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There are two main universality classes for depinning of elastic interfaces in disordered media: quenched
Edwards-Wilkinson (qEW), and quenched Kardar-Parisi-Zhang (qKPZ). The first class is relevant as long as the
elastic force between two neighboring sites on the interface is purely harmonic, and invariant under tilting. The
second class applies when the elasticity is non-linear, or the surface grows preferentially in its normal direction.
It encompasses fluid imbibition, the Tang-Leschorn cellular automaton of 1992 (TL92), depinning with anhar-
monic elasticity (aDep), and qKPZ. While the field theory is well developed for qEW, there is no consistent
theory for qKPZ. The aim of this paper is to construct this field theory within the Functional renormalization
group (FRG) framework, based on large-scale numerical simulations in dimensions d = 1, 2 and 3, presented
in a companion paper. In order to measure the effective-disorder correlator and coupling constants, the driving
force is derived from a confining potential with curvature m2. We show, that contrary to common belief this is
allowed in the presence of a KPZ term. The ensuing field theory becomes massive, and can no longer be Cole-
Hopf transformed. In exchange, it possesses an IR attractive stable fixed point at a finite KPZ non-linearity λ.
Since there is neither elasticity nor a KPZ term in dimension d = 0, qEW and qKPZ merge there. As a result,
the two universality classes are distinguished by terms linear in d. This allows us to build a consistent field
theory in dimension d = 1, which loses some of its predictive powers in higher dimensions.

I. INTRODUCTION

Disordered elastic manifolds exhibit universal critical be-
havior when driven slowly, known as depinning. There are
two main universality classes, each associated with a stochas-
tic differential equation of evolution: quenched Edwards-
Wilkinson (qEW) [53], and quenched Kardar-Parisi-Zhang
(qKPZ) [54]. The first class is relevant as long as the elas-
ticity of the interface is purely harmonic, and invariant un-
der tilting. This description is valid in a variety of situations
such as magnetic domain walls in the presence of disorder
a.k.a. the Barkhausen effect [55–58], vortex lattices [59, 60],
charge-density waves [61], and DNA unzipping [62]. While
these systems have short-ranged elasticity, this framework can
readily be adapted to describe systems with long-range (LR)
elasticity such as contact-line depinning [63–65], earthquakes
[66, 67] and knitting [68, 69].

The second class is relevant when the elasticity is non-
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FIG. 1. Universality classes at depinning, for d < dc. For the yellow
shaded cases experiments exist.

linear, or the surface grows preferentially in its normal direc-
tion. It encompasses fluid imbibition [70], the Tang-Leschorn
cellular automaton of 1992 (TL92) [71] or its variants [72],
depinning with anharmonic elasticity (aDep) [73], and qKPZ
[54]. That all these models are in the same universality class
is non-trivial, but is now firmly established [74]. This so-
called qKPZ class has been observed for magnetic domain
walls [75, 76], in growing bacterial colonies [77] and chemi-
cal reaction fronts [78].

While the field theory for qEW is well established [53, 79–
85], building a field theory for qKPZ is a challenge. It has
previously been attempted in Ref. [86]. In that work, the run-
ning coupling constant for the non-linearity goes to infinity.
The first question one needed to clarify was whether this is
true, or an artifact of the Functional Renormalization Group
(FRG) treatment. In Ref. [74] we measured in a numerical
simulation the effective action of three models: qKPZ, TL92,
and aDep. For d = 1 we found that all three possess an effec-
tive long-distance behavior fully described by the terms in the
qKPZ equation,

η∂tu(x, t) = c∇2u(x, t) + λ [∇u(x, t)]
2

+m2
[
w−u(x, t)

]
+F
(
x, u(x, t)

)
. (1)

In higher dimensions the same conclusions were reached, al-
though with larger uncertainties.

Motivated by these findings, we reconsider the field the-
ory corresponding to Eq. (1). There are two key observations.
First of all, for d→ 0, three universality classes merge: qKPZ,
qEW with short-ranged, and qEW with LR interactions. This
is visualized on Fig. 1. The second key observation is that
the way we drive the system is important. In fact, we drive
with a force that derives from a confining potential, the term
m2[w − u(x, t)] in Eq. (1). That allows us to measure the
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and y′ = ym2ζm , in logarithmic scale, for TL92 in d = 1.

effective force correlator ∆(w) defined via

∆(w − w′) := m4Ld (uw − w)(uw′ − w′)
c
, (2)

uw :=
1

Ld

∫
x

uw(x), (3)

uw(x) := lim
t→∞

u(x, t) given w fixed. (4)

In this protocol, w is increased in steps. One then waits until
the interface stops, which defines uw(x). Its center-of-mass
position is uw, and its fluctuations define ∆(w).

