} by transferring a loop from L to ω or vice versa,
depending on where the loop originally was. For example,

(878)

In the first drawing, the left loop is part of ω, whereas in the
second one it is part of L′. These terms cancel, as (−1)|L| =
−(−1)|L

′|, and all other factors are identical. After each such
pair is canceled, we are left with the terms in which it is impos-
sible to transfer a loop from ω to L or vice versa. These are
exactly the terms on the lhs of equation (875).

For this procedure to work we need to ensure that we can-
not obtain the same pair {ω′, L′} starting form two different
pairs {ω, L}. In order to achieve this, we use the following
prescription. Start walking along ω, until

47 Warning: a self-avoiding path is a combinatorial object. The loop-erased
random walk is one possible distribution on the set of self-avoiding paths. It
should not be confused with the self-avoiding walk or self-avoiding polymer,
a distinct distribution on the same set of self-avoiding paths.
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(a) we reach a vertex ωi that belongs to some C = (ωi =
c1, c2 . . . , cm = ωi) ∈ L, or

(b) we reach a vertex ωi that does not belong to any C, but
that we have already seen before, i.e., ω j = ωi for j < i.

In the first case, we transfer C to ω, i.e.,

ω′ = (ω1, . . . ,ωi, c2, . . . , cm−1,ωi, . . . ,ωn),

L′ = L \ {C}.
(879)

In the second case, we apply the one-loop erasure to ω, and
transfer the erased loop to L,

ω′ = (ω1, . . . ,ω j,ωi+1, . . . ,ωn),

L′ = L ∪ {(ω j,ω j+1, . . . ,ωi = ω j)}.
(880)

Note that disjointness of the loop collections is preserved under
the transfer, and that the loop erasure of ω′ remains γ. This
completes the proof. For examples see [312].

A lattice action with two complex fermions and one complex
boson. Our goal is to write a lattice action which generates
A(γ), the lhs of equation (875). This can be achieved with
an action based on one pair of complex conjugate fermionic
fields. While this theory sums over all paths γ, yielding back
the RW propagator, it contains no information on the era-
sure. In order to answer whether the resulting loop-erased path
passes through a given point y it is necessary to use more fields.
The simplest such setting consists of two pairs of complex con-
jugate fermionic fields (φ1,φ∗

1), and (φ2,φ∗
2), as well as a pair

of complex conjugate bosonic fields (φ3,φ∗
3). When appearing

in a loop, the latter cancels one of the fermions.
We define the action as

φ∗(y)φ(x) :=
3∑

i=1

φ∗
i (y)φi(x), (881)

e−S =
∏

x

e−rxφ
∗(x)φ(x)

[
1 +

∑
y

βxyφ
∗(y)φ(x)

]
. (882)

The path integral is defined by integrating over the nf = 2 fam-
ilies of fermionic fields, (φ∗

i ,φi), i = 1, 2, and nb = 1 family of
bosonic fields, i = 3. For βxy = 0, we obtain

Z0 =
∏

x

rnf−nb
x =

∏
x

rx . (883)

Define (normalized) expectation values 〈O(φ∗,φ)〉 w.r.t. the
action (882) and the (normalized) partition function Z as

〈O(φ∗,φ)〉 :=
1
Z0

∫
D[φ]D[φ∗]e−SO(φ∗,φ), (884)

Z := 〈1〉 . (885)

Calculating Z by expansion in βxy is best done graphically:
due to the square bracket in equation (882), at each x one can
place exactly one outgoing arrow to one of the neighbors y,
with color i, or no arrow. Summing over all possible colorings
and all graphs, we obtain Z as given in equation (877).

Figure 76. An example of a diagram that contributes to U. Our
coloring conventions are blue for (φ1,φ∗

1), green for (φ2,φ∗
2), and red

for (φ3,φ∗
3). Reproduced from [312]. CC BY 4.0.

In order to assess whether a point b belongs to a LERW
from a to c after erasure, we fix the three vertices a, b and c,
and consider the observable

U(a, b, c) = λcr2
brc 〈φ2(c)φ∗

2(b)φ1(b)φ∗
1(a)〉 , (886)

defined by equation (884).
The graphs that contribute consist of a self-avoiding path γ

and a collection L of disjoint self-avoiding colored loops such
that (see figure 76):

(a) γ is a path from a to c passing through b. The edges of
γ between a and b have color 1, and the edges between b
and c have color 2.

(b) Fix C ∈ L. If the color of C is 2 then it cannot intersect γ.
If its color is 1 or 3, it can only intersect γ at the (final)
point c.

In the latter case, the contribution to U(a, b, c) is

(−1)#fermionic loopsq(γ)
∏
C∈L

q(C). (887)

We now sum over all possible colorings of the loops. Since
loops that intersect c may have either color 1 or 3, one
fermionic and one bosonic, they cancel, leaving only graphs
in which loops do not intersect γ. The other loops, as before,
give a factor of −1. We therefore established that

U(a, b, c) =
∑

γ∈SA(a,b,c)

q(γ)
∑
L∈Lγ

(−1)|L|
∏
C∈L

q(C), (888)

where the sum is over all self-avoiding paths from a to
c passing through b, and denoted SA(a, b, c). In view of
equation (875) this can be written as

U(a, b, c) =
∑

γ∈SA(a,b,c)

A(γ). (889)

It implies that our object of interest, the probability that an
LERW starting at a and ending in c passes through b is

∑
γ∈SA(a,b,c)

P(γ) =
U(a, b, c)

Z
. (890)
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Continuous limit of the lattice action. Let us rewrite the
action S explicitly,

S =
∑

x

[
rxφ

∗(x)φ(x) − ln

(
1 +

∑
y

βxyφ
∗(y)φ(x)

)]
.

(891)
The leading term in S reads

∑
x

[
rxφ

∗(x)φ(x) −
∑

y

βxyφ
∗(y)φ(x)

]

=
∑

x

φ∗(x)[m2
x −∇2

β]φ(x),

m2
x = rx −

∑
y

βyx , ∇2
βφ(x) =

∑
y

βyx[φ(y) − φ(x)].

(892)

The subleading term in S is

1
2

∑
x

[∑
y

βxyφ
∗(y)φ(x)

]2

=
g
2

∑
x

[
φ∗(x)φ(x)

]2
+ . . .

g :=

[∑
y

βxy

]2

, (893)

where the dropped terms contain at least one lattice Laplacian
∇2

β . Standard arguments [2] show that the latter are irrelevant
in an RG analysis, as are higher-order terms in the expansion of
the ln in equation (891). Taking the continuum limit, we arrive
at the theory defined in equation (869), setting there u, ũ → 0,
and identifying (ψ̄i,ψi), i = 1, 2 there with (φ∗

i ,φi) here, and
(φ̃,φ) there with (φ∗

3,φ3) here.
Perturbative results. Using φ4-theory at n = −2 allows us

to obtain an extremely precise estimate of the fractal dimension
z, which can be compared to an even more precise Monte Carlo
simulation,

z = 1.6243(10) (6 loops) [140], (894)

z = 1.62400(5) (Monte Carlo) [708]. (895)

The agreement is quite impressive.

8.9. Other models equivalent to loop-erased random walks,
and CDWs

There is a plethora of further relations relating CDWs or
LERWs to other critical systems, see figure 77. Let us discuss
at least some of them: while LERWs are non-Markovian RWs,
their traces are equivalent to those of the Laplacian RW [715,
719], which is Markovian, if one considers the whole trace as
the variable of state. It is constructed on the lattice by solving
the Laplace equation ∇2Φ(x) = 0 with boundary conditions
Φ(x) = 0 on the already constructed curve, and Φ(x) = 1 at
the destination of the walk, either a chosen point, or infin-
ity. The walk then advances from its tip x to a neighboring
point y, with probability proportional to Φ(y). As Φ(x) = 0,

Φ(y) ≡ Φ(y) − Φ(x) can be interpreted as the electric field of
the potential Φ(y).

In a variant of this model growth is allowed not only from
the tip, but from any point on the already constructed object,
with a probability ∼Φ(y). This is known as the dielectric
breakdown model [720], the simplest model for lightning. The
same construction pertains to diffusion-limited aggregation
[721].

The shortest path on a UST is an LERW [714]. The latter
are equivalent to Eulerian circuits [715], and Abelian sandpiles
[718]. Abelian sandpiles are equivalent to the Potts-model in
the limit of q → 0 [514]. Many of these exact mappings can
be found in the lecture [515]. It was conjectured long ago that
Abelian sandpiles map on CDWs [120]. A test on the FRG
field theory was performed in [717], and validated in [706].

It would be interesting to generalize loops to higher-
dimensional surfaces, as was done for self-avoiding manifolds
in [722, 723].