This driving force appears in the effective action Eq. (5) as
a mass term, as compared to [86], which considered a mass-
less theory. Their motivation was that a massive term breaks
Galilean invariance, and this is something “you do not want
for the KPZ equation”. We believe that this is not a prob-
lem here, for two reasons: First of all, Galilean invariance is
already broken by the quenched disorder F (x, u), even af-
ter disorder averaging. Second, even if the driving breaks
Galilean invariance, this should only affect large-scale prop-
erties, but not small-scale ones (small with respect to the cor-
relation length), and especially not critical properties.

There is a prize to pay for introducing a massive term: one
loses the Cole-Hopf transformation, a transformation that al-
lows to map the KPZ equation to a simpler stochastic heat
equation with multiplicative noise (see section III F). This the
authors of Ref. [86] were not ready to give up, as it compli-
cates perturbation theory. As we will see below, it breaks the
non-renormalization of λ/c, allowing us to find a fixed point
for the latter. As both the massive and the massless scheme
give, at least in 1-loop order, the same results close to the
upper critical dimension, what we will present below is not
a systematic ε-expansion. Rather, if we suppose we know
the FRG fixed point for qEW, then our scheme allows us to
control qKPZ perturbatively in d, in an expansion around the
qEW fixed point. While the latter is known analytically in
d = 0 [87], what we use here is the 1-loop fixed point, ob-
tained via the ε = 4 − d expansion. The latter is actually

quite good even down to d = 1: It predicts a roughness ex-
ponent of ζ = 1, as compared to the best numerical value
of ζ = 5/4 [88, 89]. The FRG correlator is, even quantita-
tively, rather well approximated by its 1-loop value [53, 58].
We restrict ourselves here to 1-loop order, which has the bene-
fit of greater transparency. Preliminary calculations show that
extension to 2-loop order is straightforward though cumber-
some. The method we present below allows us to compute
analytically the different critical exponents as well as the full
disorder force correlator, and present quantitative agreement
with the numerical simulations.

This paper is organized as follows: In the next section II
we first define the field theory and review perturbation the-
ory (section II A). We then summarize scaling arguments de-
scribed in detail in the companion paper [74] (section II B).
The effective disorder correlator is defined in section II C, and
the relation to directed percolation in section II D, followed
by a discussion of the effective action measured in simula-
tions, section II E. Section III is dedicated to the field theory.
We start with a reminder on the generation of the KPZ term
from an anharmonic elasticity (section III A). All 1-loop con-
tributions are given in section III B, with details relegated to
appendix A. Section III C establishes the flow equations. Nec-
essary conditions for their solution are derived in section III D,
followed by an analytical solution in section III E, first giving
the scheme (section III E 1), and then explicit values in d = 1
to d = 3 (sections III E 2 to III E 4). Tables summarize our
findings in section III E 6. We comment on the Cole-Hopf
transformation (section III F) before concluding in section IV.

II. MODEL AND PHENOMENOLOGY

A. Model, action and perturbation theory

The Martin-Siggia-Rose [90] action corresponding to
Eq. (1) reads

S[u, ũ] =

∫
x,t

ũ(x, t)
{
η∂tu(x, t)− c∇2u(x, t) (5)

−λ [∇u(x, t)]
2

+m2
[
u(x, t)−w

]}
−1

2

∫
x,t,t′

ũ(x, t)∆
(
u(x, t)− u(x, t′)

)
ũ(x, t′).

Perturbation theory is constructed by expanding around the
free theory obtained by setting λ → 0 and ∆(u) → 0 in
Eq. (5). This gives the free response function

R(k, t) = 〈ũ(k, t)u(−k, t′)〉

= θ(t′ > t)
1

η
e−(ck2+m2)(t′−t)/η

= . (6)

Graphically this is represented by an arrow from ũ to u. The
disorder is represented by two dots connected by a dashed
line, whereas the KPZ vertex is a dot with two incoming lines
with bars for the derivatives, and one outgoing one. Examples
for diagrams correcting the disorder are given on Fig. 3. For
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an introduction into functional perturbation theory we refer to
section 3 of [53].

Non-trivial correlations necessitate at least one disorder
vertex ∆(u). As an example, the leading order to the equal-
time 2-point function is

〈u(k, 0)u(−k, 0)〉 =

=

[∫
t

R(k, t)

]2

∆(0)

=
∆(0)

(ck2 +m2)2
. (7)

The arrows represent the response function R, the dotted line
the disorder correlator ∆.

B. Scaling and anomalous exponents

Scaling arguments were given in the companion paper [74].
We recall the main results here. The static 2-point function is
defined as

1

2
〈[u(x)− u(y)]2 '

{
A|x− y|2ζ , |x− y| � ξm,
Bm−2ζm , |x− y| � ξm.