8.10. Conformal field theory for critical curves

In d = 2, all critical exponents should be accessible via con-
formal field theory (CFT). The latter is based on ideas pro-
posed in the 80s by Belavin et al [724]. They constructed a
series of minimal models, indexed by an integer m � 3, start-
ing with the Ising model at m = 3. These models are confor-
mally invariant and unitary, equivalent to reflection positive
in Euklidean theories. For details, see one of the many excel-
lent textbooks on CFT [234, 237, 238, 725]. Their conformal
charge48 is given by

c = 1 − 6
m(m + 1)

. (896)

The list of conformal dimensions for allowed operators at a
given m is given by the Kac formula with integers r, s

hr,s =
[r(m + 1) − sm]2 − 1

4m(m + 1)
, 1 � r < m, 1 � s � m.

(897)
It was later realized that other values of m also correspond to
physical systems, in particular m = 1 (LERWs), and m = 2
(self-avoiding walks). These values can further be extended to
non-integer n and m, using the identification

n = 2 cos
( π

m

)
. (898)

More strikingly, the table of dimensions allowed by
equation (897) has to be extended to half-integer val-
ues, including 0. This yields: the fractal dimension of the
propagator line [726–728]

df = 2 − 2h1,0 = 1 +
π

2
(
arccos

(
n
2

)
+ π

) . (899)

48 The conformal charge is the coefficient in the leading term of the OPE of
the stress–energy tensor. It also gives the amplitude of finite-size corrections
[3].
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Figure 77. Relations between Laplacian walks, LERW, USTs, Eulerian circuits, the ASM, the Potts-model in the limit of q → 0, CDWs at
depinning, mapping onto the FRG field theory at depinning, reducing to φ4-theory at n = −2, and equivalent to an interacting theory of two
complex fermions and one complex boson.

ν, i.e. the inverse fractal dimension of all lines, be it propagator
or loops ([728], inline after equation (2))

ν =
1

2 − 2h1,3
=

1
4

(
1 +

π

arccos( n
2 )

)
. (900)

For η, there are two suggestive candidates from the Ising
model, η = 4h1,2 = 4h2,2, which do not work for other values
of n; instead [726–728]

η = 4h 1
2 ,0 =

5
4
− 3 arccos

(
n
2

)
4π

− π

arccos
(

n
2

)
+ π

. (901)

It has a square-root singularity both for n = −2 and n = 2.
There is no clear candidate for the exponent ω [140]. The
crossover exponent φc [1, 140, 729] (explained in [140], page
7) becomes

φc = νdf =
1 − h1,0

1 − h1,3
=

1
4
+

3π
8 arccos( n

2 )
. (902)

To conclude, we remark that ideas identifying symplectic
fermions with the ASM [730] are overly simplistic, as they
do not catch any of the above exponents.

9. Further developments and ideas

9.1. Non-perturbative RG (NPRG)

The renormalization transformation originally proposed by
Wilson and Kogut [117] consists in integrating out a specific
range of fast modes, and following the effective action of the
remaining modes under this transformation. While this proce-
dure is exact by construction, its implementation is infeasible,
and one has to rely on approximation schemes. Several such
schemes have been proposed:

(a) expansion in ε = 4 − d [111]. This scheme produces a
divergent, albeit Borel-resummable series in ε, with high
predictive power [2, 140, 731, 732].

(b) Expansion in the number of components N [2, 733].
This works in general well for N � 5, but gives mostly
qualitative information at N = 1.

(c) The non-perturbative RG (NPRG) approach. This tech-
nique can be formulated for the free energy F (J) =
ln Z(J) [734], or the effective action Γ[φ] [735]. For the
effective action it has the structure

∂�Γ[φ] =
1
2

tr

[(
δ2Γ[φ]
δφ2

+ R�

)−1

∂�R�

]
. (903)

The function Rl is a momentum cutoff function, optimized for
convergence. The simplest truncation of equation (903) is the
local potential approximation, sometimes followed by a gra-
dient expansion. (For historical work and a recent review see
[734–740].)

The FRG technique used in this review is perturbative
in ε = 4 − d; keeping the exact field dependence is crucial.
The NPRG is an approximation (truncation) in the momen-
tum dependence. Based on a numeric integration of the flow
equations, keeping only the leading orders in the field is often
sufficient and accelerates the implementation. The NPFRG
(used for the RF Ising model in section 9.2) is approximate
in the momentum, but aims at keeping the full field depen-
dence as does perturbative FRG. One sometimes encounters
the term exact RG instead of NPRG, a notion better reserved
for the concept of RG than any of its approximate implemen-
tations. The Heidelberg school [735] now uses FRG instead
of NPRG, a notion we reserve to situations when the exact
functional form is required.

9.2. Random-field magnets

Another domain of application of the Functional RG are spin
models in a RF (for an introduction see [741]). The model
usually studied is

H =

∫
dd x

1
2

(∇�S)2 + �h(x)�S(x), (904)

where �S(x) is a unit vector with N-components, and �S(x)2 =
1. This is the so-called O(N ) sigma model, to which has
been added a RF, which can be taken Gaussian hi(x)h j(x′) =
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σδi jδ
d(x − x′). In the absence of disorder the model has a fer-

romagnetic phase for T < T f and a paramagnetic phase above
T f . The lower critical dimension is d = 2 for any N � 2, mean-
ing that below d = 2 no ordered phase exists. In d = 2 solely
a paramagnetic phase exists for N > 2; for N = 2 (XY model)

quasi LR order exists at low temperature, with�S(x)�S(x′) decay-
ing as a power law of x − x′. This is the RP fixed point
of sections 2.9 and 2.28. Here we wish to study the model
directly at T = 0. The first step is to rewrite the hard-spin con-
straint�S(x)2 = 1 as a field theory. This yields an energy before
disorder-averaging

H =

∫
dd x

1
2

[
∇�φ(x)

]2
+ V

(
�φ(x)

)
+ �h(x)�φ(x).

(905)

The potential V(�φ) is the typical double-well potential, as
e.g. V(�φ) 
 (�φ2 − 1)2. The dimensional-reduction theorem in
section 1.6, written for this energy indicates that the effect of a
quenched RF in dimension d equals the one for a pure model
at a temperature T ∼ σ in dimension d − 2. Hence one expects
a transition from a ferromagnetic phase to a disordered phase
at σc as the disorder increases in any dimension d > 4, and
no order for d < 4 and N � 2. Not surprisingly, this is again
incorrect, as can be seen using FRG.

It was noticed by Fisher [742] that an infinity of relevant
operators are generated. These operators, which correspond to
an infinite set of random anisotropies, are irrelevant by naive
power counting near d = 6 [743, 744], the naive upper critical
dimension (corresponding to d = 4 for the pure O(N ) model
via dimensional reduction). Indeed many early studies concen-
trating on d around d = 6 missed the anisotropies mentioned
above.

A controlled ε-expansion using FRG can be constructed
around dimension d = 4, the naive lower critical dimension,
using the reformulation of the Hamiltonian (904) in terms of
a non-linear σ-model, first at one-loop order [742–744], and
then extended to two loops [33, 38]. The FRG includes all
operators which are marginal in d = 4. Its action in replicated
form reads

S =

∫
dd x

1
2T

∑
a

[
∇�Sa(x)

]2
− 1

2T2

∑
ab

R̂
(
�Sa(x)�Sb(x)

)
.

(906)
The function R̂(z) parameterizes the disorder. The term R̂(z) ∼
z is a direct result of the disorder average of equation (905);
higher-order terms are generated within perturbation theory.
The FRG flow equation has been obtained to order R2 (one
loop) [742–744] and R3 (two loops) [33, 38]. It is best param-
eterized in terms of the variable φ, the angle between the two
replicas, defining R(φ) = R̂(z = cos φ). Since the vectors are
of unit norm, z = cosφ lies in the interval [−1, 1].

∂�R(φ) = εR(φ) +
1
2

R′′(φ)2 − R′′(0)R′′(φ)

+ (N − 2)

[
1
2

R′(φ)2

sin2 φ
− cot φR′(φ)R′′(0)

]

+
1
2

[
R′′(φ) − R′′(0)

]
R′′′(φ)2

+ (N − 2)

[
cot φ

sin4 φ
R′(φ)3 − 5 + cos 2φ

4 sin4 φ
R′(φ)2R′′(φ)

+
1

2 sin2 φ
R′′(φ)3 − 1

4 sin4 φ
R′′(0)

(
2(2 + cos 2φ)R′(φ)2

− 6 sin 2φR′(φ)R′′(φ) + (5 + cos 2φ) sin2 φR′′(φ)2

)]
− N + 2

8
R′′′(0+)2R′′(φ) − N − 2

4
cot φR′′′(0+)2R′(φ)

− 2(N − 2)
[
R′′(0) − R′′(0)2 + γaR′′′(0+)2

]
R(φ). (907)

The last factor proportional to R(φ) takes into account
the renormalization of temperature, absent in the manifold
problem49. The full analysis of this equation is quite involved.
The key observation is that under FRG again a cusp develops
near z = 1. Analysis of the FRG fixed points shows interest-
ing features already at one-loop order. For N = 2, the fixed
point corresponds to the Bragg-glass phase of the XY model
with quasi-long range order accessible via a d = 4 − ε expan-
sion below d = 4 [745]. Hence for N = 2 the lower critical
dimension is dlc < 4, and conjectured to be dlc < 3 [745].
On the other hand Feldman [743, 744] found that for N =
3, 4, . . . there is a fixed point in dimension d = 4 + ε > 4.
This fixed point has exactly one unstable direction, corre-
sponding to the ferromagnetic-to-disorder transition. The sit-
uation at one loop is thus rather strange: for N = 2, only a
stable FP which describes a unique phase exists, while for
N = 3 only an unstable FP exists, describing the transition
between two phases. The question is: where does the dis-
ordered phase go as N decreases? The complete analysis at
two-loop order [33] shows that there is a critical value of N,
Nc = 2.834 7408, below which the lower critical dimension
dlc of the quasi-ordered phase plunges below d = 4, resulting
into two new fixed points below d = 4. This is schematically
shown in figure 78. For N > Nc a ferromagnetic phase exists
with lower critical dimension dlc = 4. For N < Nc one finds
the expansion

dRF
lc = 4 − εc ≈ 4 − 0.1268(N − Nc)2 +O(N − Nc)3. (908)

One can then compute the critical exponents at this fixed point
[33, 38, 743, 744].

The expansions discussed above were either in d = 6 − ε,
neglecting by construction FRG corrections of the disorder
with the physics of the cusp, or in d = 4 + ε, neglecting ampli-
tude fluctuations in �φ(x) :=

∫
box

�S(x), as they were formulated
in terms of a non-linearσ-model. To find a consistent RG treat-
ment in the full (N, d)-plane is much more complicated, and
can to date only be achieved within the non-perturbative FRG
approach (NP-FRG), i.e. the RG must be both non-perturbative
(NP) and functional (FRG). For this formalism to work, and to
correctly encounter shocks, i.e. the physics of the cusp, one
has to allow for a cusp in the effective disorder correlator. It

49 The constant γa is discussed in [33].
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Figure 78. Phase diagram of the RF non-linear sigma model. D = disordered, F = ferromagnetic, QLRO = quasi long-range order.
Reprinted figure with permission from [33], Copyright (2006) by the American Physical Society.

Figure 79. The phase diagram of Tarjus and Tissier. Reprinted by
permission from Springer Nature Customer Service Centre GmbH:
Springer. Eur. Phys. J. (c) 2020. The added line given by
equation (909) qualitatively agrees with the NP-FRG prediction.

is the merit of Tarjus and Tissier to have transformed this gen-
eral idea into a predictive framework [34–37, 39, 746]. We
show in figure 79 their phase diagram. The behavior in the
region around d = 4 and N = Nc was obtained above from the
non-linear σ model. A novel prediction is that for d = 4 + ε
and N > N∗ = 18 there is a solution without cusp, and as a
consequence dimensional reduction and super-symmetry are
restored [34, 747–749]. The critical line starting at d = 4 and
N∗ = 18 can be obtained in an ε-expansion [38, 750],

N∗(d) = 18 − 49
5

(d − 4) +O(d − 4)2. (909)

The FRG in its perturbative and NP versions can be applied
to a variety of disordered systems in and out of equilibrium,
see e.g. [746]. In particular, O(N ) models with a random
anisotropy can be treated. For this universality class, details
of the phase diagram, the critical exponents, and the many
subtleties involved, the reader is referred to [33–39, 746,
750–753].

For RF, the NP-FRG solution qualitatively agrees with
the perturbative FRG solution, but systematically predicts a
smaller N∗(d), terminating for N = 1 at d = 5.1, while the
analytic solution favors d = 5.74. We remind that NP-FRG
is based on a truncation of the functional form of the effec-
tive action. By construction it includes loop corrections at all
orders, but in an approximate way beyond one loop. Thus for

the Ising model, dimensional reduction is valid near dimen-
sion d = 6, whereas a non-trivial ordered phase exists down to
d = 2. This has been confirmed numerically in [27, 754–756],
the most remarkable test being the comparison of diverse cor-
relation functions in the five-dimensional RF model, as com-
pared to their pure three-dimensional counterparts at T = Tc

[756].
There is renewed interest into the RF Ising model

[700, 701]. The authors follow the proposition of Cardy [698]
to use n bosonic replicas φi, i = 1, . . . , n, to introduce fields

u :=
1
2

[
φ1 + (n − 1)−1(φ2 + . . .+ φn)

]
, (910)

ũ :=
1
2

[
φ1 −

T
Δ(0)

(n − 1)−1(φ2 + . . .+ φn)

]
, (911)

together with (n − 2) fields ψ j which are linear combinations
of T

Δ(0) (φ2, . . . ,φn) chosen to be orthogonal to φ2 + . . .+ φn.
As Cardy showed, this choice of fields allows one to write
an action which (apart from terms irrelevant in 6 − ε dimen-
sions) is formally equivalent to equation (837), but contain-
ing more fields, thus a breaking of super-symmetry becomes
possible. The authors then identify [701] such perturbations
which destabilize the supersymmetric dimensional-reduction
fixed point below dc ≈ 4.2. In section 8.4 we showed that in
order to see the renormalization of the disorder, one needs
more than one physical copy. To be precise, the cusp appears
in the renormalized disorder correlations, as a function of the
difference between the two physical copies. In such a calcula-
tion, the critical dimension moves up to dc ≈ 4.6 [757]. We do
not see how this difference between replicas is present in the
above choice of coordinates, but we believe that by doubling
the set of Cardy variables this can be achieved.

We would like to conclude by some general remarks on the
form of the effective action necessary for a proper RG treat-
ment of the RF Ising model. As in all disordered systems, it
should at least contain a one-replica and a two-replica contri-
bution. Its general form should be as given in equation (30)
in a replica formulation, in equation (314) in a dynamical for-
mulation, or in equation (836) in the Susy formulation. While
the one-replica part may contain an arbitrary function of u and
∇u, let us concentrate on the two-replica part parameterizing
the disorder correlations. For disordered elastic manifolds, this
is achieved by the function Δ(u1 − u2), where we remind that
Δ(u1 − u2) has only one argument due to the STS (66). As the
latter is absent for the RF Ising model, one needs to make a
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more general ansatz, see e.g. [37, 752],

Δ(u1, u2) = Δ̂(ū, δu), (912)

ū :=
1
2

(u1 + u2), δu := |u2 − u1|. (913)

The absolute value appears sinceΔ(u1, u2) = Δ(u2, u1). Let us
apply as in sections 2.10 and 2.11 a field h = m2w, and denote
ui ≡ u(wi) the expectation of u given wi. Both in the statics
and at depinning u(wi) is unique. The connected correlation
function 〈u1u2〉c is

u(w1)u(w2)
c
= Γ′′

1(u1)−1Δ(u1, u2)Γ′′
1(u2)−1. (914)

Here Γ′′
1(u) is the second (functional) derivative of the one-

replica contribution to the effective action. Formally, the lhs
which depends on w1 and w2 is the Legendre transform of the
second cumulant Δ(u1, u2) in the effective action depending
on u1 and u2. Graphically, the prescription amounts to ampu-
tating the one-particle irreducible contributions to (914). The
key point is that the observable on the lhs can be measured.
For small w1 − w2 > 0 it behaves with w̄ := (w1 + w2)/2 as

1
2

[u(w1) − u(w2)]2
c 
 A(w̄)|w1 − w2|+O(w1 − w2)2,

(915)

A(w̄) :=

〈
S2
〉

2 〈S〉

∣∣∣∣
w̄

× u′(w̄). (916)

As indicated, the ratio
〈
S2
〉
/(2 〈S〉) depends on w̄. These rela-

tions are derived similar to equation (104), except that when
writing equation (102) as

u(w1) − u(w2) = 〈S〉ρshock|w1 − w2|+O(w1 − w2)2,
(917)

the lhs becomes

u(w1) − u(w2) 
 u′(w̄)(w1 − w2) +O(w1 − w2)2. (918)

Solving equation (914) forΔ(u1, u2) proves that it has a cusp as
a function of u1 − u2, with amplitude given in equation (916).