(8)

The average is taken over different disorder configurations
(there are no thermal fluctuaions). ζ is the standard rough-
ness exponent. In contrast to qEW, there is a new exponent
ζm > ζ. The reason is that the elasticity c renormalizes and
thus its anomalous dimension gives rise to another exponent.
The quantity ξm in Eq. (8) is the correlation length created by
the confining potential. Every length parallel to the interface
scales as x or ξm, whereas in the perpendicular direction it
scales as u ∼ xζ ∼ ξζm. To estimate ξm, we take x = ξm in
Eq. (8), obtaining ξ2ζ

m ∼ m−2ζm . As a consequence

ξm ∼ m−
ζm
ζ . (9)

Note that ξm 6∼ 1
m as for qEW. Fig. 2 shows a scaling collapse

of the 2-point function with these scalings.
Define ψλ, ψc and ψη to be the anomalous dimensions of

λ, c and η in units of m−1,

ψc := −m∂m ln(c), (10)
ψλ := −m∂m ln(λ), (11)
ψη := −m∂m ln(η). (12)

In order to relate them to the standard scaling exponents ζ, ζm
and z, we first need to define z. It is given by the temporal
decay of the 2-point function as

1

2
[u(x, t)− u(x, t′)]2 ∼ |t− t′|2ζ/z. (13)

With these definitionsn at the fixed point we can derive

ζm
ζ

= 1 +
ψc
2
, (14)

ζm = ψc − ψλ, (15)

z =
ζ

ζm
(2 + ψη). (16)

δ1∆(w) = +

+ + ,

δ2∆(w) = ,

δ3∆(w) =

+ = 0.

FIG. 3. The three 1-loop corrections to ∆(w) (without combinatorial
factors). The dashed line is ∆(w), the bars are the spatial derivatives
of the KPZ term; notations as in [85]. The first one δ1∆(w) contains
the qEW terms. The second contribution δ2∆(w) ∼ λ2∆(w)2 is
new. The next two terms δ3∆(w) ∼ λ∆(w)∆′(w) cancel each
other; they also vanish separately since they are odd in w, whereas
∆(w) is even.

The first relation is obtained from x−1 ∼ q ∼ m/
√
c ∼

m1+ψc/2, implying x2ζ ∼ m−(2+ψc)ζ ≡ m−2ζm . The sec-
ond follows from λu ∼ c. The last one is obtained from
η/t ∼ m2, implying t ∼ m−2−ψη ∼ x(2+ψη)ζ/ζm .

C. The renormalized correlator ∆(w)

In Eq. (2) we had defined the renormalized (effective) dis-
order as

∆(w − w′) := m4Ld(uw − w)(uw′ − w′)
c
. (17)

The definition of uw is given in Eq. (3). This is the same defi-
nition as the one used for qEW [91–94]. Integrating the equa-
tion of motion (1) over space for a configuration uw(x) :=
u(x, t) at rest yields

m2(w − uw) +
1

Ld

∫
x

λ [∇uw(x)]
2

+ F
(
x, uw(x)

)︸ ︷︷ ︸
total force

= 0.

(18)
Thus the correlator in Eq. (17) measures fluctuations of the
total force. Only for qEW (λ = 0) this equals the force exerted
by the disorder. To be specific, let us define

Fw :=
1

Ld

∫
x

F
(
x, uw(x)

)
, (19)

Λw :=
1

Ld

∫
x

λ[∇uw(x)]2. (20)

A configuration at rest then has

m2(w − uw) + Fw + Λw = 0. (21)
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Our goal is to compare observables with objects in the field
theory. What is calculated there is the effective action, or
more precisely its 2-time contribution. (In the statics this
would be the 2-replica term.) It is the sum of all connected
2-time diagrams, i.e. with two external ũ fields. To 1-loop or-
der, these are shown in Fig. 3. The 2-point function uuc is
obtained to all orders by contracting the 2-time contribution
to the effective action with two response functions. While in
real space this is a convolution, in momentum and frequency
space this is simply a multiplication with the response func-
tionR(k, ω). According to Eq. (17) it is to be evaluated at mo-
mentum k = 0 and frequency ω = 0. Recall that the response
function R(x, t) is the response of the observable u(x, t) to
a small uniform kick in force f at (x, t) = (0, 0). Since the
center of mass follows the center of the driving parabola w,

fc = w − uw = const ⇒ ∂wuw = 1. (22)

Thus a uniform kick f = m2δw leads to a response for the
center of mass according to uw → uw + δw = uw + f

m2 . As
a result, the integrated response function is given by∫

t

R(k = 0, t) ≡ 1

Ld

∫
x

∫
t

R(x, t) =
1

m2
. (23)

This is equivalent to R(k = 0, ω = 0) = m−2.
We finally need to remember the field-theoretic definition

of the effective action Γ: It is obtained from the correspond-
ing expectation values by amputation of the response func-
tion, which is equivalent to dividing by the response function
(in Fourier representation). Due to Eq. (23) this is nothing
but multiplication with m2, once for each of the two external
fields u. This gives the factor of m4 in Eq. (17), and Eq. (17)
is nothing but the 2-time contribution to the effective action Γ,
equivalent to the renormalized disorder correlator ∆(w). It is
the (k = 0, ω = 0) mode of the full disorder correlator in the
field theory for depinning.

Having established that Eq. (17) is the proper definition of
the rennormalized ∆(w), it is still instructive to study the cor-
relations of all three forces appearing in Eq. (18). To this aim,
let us define in addition to Eq. (17)

∆FF (w − w′) := LdFwFw′
c
, (24)

∆FΛ(w − w′) := LdFwΛw′
c
, (25)

∆ΛΛ(w − w′) := LdΛwΛw′
c
. (26)

A measurement of these quantities is shown below in Fig. 10.
Let us finally give the scaling dimensions,

∆(0) ∼ m4ξdm [uw − w]
2 ∼ m4−d ζmζ −2ζm . (27)

The scaling of the argument of ∆(w) is given by

w ' u ∼ m−ζm . (28)

These scalings are reflected in the FRG flow equations derived
below in Eq. (51).

ν‖ = 1.733847(6), ν⊥ = 1.096854(4),
ζ = 0.632613(3), ζm = 1.046190(4),

ζm
ζ = 1.65376(1), τ = 1.259246(3),

βdep = 0.636993(7), ψλ = 0.26133(2),
ψk = 1.30752(2),

TABLE I. Numerical values for all exponents used in this section
(d = 1), as obtained from Ref. [96] combined with the scaling rela-
tions derived here.

D. Link to directed percolation, exponents given in the
literature, and other relations

For TL92 in d = 1, the scaling of a blocked interface at
depinning is given by directed percolation [71, 72, 95–98]. In
table I we summarize the exponents obtained this way, which
guide us in the construction and tests of the FRG. Details are
given in [74].

In dimensions d ≥ 2 directed percolation paths are 1-
dimensional, whereas the interface is d-dimensional. As a
result, the mapping to DP no longer exists, and one has to
introduce directed surfaces [95]. The exponents we find in
d = 2 and d = 3 are summarized on table III (page 11).

E. The effective action in simulations

To guide our field-theoretical work, we first checked in di-
mension d = 1 that the scaling exponents given in table I ac-
count for the measured values of ψc and ψλ given in Eqs. (10)-
(11). To this aim, a novel algorithm was designed [74] to
measure ψc and ψλ by imposing a spatial modulation in the
background-field configuration w. The simulations were per-
formed for three different models, all in the qKPZ universality
class: the cellular automaton TL92 [71], anharmonic depin-
ning [73, 74], and a direct simulation of Eq. (1) [74]. The best
results were achieved for anharmonic depinning, thanks to an
efficient algorithm for its evolution [73].

With the novel algorithm designed in [74], we measured the
effective couplings λ and c, as a function of m. In Fig. 4 (left)
we show their flow as a function of m. To be specific, what
we measure (left), and what is predicted from DP via table I
(right) is

ψd=1
c = 1.31(4), ψDP

c = 1.30752(2), (29)
ψd=1
λ = 0.28(3), ψDP

λ = 0.26133(2). (30)

This confirms our scaling analysis and allows us to measure
as shown on Fig. 4 the dimensionless amplitude

A :=
∆(0)

|∆′(0+)|
λ

c
. (31)

The ideas behind this definition is that the KPZ term has one
field more than the elastic term. Thus the ratio λ/c has the in-
verse dimension of a field, which is compensated by the first
ratio. That A converges to the same value for two different
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FIG. 4. Left: Effective c and λ for anharmonic depinning. Right:
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pinning and TL92.

FIG. 5. The 1-loop corrections to c.

models gives strong evidence that qKPZ is the effective the-
ory, and that a fixed point of the renormalization-group flow
is reached. In d = 1, this ratio reads

Ad=1 = 1.10(2). (32)

The last points to verify is that we can measure the effective-
force correlator ∆(w), that different models in the qKPZ class
have the same ∆(w), and that this function is close to, but
distinct from the one for qEW. This is shown in Fig. 12.

III. FIELD THEORY

Now that we verified that all models have a fixed point rep-
resented by the qKPZ equation, and that we have the correct
scaling dimensions for every variable, we can confidently con-
struct their field theory.

A. Reminder: Generation of KPZ term from anharmonic
elasticity

Let us remind how anharmonic elastic terms generate a
KPZ term at depinning [86]: To this purpose consider a stan-
dard elastic energy, supplemented by an additional anhar-
monic (quartic) term (setting c = 1 for simplicity),

Hel[u] =

∫
x

1

2
[∇u(x)]

2
+
c4
4

[
(∇u(x))

2
]2
. (33)

FIG. 6. 1-loop diagrams correcting λ.