9.3. Dynamical selection of critical exponents

Evaluating the partition function of a field theory in presence
of a potential V0(u) at constant background field u to one-
loop order, and normalizing with its counterpart at V0 = 0, one
typically gets a partition function of the form

ln

(
Z[u]
Z0[u]

)
= −

∫ Λ dd k
(2π)d

ln

(
1 +

V′′
0 (u)

k2 + m2

)
. (919)

We have explicitly written an UV cutoff Λ. This equation is at
the origin of non-perturbative renormalization group (NPRG)
schemes (section 9.1). To leading order, the effective action is
Γ(u) = − ln(Z[u]/Z0[u]), and denoting its local part by V(u),
we arrive at the following functional flow equation for the
renormalized potential V(u)

− m∂mV(u) = −m∂m

Λ∫
ddk

(2π)d
ln

(
1 +

V′′
0 (u)

k2 + m2

)
. (920)

Figure 80. The function V0(φ), for φ4 theory (top, red, dashed), and
a bounded potential (bottom, blue, solid). Reprinted figure with
permission from [758], Copyright (2016) by the American Physical
Society.

Keeping only the leading non-linear term [758] leads to the
simple flow equation

− m∂mV(u) = −md−4 1
2
V′′(u)2 + . . . (921)

Note that this equation is very similar to the FRG flow
equation (61) for disordered elastic manifolds. It reproduces
the standard RG-equation for φ4 theory; indeed, setting

V(u) = m4−d u4

72
g, (922)

we arrive with ε := 4 − d at

− m∂mg = εg − g2 + . . . (923)

This is the standard flow equation ofφ4 theory, with fixed point
g∗ = ε. One knows that the potential (922) at g = g∗ is attrac-
tive, i.e. perturbing it with a perturbation φ2n, n > 2, the flow
brings it back to its fixed-point form.

This fixed point, and its treatment with the projected sim-
plified flow equation (923) is relevant in many situations, the
most famous being the Ising model. The form of its micro-
scopic potential, which is plotted in figure 80 (red dashed
curve), grows unboundedly for largeφ. This is indeed expected
for the Ising model, for which the spin, of which φ is the
coarse-grained version, is bounded.

There are, however, situations, where this is not the case. An
example is the attraction of a domain wall by a defect. In this
situation, one expects that the potential at large φ vanishes, as
plotted on figure 80 (solid blue line). The question to be asked
is then: where does the RG flow lead?

As one sees from figure 80, the bounded potential V0

is negative. In order to deal with positive quantities, set
V(u) ≡ −R(u). The flow equation to be studied is

− m∂mR(u) = m−ε 1
2
R′′(u)2 + . . . (924)

As shown in [758], for generic smooth initial conditions as
plotted on figure 80:
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(a) The flow equation (924) develops a cusp at u = 0, and a
cubic singularity at u = uc > 0.

(b) The rescaled flow equation for the dimensionless function
R̃(u) (to be compared to equation (64))

−m∂mR̃(u) = (ε− 4ζ)R̃(u) + ζuR̃′(u)

+
1
2

R̃′′(u)2 + . . . (925)

has an infinity of fixed points −m∂mR̃(u) = 0, indexed by
ζ ∈ [ ε4 ,∞].

(c) The solution chosen dynamically when starting from
smooth initial conditions is ζ = ε

3 . Its analytic expression
for 0 � u � 1 reads

R̃ζ= ε
3
(u) = ε

[
1

18
(1 − u)3 − 1

72
(1 − u)4

]
. (926)

It vanishes for u > 1, and is continued symmetrically to
u < 0.

This scenario is quite unusual: normally, the perturbatively
accessible fixed points of the RG flow have only one fixed
point. In the few cases where there is more than one fixed point,
the spectrum of fixed points is at least discrete. In contrast, here
is a spectrum of fixed points. On the other hand, only one of
them seems to be chosen. Thus experiments would only see
this one fixed point.

It is yet not clear to which physical system it applies. As
discussed in the literature [759–764], experiments describ-
ing wetting are usually attributed to a flow equation linear in
R(u). Is a nonlinear fixed point possible? Let me cite Thierry
Giamarchi, one of the pioneers of FRG: ‘whenever there is a
simple equation, it is somewhere realized in nature’.

9.4. Conclusion and perspectives

The aim of this review was to give a thorough overview over
the physics of disordered elastic manifolds, with its numerous
connections to systems as diverse as sandpiles and LERWs. We
covered all theoretical tools developed to date, including FRG,
replicas, RSB, MSR dynamics, and super-symmetry. We put
emphasis on applications, giving experimentalists the neces-
sary tools to verify the theoretical concepts, and going beyond
critical exponents.

Our aim at completeness was seriously challenged by the
shear amount of publications on the subject, and we apolo-
gize for any omissions. Please let us know, and we will try to
remedy.

While the presented methods are powerful, fundamental
questions remain: can FRG be applied to other systems such as
spin glasses, sheared colloids, real glasses, or Navier–Stokes
turbulence? Can FRG be applied beyond the elastic limit, i.e.
to systems with overhangs or topological defects, or to fractal
curves that cannot be represented by directed interfaces?

The author is looking forward to exciting new discoveries,
and the contributions of today’s PhD students and postdocs.
As for this review, it needs to stop here.
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Appendix A. Basic tools

A.1. Markov chains, Langevin equation, inertia
In Markov chains the state at time tN :=Nτ is given by the
product of transition probabilities

P(xN, xN−1, . . . , x1, x0) =
N∏

i=1

Pτ (xi|xi−1). (927)

Transition probabilities are drawn from a Gaussian distribu-
tion. The probability to be at x (the variable) given x′ (prime
as previous), reads

Pτ (x|x′) = 1√
4πτD(x′)

e
− [η(x−x′)−τF(x′)]2

4ητD(x′) . (928)
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Both F and D depend on the previous position (Itô discretiza-
tion). As a stochastic process, this reads

η(xi+1 − xi) = τF(xi) +
√
τξi, (929)

〈ξi〉 = 0, 〈ξiξ j〉 = 2δi jηD(xi). (930)

The formal limit of τ → 0 is the Itô–Langevin equation,

η ẋ(t) = F
(

x(t)
)
+ ξ(t), (931)

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2ηδ(t − t′)D
(

x(t)
)
. (932)

The factor of η is the friction coefficient in Newton’s equation
of motion. Indeed, for the problem at hand the latter reads

M∂t ẋ(t) = F
(

x(t)
)
+ ξ(t) − η ẋ(t). (933)

On the lhs is the mass M (or inertia) of the particle (not to
be confounded with the mass m in field theory), times its
acceleration. This defines a characteristic time scale

τM =
M
η
. (934)

For times t � τM , inertia plays no role, M can be set to 0, and
we arrive at equation (931).

The situation is different, when the noise is correlated on
a time scale τ � τM . Then in the equation of motion F(x(t))
changes, since x(t) changes, and it is better to discretize this
limit as

η(xi+1 − xi) = τF

(
xi + xi+1

2

)
+
√
τξi. (935)

This prescription is known as mid-point or Stratonovich
discretization.

Let us finally rescale time, t → ηt, which effectively sets
η → 1. The friction coefficient η can always be restored by
multiplying each time derivative with η.

A.2. Itô calculus

Consider (with η = 1)

g(xi+1) − g(xi) = g
(
xi + τF(xi) +

√
τξi

)
− g(xi)

= g′(xi)
[
τF(xi) +

√
τξi

]
+

1
2

g′′(xi)τξ2
i +O(τ 3/2)

= g′(xi)
[
τF(xi) +

√
τξi

]
+ g′′(xi)τD(xi) +O(τ 3/2).

(936)

The last relation is justified since in any time slice maximally
two powers of ξi can appear. (If there could be 4 then one would
have to use Wick’s theorem to decouple them pairwise.) It is
implicitly understood that the noise is independent of x, thus
〈g(xi)ξi〉 = 0, and

〈
g(xi)ξ2

i

〉
= 2g(xi)D(xi)dt.

Mathematicians prefer setting xi → x, τ → dt, ξi
√
τ → dξ,

and write the Langevin equation as

dx = F(x)dt + dξ, (937)

〈dξ〉 = 0, dξ2 =
〈
dξ2

〉
= 2D(x)dt. (938)

The stochastic evolution of a function g(x) can then be written
with these ‘differentials’ as

dg(x) = g′(x)dx +
1
2

g′′(x)dx2 + . . .

= g′(x)[F(x)dt + dξ] +
1
2

g′′(x)[F(x)dt + dξ]2 + . . .

=
[
g′(x)F(x) + g′′(x)D(x)

]
dt + g′(x)dξ. (939)

This is known as Itô calculus. The rule of thumb to remember
is that when expanding to first order in the time differential dt,
as dξ ∼

√
dt, one has to keep all terms up to second order in

dξ.