The corresponding terms in the equation of motion read

∂tu(x, t) = ∇2u(x, t) + c4∇
{
∇u(x, t) [∇u(x, t)]

2
}

+... (34)

Since the r.h.s. of Eq. (34) is a total derivative, it is surprising
that a KPZ-term can be generated in the limit of a vanishing
driving velocity. This puzzle was solved in Ref. [86], where
the KPZ term arises by contracting the non-linearity with one
disorder,

δλ =

t’

k p

0

t

= − c4
p2

∫
t>0

∫
t′>0

∫
k

e−(t+t′)(k2+m2)
[
k2p2 + 2(kp)2

]
×∆′

(
u(x, t+ t′)− u(x, 0)

)
. (35)

As u(x, t+ t′)−u(x, 0) ≥ 0, the leading term in Eq. (35) can
be written as

δλ = − c4
p2

∫
t>0

∫
t′>0

∫
k

e−(t+t′)(k2+m2)[k2p2+2(kp)2]∆′(0+).

(36)

Integrating over t, t′ and using the radial symmetry in k yields

δλ = −c4
(

1 +
2

d

)∫
k

∆′(0+)k2

(k2 +m2)2
. (37)

This shows that in the FRG a KPZ term is generated from the
non-linearity. As−∆′(0+) > 0, its amplitude is positive. The
integral (37) has a strong UV divergence, thus the generation
of this term happens at small scales, similar to the generation
of the critical force, see appendix A 3.

B. 1-loop contributions

Here we summarize the 1-loop contributions to c, λ, η and
∆. This is almost the same calculation as in Ref. [86], with
a little twist: Since we work in a massive scheme, many of
the cancelations in [86] no longer exist. We remind that this
change in scheme was forced upon us by our decision to mea-
sure the effective parameters of the theory, necessitating to
drive with a confining potential. We believe that this is also
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FIG. 7. Additional 1-loop correction to η for qKPZ as compared to
qEW.

much closer to real experiments. The diagrams from the per-
turbation in λ are given in Figs. 5-7.

We obtain the same diagrams as in [86] but with coefficients
ai that differ from [86] away from the upper critical dimen-
sion. The explicit calculations are given in appendix A. Terms
with numerical coefficients only (no ai) are those appearing
already in qEW.

δη

η
= −

[
a0λ̂∆′

(
0+
)

+ ∆′′
(
0+
)]
I1, (38)

δc

c
= −

[
a1λ̂∆′

(
0+
)

+ a2λ̂
2∆(0)

]
I1, (39)

δλ

λ
= −

[
a3λ̂∆′

(
0+
)

+ a4λ̂
2∆(0)

]
I1, (40)

δ∆(u) =

{
a5λ̂

2∆(u)2 − ∂2
u

1

2
[∆(u)−∆(0)]

2

}
I1, (41)

λ̂ :=
λ

c
, (42)

I1 =

∫
k

1

(ck2 +m2)2
, (43)

a0 =
d

4
, a1 = 1, a2 =

d− 1

3
, (44)

a3 = 1, a4 =
d+ 2

6
, a5 =

d(d+ 2)

12
. (45)

The coefficients ai in the limit of d → 4 used by [86] are ob-
tained by setting d→ 4, resulting into ai = 1 for all i. While
this is the standard procedure followed in a dimensional ex-
pansion, it misses that in dimension d = 0 the KPZ term does
not exist, thus cannot correct the remaining terms: viscosity
η, and disorder ∆(u). The factors of d in coefficients a0 and
a5 reflect this physical necessity. No such constraint exists for
c and λ: since they are absent from the equation of motion (1)
in d = 0, their coefficients can well be modified.

As λ and c appear in the combination of λ̂ = λ/c, the im-
portant question is whether this ratio is corrected. This is in-
deed the case as

δλ̂

λ̂
= (a2 − a4)λ̂2∆(0)I1 = −4− d

6
λ̂2∆(0)I1. (46)

Note that this term is negative, and have a power in λ̂ superior
to one. It will therefore stop the RG flow for λ̂ at large λ̂,
allowing us to close our system of equations!

A final important point to mention is that the confining po-
tential ∼ m2 is not renormalized. In qEW this is due to the
statistical tilt symmetry (STS) [53], which can be checked
perturbatively: Since the disorder correlator contains u only

as a difference u(x, t) − u(x, t′), no field u without a time
derivative can be generated. The same holds true here: since
the additional KPZ vertex has additional spatial derivatives,
it cannot generate a field u without spatial derivatives. This
property is very useful, as we can as in qEW use m as an RG
scale, without caveat.

Finally, the critical force is

Fc = F (1)
c + F (2)

c

'
[
∆′(0+) +

d

2
λ̂∆(0)

] ∫
k

1

ck2 +m2
. (47)

The first contribution is negative, identical to qEW. The sec-
ond is positive, and specific to qKPZ. This is derived in ap-
pendix A 3.

C. Flow equations

Above we calculated the perturbative corrections. We now
derive the corresponding RG relations. Since m is not cor-
rected under renormalization, we use it to parameterize the
flow of the remaining quantities. To this aim, first define the
dimensionless field as

u := umζm . (48)

We have −m ∂
∂m∆(u) = [δ∆]εI1. The dimensionless renor-

malized correlator ∆̃(u) is then defined in terms of the effec-
tive disorder correlator ∆(u), such that it absorbs εI1 as

∆̃(u) := εI1m
2ζm+d ζmζ −d∆

(
u = um−ζm

)
. (49)

The explicitm-dependent factor in front of ∆ is the scaling di-
mension given in Eq. (27). The integral I1 defined in Eq. (43)
is evaluated in Eq. (A3) of appendix A 1,

I1 :=

∫
k

1

(ck2 +m2)2
=
md−4

cd/2
2Γ(1 + ε

2 )

ε(4π)d/2
. (50)

This yields the flow equation for the effective dimensionless
disorder

∂`∆̃(u) =

(
4− dζm

ζ
− 2ζm

)
∆̃(u) + uζm∆̃′(u)

+
d(d+ 2)

12
λ̃2∆̃(u)2

− ∆̃′(u)2 − ∆̃′′(u)
[
∆̃(u)− ∆̃(0)

]
.

(51)

Here we defined the dimensionless combination λ̃

λ̃ :=
λ

c
m−ζm ≡ λ̂m−ζm . (52)

Its flow equation is obtained from Eq. (46) as

−m∂mλ̃ = ζmλ̃−
4− d

6
λ̃3∆̃(0). (53)
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It has one fixed point λ̃ = 0, and a second non-trivial fixed
point at

λ̃c =

√
6ζm

(4− d)∆̃(0)
. (54)

We can see that in d = 4 the fixed point disappears as λ̃ goes
to infinity.
The anomalous dimension ψc defined in Eq. (10) reads

ψc = −λ̃∆̃′(0+)− d− 1

3
λ̃2∆̃(0). (55)

Using Eq. (14), we find

ζm
ζ

= 1 +
1

2

[
−λ̃∆̃′

(
0+
)
− d− 1

3
λ̃2∆̃(0)

]
. (56)

Eq. (51) is still cumbersome to solve. Reinjecting Eq. (56),
we obtain at the fixed point

0 =

(
ε+

d

2

[
λ̃∆̃′

(
0+
)

+
d− 1

3
λ̃2∆̃(0)

]
− 2ζm

)
∆̃(u)

+uζm∆̃′(u) +
d(d+ 2)

12
λ̃2∆̃(u)2

−∆̃′(u)2 − ∆̃′′(u)
[
∆̃(u)− ∆̃(0)

]
. (57)

The anomalous contribution ψη reads

ψη = −
[
d

4
λ̃∆̃′

(
0+
)

+ ∆̃′′
(
0+
)]
. (58)

Using Eq. (16) this yields

z =
ζ

ζm

[
2− d

4
λ̃∆̃′

(
0+
)
− ∆̃′′

(
0+
)]
. (59)

We note that for d → 0 the contribution of λ̃ in equation (57)
disappears, thus we recover the qEW fixed point. This is not
the case in the massless scheme [86]. Increasing d we ex-
pect the qKPZ fixed point to smoothly move away from the
qEW one. In Figure 12 we show that in dimension d = 1 the
shape of the measured ∆(w) for qEW and qKPZ are close,
even though their amplitudes may be rather different. We take
this as an encouraging sign to construct the FRG fixed point
for qKPZ. This is the task of section III E. Since our expan-
sion is uncontrolled, we need to obtain additional safeguards
in order to see if where our approach hold, and where it is too
crude. For that, we derive constraints to be satisfied by the
fixed point.

D. Necessary conditions for a fixed point, and bounds

1. Disorder relevant

We now assume (as in qEW) that the disorder is relevant,
thus 4− d ζmζ − 2ζm > 0. This is satisfied in d = 1, see Table

I. There one finds 4 − d ζmζ − 2ζm = 0.253859. To compare,

ζm ϵ

λ


ζm

ζ
1

 4

Δ

''(0)

dimΔ/ϵ

0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 8. In d = 1: The 1-loop contributions ζm/ε, amplitude ratio
A and ζm/ζ − 1 as a function of λ̃. Setting d = 1 in the flow
equations. The orange shaded range is excluded by demanding that
∆ is relevant, the cyan line is the location of the fixed point for λ̃.
The red dashed line is the bound onA fromA∆

c = Afcc . (see section
III D 3)

in d = 0 (qEW) one gets 4−2ζm = 4−2×2− ≈ 0. In d = 1
qEW has 4− 1− 2× 5/4 = 0.5.