A.3. Fokker–Planck equation

Derivation of (forward) Fokker–Planck equation using Itô’s
formalism: the forward Fokker–Planck equation can be
derived from Itô’s formalism. Consider the expectation of a
test function g(x) at time t:

〈g(xt)〉 ≡
∫

x
g(x)Pt(x). (940)

Taking the expectation of the first line of equation (939) yields

〈dg(xt)〉 = 〈g′(xt)dx〉+ 1
2

〈
g′′(xt)dx2

〉
+ . . . (941)

Averaging over the noise gives

d
dt

〈g(xt)〉 = 〈g′(xt)F(xt)〉+ 〈g′′(xt)D(xt)〉 . (942)

Expressing the expectation values with the help of
equation (940), we obtain∫

x
g(x)∂tPt(x)

=

∫
x
g′(x)F(x)Pt(x) + g′′(x)D(x)Pt(x). (943)

Integrating by part, and using that g(x) is an arbitrary test
function, we obtain the forward Fokker–Planck equation

∂tPt(x) =
∂2

∂x2

(
D(x)Pt(x)

)
− ∂

∂x

(
F(x)Pt(x)

)
. (944)

Our derivation is valid for any initial condition, thus the prop-
agator P(xf , tf |xi, ti) also satisfies the forward Fokker Planck-
equation as a function of x = xf , t = tf .

If there are several degrees of freedom xu, u = 1, . . . , L,
then equation (944) generalizes to an equation for the joint
probability Pt[x] ≡ Pt(x1, x2, . . . , xL)

∂tPt[x] =
L∑

u=1

∂2

∂x2
u

(
Du[x]Pt[x]

)
− ∂

∂xu

(
Fu[x]Pt[x]

)
.

(945)
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Passing to the continuum limit, this yields the functional
Fokker–Planck equation

∂tPt[x]

=

∫
du

δ2

δx(u)2

(
Du[x]Pt[x]

)
− δ

δx(u)

(
Fu[x]Pt[x]

)
.

(946)

The backward Fokker–Planck equation: let us study
P(xf , tf |xi, ti) as a function of its initial time and position.
To this purpose, write down the exact equation, using the
notations of equation (937),

P(xf, tf|x, t) = 〈P(xf, tf|x + dx, t + dt)〉 . (947)

The average is over all realizations of the noise η during a time
step dt. Expanding inside the expectation value to first order in
dt and second order in dx, and taking the expectation, we find

〈P(xf, tf|x + dx, t + dt)〉

=

〈
P(xf, tf|x, t) + dt∂tP(xf, tf|x, t)

+ dx∂xP(xf, tf|x, t) +
dx2

2
∂2

x P(xf, tf|x, t)

〉
= P(xf, tf|x, t) + dt

[
∂tP(xf, tf|x, t)

+ F(x)∂xP(xf, tf|x, t) + D(x)∂2
xP(xf, tf|x, t)

]
.

(948)

Comparing to equation (947) implies that the term of order dt
vanishes, thus

− ∂tP(xf, tf|x, t)

= F(x)
∂

∂x
P(xf, tf|x, t) + D(x)

∂2

∂x2
P(xf, tf|x, t). (949)

This is the backward Fokker–Planck equation. Note that con-
trary to the forward equation, all derivatives act on P(xf , tf |y, t),
not on F or D.

Remark on consistency. The form of the backward and for-
ward equations is constraint by an important consistency rela-
tion: using that the process is Markovian, we can write the
Chapman–Kolmogorov equation

P(xf, tf|xi, ti) =
∫

x
P(xf, tf|x, t)P(x, t|xi, ti). (950)

This relation must hold for all t between ti and tf . Taking a t
derivative and using the backward Fokker–Planck equation for
the first propagator P(xf , tf |x, t), and the forward equation for
the second P(x, t|xi, ti), we find cancelation of all terms upon
partial integration in x, due to the specific arrangement of the
derivatives in equations (944) and (949).

Remark on steady state. Let us find a steady-state solution
of equation (944), i.e. a solution which does not depend on

time. Integrating once and dropping the time argument yields

∂

∂x
[D(x)P(x)] = F(x)P(x) + const. (951)

Let us suppose that the probability P(x) vanishes when x →
∞. This implies that the constant vanishes. The solution is
obtained as (x0 is arbitrary)

P(x) =
N

D(x)
exp

(∫ x

x0

F(y)
D(y)

dy

)
, (952)

N−1 =

∫ ∞

−∞
dx

1
D(x)

exp

(∫ x

x0

F(y)
D(y)

dy

)
. (953)

The simplest case is obtained for thermal noise, i.e. D(x) =
T, and when the force F(x) is the derivative of a potential,
F(x) = −V ′(x). Equation (952) can then be written as

P(x) = N e−V(x)/T , N−1 =

∫ ∞

−∞
dx e−V(x)/T . (954)

This is Boltzmann’s law [765].

A.4. Martin–Siggia–Rose (MSR) formalism

The path integral. The transition probability (928) from x′ to
x was

Pτ (x|x′)dx =
dx√

4πτD(x′)
e
− [x−x′−τF(x′)]2

4τD(x′) . (955)

This is ugly: our standard field-theory calculations work with
polynomials in the exponential. We therefore rewrite this mea-
sure as

Pτ (x|x′)dx = dx
∫ i∞

−i∞

dx̃
2πi

e−Sτ [x,̃x], (956)

Sτ [x, x̃] = x̃
(
x − x′ − τF(x′)

)
− τ x̃2D(x′). (957)

The term Sτ [x, x̃] is termed action. Reassembling all time
slices, it is normally written in the limit of τ → 0 as

P(x|x0) =
∫ x(N)=x

x(0)=x0

D[x]D[x̃]e−S[x,̃x], (958)

S[x, x̃] =
∫

t
x̃(t) [ẋ(t) − F (x(t))] − x̃(t)2D (x(t)) , (959)

D[x]D[x̃] =
N∏

i=1

∫ ∞

−∞
dxi

∫ i∞

−i∞

dx̃i

2πi
. (960)

This is known as the MSR formalism (Martin–Siggia–
Rose) [295], the action also as Martin–Siggia–Rose–
Janssen–DeDominicis action, in honor of their respective
work [296–298, 766].

Changing the discretization. Let us turn back to a single
time slice, as given in equation (956). The variables x̃ and x
are conjugate, i.e.
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dx dx̃
2πi

e−x̃(x−x′) x̃n f (x, x̃)

=

∫
dx dx̃
2πi

e−x̃(x−x′)∂n
x f (x, x̃) , (961)∫

dx dx̃
2πi

e−x̃(x−x′ )(x − x′)n f (x, x̃)

=

∫
dx dx̃
2πi

e−x̃(x−x′)∂n
x̃ f (x, x̃). (962)

We can thus change our discretization scheme, i.e. replace
F(x′) → F(x̄), D(x′) → D(x̄), where

x̄ = αx + (1 − α)x′, 0 � α � 1. (963)

There are cases where this change is advantageous. On the
other hand, the microscopic dynamics may be such that F and
D depend on x̄ instead of x′ (see end of appendix A.1).

The consequences of the reparametrization (963) is under-
stood from the following example: expand eτ x̃F(x̄) − 1 to linear
order in τ ,

τ

∫
dx dx̃
2πi

e−x̃(x−x′) x̃F(x̄) f (x, x̃)

= τ

∫
dx dx̃
2πi

e−x̃(x−x′ )∂x [F(x̄) f (x, x̃)] . (964)

As the derivative acts on F(x̄), this depends on α, as ∂x x̄ = α.
Luckily, we can compensate this by an explicit x derivative:
wherever we change x → x̄, we also replace x̃ by x̃ − ∂x . This
yields for the action of a single time slice

Sτ [x, x̃]

= x̃
(
x − x′

)
− τ (x̃ − ∂x)F(x̄) − τ (x̃ − ∂x)2D(x̄)

= ατF′(x̄) − α2τD′′(x̄)

+ x̃
[
x − x′ − τF(x̄) + 2ατD′(x̄)

]
− τ x̃2D(x̄).

(965)

The noise-correlator D(x) did not change, but there is an
additional contribution to the force

F(x′) → F(x̄) − 2αD′(x̄). (966)

The first two terms, αF′(x̄) − α2D′′(x̄) can be interpreted as a
change in the integration measure. Let us stress that the change
in the action leaves the physics of the problem invariant. One
may arrive at α = 1

2 also when the bath is evolving more
slowly than the time scale set by viscosity (see end of appendix
A.1). Then the choice α = 1/2, known as Stratonovich dis-
cretization, is natural; one can use the above procedure to get
back to Itô’s discretization.