Taking the limit of u → 0 in Eq. (57), we obtain a soft
bound at 1-loop order,

|∆̃′(0+)| >
√
d(d+ 2)

12
λ̃∆̃(0). (60)

When violated, the rescaling term becomes negative, and we
expect the effective disorder to disappear at large scales. Us-
ing the definition of the universal amplitudeA in Eq. (31), we
can rewrite the bound (60) as1

A < A∆
c =

√
12

d(d+ 2)
=

 2 in d = 1
1.22 in d = 2
0.894 in d = 3

. (61)

2. ζm > ζ

We expect that the effective c would grow at large scales,
since it describes the long distance behavior of models with
stronger than harmonic elasticity. As a result we demande
that ψc > 0 (which implies ζm > ζ ). Eq. (56) then yields

λ̃×
[
∆̃′(0+) +

d− 1

3
λ̃∆̃(0)

]
< 0. (62)

This can be rewritten as

A < Aψcc =
3

d− 1
. (63)

1 Note that the definition (31) for A remains unchanged upon replacing all
quantities by their dimensionless analogue, noted with a tilde.
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3. Positive pinning force

The last condition is that the critical force at depinning
needs to be negative (keeping us pinned), equivalent to a neg-
ative square bracket in Eq. (47). In terms of A, this results
in

A ≤ Afcc =
2

d
. (64)

We find that in 1 ≤ d ≤ 4 the strongest bound is Afcc for the
critical force, followed by the one for ∆(w) and ψc,

A < Afcc ≤ A∆
c < Aψcc . (65)

It would be interesting to continue this to 2-loop order.

E. Solution of the flow equations

1. Scheme

How do we solve these coupled equations (Eqs. (54)-(59)
) The procedure is adapted from the standard ansatz for qEW
[84], explained in detail in Ref. [53]:

(i) Use the normalization ∆̃(0) = ε. In practice, this cor-
responds to setting ε→ 1 and ζm → ζm/ε in Eq. (57),
and then solving the flow equations with ∆̃(0) → 1 in
the code.

(ii) Solve the (such rescaled) flow equation (57) for 0 ≤
λ̃ ≤ 2. The correct solution is the one for which ∆̃(w)
decays to zero at least exponentially fast: A power-law
decay, or an increase with w, is not permitted by the
physical initial condition.

(iii) The critical λ̃c that satisfies Eq. (54) in our scheme is

λ̃c =

√
6

4− d

√
ζm
ε
. (66)

Given d, the first square root is a number; the second
one is the result from step (ii) above.

It is interesting to see how the different exponents depends
on λ̃ that is why we solve the flow equations for different λ̃
instead of plugging the value given by Eq. (54).

2. d = 1

The procedure and the values obtained for different λ̃ are
shown for d = 1 in Fig. 8. We see that ζm/ε slightly decreases
from its qEW value of ζqEW

m = 1/3. The ratio ζm/ζ starts at
1 for λ̃ = 0, and then grows. The disorder becomes irrelevant
for λ̃ ≈ 1.4. At the same time the bound (61) for A (marked

ζm ϵ

λ


ζm

ζ
1

 4

Δ

''(0)

dimΔ/ϵ

0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 9. Same as Fig. 8 for d = 2. The lower red dashed line is the
bound on A from Afcc , the upper one the bound from A∆

c .

here as a red dashed line A/4 = 0.5) is violated. The critical
λc = 0.755203 respects all bounds in Eq. (65). It gives

ζd=1
m = 0.8555, (67)
ζd=1 = 0.6994, (68)
zd=1 = 1.2736, (69)
Ad=1 = 1.2781. (70)

This can be compared to their values for λ = 0 (qEW), ζm =
ζ = 1, and z = 4/3, and the numerically obtained values
ζm = 1.052, ζ = 0.636, and z = 1.1. The values (67)-
(69) are pretty reasonable for 1-loop estimates: For qEW ζ in
d = 1 comes out 20% smaller (1 instead of 1.25); the same
reduction applies to our prediction for ζm in qKPZ. ζ is about
10% larger than the numerical value. Finally, while z is too
large, using the numerically known value for ζ/ζm with the
same 1-loop estimate would yield z = 0.942, smaller than the
measured value of z = 1.1. (Note that the prediction of z = 1
in [72] is invalidated by numerics [74].)