Interpretation of the field x̃(t). Let us now turn to an
interpretation of the two fields x(t) and x̃(t), and modify
equation (931) to

ẋ(t) = F (x(t)) + ξ(t) + f δ(t − t0). (967)

Thus at time t = t0, we kick the system with an infinitely small
force f . Then, the probability changes by

∂ f

∣∣∣∣
f=0

P(x|x0) = ∂ f

∣∣∣∣
f=0

∫ x(t)=x

x(0)=x0

D[x]D[x̃]e−S[x,̃x]

=

∫ x(t)=x

x0=x(0)
D[x]D[x̃], x̃(t0)e−S[x,̃x]. (968)

Multiplying with x(t) and integrating over all final configura-
tions, we obtain

R(t, t0) = ∂ f | f=0 〈x(t)〉 = 〈x(t)x̃(t0)〉 . (969)

The expectation is w.r.t. the measure D[x]D[x̃]e−S[x,̃x]. As
equation (969) is the response of the system to a change in
force, x̃ is called response field, and R(t, t0) response function.
Correlation functions are similarly obtained as

C(t, t′) = 〈x(t)x(t′)〉 . (970)

Since the probability is normalized,∫
P(x|x0)dx = 1, (971)

for all forces, one shows by taking derivatives w.r.t. forces
at different times that expectations of the sole response field
vanish,

〈x̃(t)〉 = 〈x̃(t)x̃(t′)〉 = 〈x̃(t)x̃(t′)x̃(t′′)〉 = . . . = 0. (972)

A.5. Gaussian theory with spatial degrees of freedom

Consider theories with spatial dependence, and let us suppose
that the energy is given by

H[u] =
∫

x

1
2

[∇u(x)]2 +
m2

2
u(x)2. (973)

This corresponds to an elastic manifold inside a confining
potential of curvature m2. The elastic forces acting on a piece
of the manifold at position x are given by

F(x) = −δH[u]
δu(x)

=
(
∇2 − m2

)
u(x). (974)

Its Langevin dynamics reads

∂tu(x, t) =
(
∇2 − m2

)
u(x, t) + ξ(x, t), (975)

〈ξ(t)ξ(t′)〉 = 2Tδ(t − t′)δ(x − x′). (976)

The action in Itô discretization is

S[u, ũ] =
∫

x,t
ũ(x, t)

[
∂t −∇2 + m2

]
u(x, t) − Tũ(x, t)2.

(977)
It can be diagonalized in momentum and frequency space,
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S[u, ũ] =
∫

k,ω
ũ(−k,−ω)

[
iω + k2 + m2

]
u(k,ω)

− Tũ(−k,−ω)ũ(k,ω)

=
1
2

∫
k,ω

(
u(−k,−ω)
ũ(−k,−ω)

)
M

(
u(k,ω)
ũ(k,ω)

)
, (978)

M =

(
0 −iω + k2 + m2

iω + k2 + m2 −2T

)
. (979)

This implies

M−1 =

⎛⎜⎝
2T

(iω+ k2+ m2)(−iω + k2 + m2)
1

iω + k2 + m2

1
−iω + k2 + m2

0

⎞⎟⎠ .

(980)
As a consequence,

R(k,ω) := 〈u(−k,−ω)ũ(k,ω)〉 = 1
iω + k2 + m2

, (981)

C(k,ω) := 〈u(−k,−ω)u(k,ω)〉= 2T
|iω + k2 + m2|2 .

(982)

Inverse Fourier transforming R leads to

R(k, t) = 〈u(−k, t)ũ(k, 0)〉

=

∫ ∞

−∞

dω
2π

eiωt

iω + k2 + m2
= e−(k2+m2)tΘ(t).

(983)

We used the residue theorem to evaluate the integral: there is a
pole at ω = i(k2 + m2), i.e. in the upper complex half-plane. If
t > 0, then the integral converges in the upper half plane, and
closing the contour there yields the residuum as written. For
t < 0, one has to close the path in the lower half-plane, and
there is no contribution, thus the Θ(t).

The response function (983) satisfies the massive diffusion
equation,

(∂t + k2 + m2)R(k, t) = δ(t). (984)

Performing one more inverse Fourier transform yields the
response function in real space, a.k.a. the diffusion kernel (we
complete the square)

R(x, t) =
∫ ∞

−∞

ddk
(2π)d

eikx−(k2+m2)tΘ(t)

=
e−m2t− x2

4t

(4πt)d/2
Θ(t). (985)

Setting d = 1 this is identical to equation (955) (setting there
η = D = 1, F = x′ = 0, and τ = t). Correlation functions can
be obtained as

C(k, t − t′) = 〈u(k, t)u(−k, t′)〉

= 2T
∫ ∞

−∞
dτ R(k, t − τ )R(k, t′ − τ )

= 2T
∫ min(t,t′)

−∞
dτ e−(k2+m2)(t+t′−2τ )

=
T

k2 + m2
e−(k2+m2)|t−t′|. (986)

For equal times one recovers the equilibrium correlator,

C(k, 0) = 〈u(k, t)u(−k, t)〉 = T
k2 + m2

. (987)

The correlation function (986) satisfies the differential
equation

∂tC(k, t − t′) = T
[
R(k, t′ − t) − R(k, t − t′)

]
. (988)

This relation is known as fluctuation–dissipation theorem. It is
more generally valid, see e.g. [298, 766].

A.6. The inverse of the Laplace operator

∇2

[
1

(2 − d)Sd
|�z|2−d

]
= δd(�z ), (989)

where the volume of the unitsphere is defined as

Sd =
2πd/2

Γ(d/2)
. (990)

Proof. ∇2|�z|2−d+η = (2 − d + η)η|�z|−d+η. Integrating the
last term against a test function f (�z ) yields (2 − d + η)Sd f (0).
Taking the limit of η → 0 completes the proof.

The inverse Laplacian in d = 2. In d = 2, we set �z := (x, y),
and z = x + iy, z̄ = x − iy. Equation (989) reduces to

∇2 ln(�z 2)
4π

= δ2(�z ). (991)

Our notations imply ln(�z 2) = ln(z̄z) = ln z + ln z̄. Since ∂̄∂ =
1
4∇2 (check of norm: ∂∂̄(z̄z) = 1, ∇2(x2 + y2) = 4),

1
∂
= 4

∂̄

∇2
=

∂̄ ln(z̄z)
π

=
1
πz̄

. (992)

As a consequence

∂
1
πz̄

= ∂̄
1
πz

= δ2(�z ) ≡ δ(x)δ(y). (993)

A.7. Extreme-value statistics: Gumbel, Weibull and Fréchet
distributions

Generalities. Consider a random variable x with probability
distribution P(x), and cumulative distributions
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Figure 81. The cumulative Gumbel distribution PG
<(y) (blue, solid)

and its derivative PG(y) (red, solid, rescaled by a factor of 2 for
better readability). This is compared to the law exact law (997) for
N = 4 (dashed, note the bounded support) and N = 10 (dotted). For
N = 100 no difference would be visible on this plot.

P>(x) :=
∫ ∞

x
P(y)dy, (994)

P<(x) :=
∫ x

−∞
P(y)dy = 1 − P>(x). (995)

Suppose xi, i = 1, . . . , N are drawn from the measure P(x). We
are interested in the law of their maximum m,

m := max(x1, . . . , xN). (996)

The probability that the maximum is smaller than m is equiv-
alent to the probability that xi < m for all i,

Pmax
< (m) = P<(m)N = [1 − P>(m)]N . (997)

For large N, this can be approximated by

Pmax
< (m) 
 e−NP>(m), (998)

with density

Pmax(m) = ∂mPmax
< (m) 
 NP(m)e−NP>(m). (999)

Gumbel distribution. Suppose that

P(x) = e−xΘ(x) ⇔ P>(x) = e−xΘ(x). (1000)

This implies that for large N

Pmax
< (m) 
 e−Ne−m

Θ(m) = e−e−m+ln(N)
Θ(m). (1001)

The variable
y = m − ln(N) (1002)

is distributed according to a Gumbel distribution [767]

PG
<(y) = e−e−y

, PG(y) = ∂yPG
<(y) = e−y−e−y

. (1003)

A plot elucidating the convergence is shown in figure 81. The
Gumbel class has a large basin of attraction, encompassing all
distributions which decay as P>(m) ∼ e−xα , α > 0, including
in particular the Gauss distribution. The idea is that a particular

Figure 82. The cumulative Gumbel distribution PG
<(y) (blue, solid)

and its derivative PG(y) (red, solid). This is compared to the exact
law (997) for a Gauss-distribution, using the equality in
equation (1004), for N = 100 (dashed) and N = 1013 (dotted).

Figure 83. The cumulative Weibull distribution PW
< (y) (blue, solid)

and its derivative PW(y) (red, solid) for α = 2. This is compared to
the exact law (997) for N = 4 (dashed) and N = 10 (dotted). For
N = 100 virtually no difference would be visible on this plot.

point xc in the distribution of P(x) will dominate Pmax(m); it
then suffices to approximate ln P>(x) by a linear fit at m = mc.
For the standard Gauss-distribution (figure 82)

P(x) =
e−x2/2

√
2π

, (1004)

P>(x) =
1
2

erfc

(
x√
2

)

 e−x2/2

√
2πx

. (1005)

A strategy is to replace x−1 e−x2/2 → x−1
c e−x2

c/2−xxc , and then
to find the best xc to eliminate the N-dependence. This yields
after some algebra

y 
 x
√

ln(N2) − ln(N2) +
1
2

ln
(
2π ln(N2)

)
. (1006)

A numerical check reveals a very slow convergence to the
asymptotic form: while the right tail and the center of the
density are correct even for small N, the left tail converges
very slowly (from above), while the peak amplitude converges
slowly from below. Note that this could not be repaired by
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Figure 84. The cumulative Fréchet distribution PW
< (y) (blue, solid)

and its derivative PW(y) (red, solid) for α = 2. This is compared to
the exact law (997) for N = 4 (dashed) and N = 10 (dotted). For
N = 100 virtually no difference would be visible on this plot.

changing the parameters in equation (1006), which work for
the peak-position and the right tail.

Weibull distribution. Suppose that P(x) is distributed
according to a power-law, bounded from above by x = 0,

P(x) = α(−x)α−1Θ(−1 � x � 0), (1007)

P>(x) = (−x)αΘ(−1 � x � 0). (1008)

This implies that for large N (we suppress the lower bound
at x = −1 for compactness of notation, and since it does not
matter in the final result)

Pmax
< (m) 
 e−N(−m)αΘ(m),

= exp
(
−
[
−mN

1
α

]α)
Θ(−m). (1009)

The variable
y = mN

1
α (1010)

is distributed according to a Weibull distribution [768] with
index α (figure 83)

PW
α,<(y) = e−(−y)αΘ(−y), (1011)

PW
α (y) = ∂yPW

< (y) = α(−y)α−1 e−(−y)αΘ(−y). (1012)

Fréchet distribution. Suppose that P(x) is distributed
according to an unbounded power law, α > 0,

P(x) = αxα−1Θ(x > 1), (1013)

P>(x) = x−αΘ(x > 1). (1014)

This implies that for large N

Pmax
< (m) 
 e−Nm−α

Θ(m > 1)

= exp

(
−
[
mN− 1

α

]−α
)
Θ(m > 1). (1015)

The variable
y = mN− 1

α (1016)

is distributed according to a Fréchet distribution [769] with
index α (figure 84),

PF
α,<(y) = e−y−α

Θ(y), (1017)

PF
α(y) = ∂yPW

< (y) = αy−α−1 e−y−α
Θ(y). (1018)

Note that PF
α,<(y) has an algebraic tail ∼y−α, thus decays much

more slowly than the Gumbel distribution for large y.

A.8. Gel’fand Yaglom method

We want to compute functional determinants of the form

f (α, m2) :=
det[−∇2 + αV(x) + m2]

det[−∇2 + m2]
, (1019)

with Dirichlet boundary conditions at x = 0 and x = L, at α =
1. In order for the problem to be well-defined,−∇2 + αV(x) +
m2 must have a discrete spectrum.

In dimension d = 1, this can efficiently be calculated using
the Gel’fand Yaglom method [278]. Consider solutions of the
ODE

[−∇2 + αV(x) + m2]ψα(x) = 0, (1020)

with boundary conditions

ψα(0) = 0, ψ′
α(0) = 1. (1021)

Define

g(α, m2) :=
ψα(L)
ψ0(L)

. (1022)

Then the ratio of determinants is given by

f (α, m2) = g(α, m2). (1023)

Proof. Set Λα := −∇2 + αV(x) + m2. Call its eigenval-
ues λi(α), ordered, and non-degenerate. Consider the analytic
structure of f (α, m2 − λ) and g(α, m2 − λ), as a function of λ.
By definition f is a product over eigenvalues,

f (α, m2 − λ) =
∏

i

λi(α) − λ

λi(0) − λ
. (1024)

Note that for large i the ratio λi(α)/λi(0) goes to 1, thus
the product should converge; that was the reason why the
ratio of determinants was introduced in the first place. If
we want to make the proof rigorous, we can put the system
on a lattice, replacing the Laplacian by its lattice version.
Then the spectrum is finite, and the product converges. As a
consequence of equation (1024), f (α, m2 − λ) is an analytic
function of λ, which vanishes at λ = λi(α). Now consider
g(α, m2 − λ). If λ is an eigenvalue, λ = λi(α), then the solu-
tion of equation (1020) vanishes at x = L. Playing around with
solutions of differential equations, we can convince ourselves
that for λ− λi(α) → 0,

ψα(L) ∼ λ− λi(α). (1025)

116



Rep. Prog. Phys. 85 (2022) 086502 Review

We further expect g to be analytic in λ. Thus, as a function of
λ, f and g have the same analytic structure, i.e. the same zeros
and poles. The latter cancel in the ratio

r(λ) :=
f (α, m2 − λ)
g(α, m2 − λ)

. (1026)

The only possibility for a zero or a pole we have to check is
for |λ| →∞. �

Consider f in the limit of λ→−∞: each factor in (1024)
will go to 1, s.t. also f goes to 1. (For the discretized ver-
sion, this is evident, and does not depend on the phase of λ;
for the continuous version one has to work a little bit, and
take the limit away from the positive real axes, where the
spectrum lies.)

Now consider the differential equation (1020) with m2 →
m2 − λ, in the same limit λ→−∞. In this case, one can con-
vince oneself that both solutions grow exponentially, and that
V(x) is a small perturbation, s.t. again g(α, m2 − λ) → 1. Thus
r(λ) is a function in the complex plane which has no poles.
As a consequence, r(λ) is bounded. According to Liouville’s
theorem it is a constant. This constant can be extracted from
both limits λ→∞ and λ = 0, which shows that r(λ) = 1.
This concludes our proof.

A more rigorous proof can be found in [770]: the idea there
is to show that ∂α f (α, m2) = ∂αg(α, m2) for all α, as both can
be written as Green functions at the given value of α. A proof
similar to ours, using Fredholm-determinant theory, can be
found in section 7, appendix 1 of [771].
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energy landscape of randomly pinned objects J. Physique I
6 1007–20

[127] Le Doussal P 2006 Finite-temperature functional RG, droplets
and decaying Burgers turbulence Europhys. Lett. 76 457–63

[128] Middleton A A, Le Doussal P and Wiese K J 2007 Measuring
functional renormalization group fixed-point functions for
pinned manifolds Phys. Rev. Lett. 98 155701

[129] Le Doussal P and Wiese K J 2007 How to measure functional
RG fixed-point functions for dynamics and at depinning
Europhys. Lett. 77 66001

[130] Wiese K J and Le Doussal P 2008 How to measure the effective
action for disordered systems Path Integrals—New Trends
and Perspectives ed W Janke and A Pelster (Singapore:
World Scientific) arXiv:0712.4286

[131] ter Burg C and Wiese K J 2021 Mean-field theories for depin-
ning and their experimental signatures Phys. Rev. E 103
052114

[132] Balents L and Fisher D S 1993 Large-N expansion of (4 − ε)-
dimensional oriented manifolds in random media Phys. Rev.
B 48 5949–63

[133] Wagner O S, Geshkenbein V B, Larkin A I and Blatter G 1999
Renormalization-group analysis of weak collective pinning
in type-II superconductors Phys. Rev. B 59 11551–62

[134] Scheidl S private communication about two-loop calculations
for the random manifold problem 2000–2004

119

https://doi.org/10.1103/physrevlett.80.849
https://doi.org/10.1103/physrevlett.80.849
https://doi.org/10.1140/epje/i2002-10032-2
https://doi.org/10.1140/epje/i2002-10032-2
https://doi.org/10.1140/epje/i2002-10032-2
https://doi.org/10.1140/epje/i2002-10032-2
https://doi.org/10.1103/physrevb.17.535
https://doi.org/10.1103/physrevb.17.535
https://doi.org/10.1103/physrevb.19.3970
https://doi.org/10.1103/physrevb.19.3970
https://doi.org/10.1103/physrevb.19.3970
https://doi.org/10.1103/physrevb.19.3970
https://doi.org/10.1103/revmodphys.60.1129
https://doi.org/10.1103/revmodphys.60.1129
https://doi.org/10.1103/revmodphys.60.1129
https://doi.org/10.1103/revmodphys.60.1129
https://doi.org/10.1080/00018732.2012.719674
https://doi.org/10.1080/00018732.2012.719674
https://arxiv.org/abs/cond-mat/9411022
https://doi.org/10.1021/la00060a049
https://doi.org/10.1021/la00060a049
https://doi.org/10.1021/la00060a049
https://doi.org/10.1021/la00060a049
https://doi.org/10.1115/1.3169103
https://doi.org/10.1115/1.3169103
https://doi.org/10.1115/1.3169103
https://doi.org/10.1115/1.3169103
https://doi.org/10.1103/physreve.75.031601
https://doi.org/10.1103/physreve.75.031601
https://doi.org/10.1103/physrevlett.96.015702
https://doi.org/10.1103/physrevlett.96.015702
https://doi.org/10.1103/physreve.82.011108
https://doi.org/10.1103/physreve.82.011108
https://doi.org/10.1785/bssa0340040185
https://doi.org/10.1785/bssa0340040185
https://doi.org/10.1103/physrevb.58.6353
https://doi.org/10.1103/physrevb.58.6353
https://doi.org/10.1103/physrevb.58.6353
https://doi.org/10.1103/physrevb.58.6353
https://doi.org/10.1088/0022-3719/7/9/009
https://doi.org/10.1088/0022-3719/7/9/009
https://doi.org/10.1088/0022-3719/7/9/009
https://doi.org/10.1088/0022-3719/7/9/009
https://doi.org/10.1103/physrevlett.35.1399
https://doi.org/10.1103/physrevlett.35.1399
https://doi.org/10.1103/physrevlett.35.1399
https://doi.org/10.1103/physrevlett.35.1399
https://doi.org/10.1103/physrev.115.824
https://doi.org/10.1103/physrev.115.824
https://doi.org/10.1103/physrev.115.824
https://doi.org/10.1103/physrev.115.824
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1103/physrevlett.37.1364
https://doi.org/10.1103/physrevlett.37.1364
https://doi.org/10.1103/physrevlett.37.1364
https://doi.org/10.1103/physrevlett.37.1364
https://doi.org/10.1088/0022-3719/10/9/007
https://doi.org/10.1088/0022-3719/10/9/007
https://doi.org/10.1088/0022-3719/10/9/007
https://doi.org/10.1088/0022-3719/10/9/007
https://doi.org/10.1007/bf02980577
https://doi.org/10.1007/bf02980577
https://doi.org/10.1007/bf02980577
https://doi.org/10.1007/bf02980577
https://doi.org/10.1016/0550-3213(87)90203-3
https://doi.org/10.1016/0550-3213(87)90203-3
https://doi.org/10.1016/0550-3213(87)90203-3
https://doi.org/10.1016/0550-3213(87)90203-3
https://doi.org/10.1088/0022-3719/18/36/021
https://doi.org/10.1088/0022-3719/18/36/021
https://doi.org/10.1088/0022-3719/18/36/021
https://doi.org/10.1088/0022-3719/18/36/021
https://doi.org/10.1103/physrevlett.28.240
https://doi.org/10.1103/physrevlett.28.240
https://doi.org/10.1103/physrevlett.28.240
https://doi.org/10.1103/physrevlett.28.240
https://doi.org/10.1007/bf02392399
https://doi.org/10.1007/bf02392399
https://doi.org/10.1007/bf01773358
https://doi.org/10.1007/bf01773358
https://doi.org/10.1007/bf01773358
https://doi.org/10.1007/bf01773358
https://doi.org/10.1007/bf01645676
https://doi.org/10.1007/bf01645676
https://doi.org/10.1007/bf01645676
https://doi.org/10.1007/bf01645676
https://doi.org/10.1063/1.523078
https://doi.org/10.1063/1.523078
https://doi.org/10.1063/1.523078
https://doi.org/10.1063/1.523078
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/physrevlett.56.1964
https://doi.org/10.1103/physrevlett.56.1964
https://doi.org/10.1103/physrevlett.56.1964
https://doi.org/10.1103/physrevlett.56.1964
https://doi.org/10.1103/physrevb.49.244
https://doi.org/10.1103/physrevb.49.244
https://doi.org/10.1103/physrevb.49.244
https://doi.org/10.1103/physrevb.49.244
https://doi.org/10.1103/physrevb.46.11520
https://doi.org/10.1103/physrevb.46.11520
https://doi.org/10.1103/physrevb.46.11520
https://doi.org/10.1103/physrevb.46.11520
https://doi.org/10.1103/physrevlett.68.3615
https://doi.org/10.1103/physrevlett.68.3615
https://doi.org/10.1103/physrevlett.68.3615
https://doi.org/10.1103/physrevlett.68.3615
https://doi.org/10.1103/physreve.69.026112
https://doi.org/10.1103/physreve.69.026112
https://doi.org/10.1103/physrevb.66.174201
https://doi.org/10.1103/physrevb.66.174201
https://doi.org/10.1103/physrevlett.86.1785
https://doi.org/10.1103/physrevlett.86.1785
https://doi.org/10.1103/physrevlett.86.1785
https://doi.org/10.1103/physrevlett.86.1785
https://doi.org/10.1051/jp1:1996112
https://doi.org/10.1051/jp1:1996112
https://doi.org/10.1051/jp1:1996112
https://doi.org/10.1051/jp1:1996112
https://doi.org/10.1209/epl/i2006-10295-1
https://doi.org/10.1209/epl/i2006-10295-1
https://doi.org/10.1209/epl/i2006-10295-1
https://doi.org/10.1209/epl/i2006-10295-1
https://doi.org/10.1103/physrevlett.98.155701
https://doi.org/10.1103/physrevlett.98.155701
https://doi.org/10.1209/0295-5075/77/66001
https://doi.org/10.1209/0295-5075/77/66001
https://arxiv.org/abs/0712.4286
https://doi.org/10.1103/physreve.103.052114
https://doi.org/10.1103/physreve.103.052114
https://doi.org/10.1103/physrevb.48.5949
https://doi.org/10.1103/physrevb.48.5949
https://doi.org/10.1103/physrevb.48.5949
https://doi.org/10.1103/physrevb.48.5949
https://doi.org/10.1103/physrevb.59.11551
https://doi.org/10.1103/physrevb.59.11551
https://doi.org/10.1103/physrevb.59.11551
https://doi.org/10.1103/physrevb.59.11551


Rep. Prog. Phys. 85 (2022) 086502 Review

[135] Dincer Y 1999 Zur Universalität der Struktur elastischer Man-
nigfaltigkeiten in Unordnung Master’s Thesis Universität
Köln

[136] Chauve P and Le Doussal P 2001 Exact multilocal renormal-
ization group and applications to disordered problems Phys.
Rev. E 64 051102

[137] Middleton A A 1995 Numerical results for the ground-state
interface in a random medium Phys. Rev. E 52 R3337–40

[138] Alava M J and Duxbury P M 1996 Disorder-induced rough-
ening in the three-dimensional Ising model Phys. Rev. B 54
14990–3

[139] Kardar M, Huse D A, Henley C L and Fisher D S 1985 Rough-
ening by impurities at finite temperatures Phys. Rev. Lett. 55
2923

[140] Kompaniets M and Wiese K J 2019 Fractal dimension of crit-
ical curves in the O(n)-symmetric φ4-model and crossover
exponent at six-loop order: loop-erased random walks, self-
avoiding walks, Ising, XY and Heisenberg models Phys.
Rev. E 101 012104

[141] Wegner F J 1974 Some invariance properties of the renormal-
ization group J. Phys. C: Solid State Phys. 7 2098–108

[142] Poland D, Rychkov S and Vichi A 2019 The conformal boot-
strap: theory, numerical techniques, and applications Rev.
Mod. Phys. 91 015002

[143] Chauve P, Giamarchi T and Le Doussal P 2000 Creep and
depinning in disordered media Phys. Rev. B 62 6241–67

[144] Balents L and Le Doussal P 2005 Thermal fluctuations in
pinned elastic systems: field theory of rare events and
droplets Ann. Phys., NY 315 213–303

[145] Balents L and Le Doussal P 2004 Broad relaxation spectrum
and the field theory of glassy dynamics for pinned elastic
systems Phys. Rev. E 69 061107

[146] Wasow W 1965 Asymptotic Expansions for Ordinary Differen-
tial Equations (Pure and Applied Mathematics vol 14) (New
York: Wiley)

[147] Bogolyubov (originator) N N Jr 2011 Encyclopedia of Mathe-
matics: Perturbation Theory

[148] Smith D R 1985 Singular-Perturbation Theory (Cambridge:
Cambridge University Press)

[149] Hairer E and Wanner G 1996 Solving Ordinary Differen-
tial Equations II: Stiff and Differential-Algebra Problems
(Berlin: Springer)

[150] Le Doussal P and Wiese K J 2005 Two-loop functional renor-
malization for elastic manifolds pinned by disorder in N
dimensions Phys. Rev. E 72 035101(R)

[151] Rosso A, Bustingorry S and Le Doussal P 2010 Universal high
temperature regime of pinned elastic objects Phys. Rev. B
82 140201

[152] Le Doussal P 2006 Chaos and residual correlations in pinned
disordered systems Phys. Rev. Lett. 96 235702

[153] Duemmer O and Le Doussal P 2007 Chaos in the ther-
mal regime for pinned manifolds via functional RG
(arXiv:0709.1378)

[154] Le Doussal P and Wiese K J 2002 Functional renormalization
group at large N for random manifolds Phys. Rev. Lett. 89
125702
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Théorique LesHouches vol 49) ed E Brézin and J Zinn-
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