3. d = 2

Relevant quantities as a function of λ are given on Fig. 9.
Evaluation at λ = λc yields

ζd=2
m = 0.6051, (71)
ζd=2 = 0.4941, (72)
zd=2 = 1.4112, (73)
Ad=2 = 1.2479. (74)

These results violate the bound (64) on A for fc. Supposing
that this is an artifact of the 1-loop approximation, the next
bound to consider is the bound (61), asking that disorder is
relevant at the transition. This bound is only slightly violated.
We therefore hope that the values given in Eqs. (71)-(74) are
usable.

Our own numerical simulations [74] give ζm = 0.70(3),
ζ = 0.47(3) for TL92, and ζm = 0.61(2), ζ = 0.48(2) for
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anharmonic depinning. We expect the latter to be more reli-
able as there are less finite-size corrections. The agreement is
then excellent.

For comparison we note that 1-loop qEW gives ζm = ζ =
2/3, and z = 1.5556, while numerics gives ζ = ζm =
0.753(2) and z = 1.56(6).

4. d = 3

Relevant quantities as a function of λ are given on Fig. 11.
At the non-trivial fixed point (66) for λ, we find

ζd=3
m

?
= 0.9799, (75)

ζd=3 ?
= 0.6048, (76)

zd=3 ?
= 0.9777, (77)

Ad=3 ?
= 1.1394. (78)

These values violate all bounds, and thus need to be rejected.
There are four possible conclusions:

(i) since the disorder is irrelevant at this fixed point, there
is no qKPZ class.

(ii) this fixed point is irrelevant, but there is a another fixed
point not contained in our approach.

(iii) our approach is too crude.

(iv) our approach is crude as the fixed-point value for λ is
too large, but providing a better value for λc it remains
predictive.

If we believe Ref. [99], there is a distinguished fixed point for
both classes, eliminating (i) while allowing for (ii). While the
following option (iii) is suggestive, we can still try (iv): moti-
vated by our success in d = 2, we use λ such that the disorder
at the fixed point is marginal. We note that this scenario is re-
alized in d = 0 (the disorder grows logarithmically with 1/m)
[87]. We then obtain

ζd=3
m = 0.3325, (79)
ζd=3 = 0.2991, (80)
zd=3 = 1.7017, (81)
Ad=3 = 0.8944. (82)

These values are pretty much in line with the simulations for
anharmonic depinning in d = 3: ζm = 0.34(3), ζ = 0.27(3).
We do not know the values of z and A.

5. Force amplitude ratio

Let us now address the relative fluctuations of forces de-
fined in Eqs. (24) to (26). At leading order in perturbation

0.0 0.5 1.0 1.5 2.0
w−w ′

0.0000

0.0005

0.0010

0.0015 ∆

∆FF

∆ΛΛ

∆ΛF

FIG. 10. Correlators of the disorder force, the interface center of
mass, and the KPZ force, as well as the cross correlator of the KPZ
force and the disorder force. The interface center of mass correlator
is a mix of the disorder force and the KPZ force.

theory we can estimate from Fig. 3 (where the δi∆(w) are
defined) that

∆FF (w)

∆(w)
≈ δ1∆(w)

δ1∆(w) + δ2∆(w) + δ3∆(w)
, (83)

∆ΛΛ(w)

∆(w)
≈ δ2∆(w)

δ1∆(w) + δ2∆(w) + δ3∆(w)
, (84)

∆ΛF (w)

∆(w)
≈ δ3∆(w)

δ1∆(w) + δ2∆(w) + δ3∆(w)
. (85)

These equations simplify upon using that δ3∆(w) = 0. Given
the similar functional forms shown in Fig. 10, let us focus
on the relative amplitudes. With the universal amplitude A
defined in Eq. (31), we get

∆FF (0)

∆(0)
≈ 1

1− d(d+2)
12 A2

, (86)

∆ΛΛ(0)

∆(0)
≈

d(d+2)
12 A2

1− d(d+2)
12 A2

, (87)

∆ΛF (0)

∆(0)
≈ 0. (88)

In our simulations in d = 1 we find

∆FF (0)

∆(0)
= 1.40(3), (89)

∆ΛΛ(0)

∆(0)
= 0.36(3), (90)

∆ΛF (0)

∆(0)
= −0.18(3). (91)

The theory in d = 1 has

d(d+ 2)

12
A2 = 0.408, (92)
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
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FIG. 11. Same as Fig. 8 for d = 3. The lower red dashed line is the
bound on A from Afcc , the upper one the bound from A∆

c .

which gives 1.69, 0.24 and 0 for the three ratios in Eqs. (89)
to (91). Using the measured amplitude A = 1.1 these ratios
become 1.43, 0.21 and 0 which is closer to the measured am-
plitudes. All these values seem pretty reasonable given the
order of approximation.

6. Other quantities and summary

Other properties of ∆̃(w) derived from the FRG solution
are presented in table II. An interesting property is the curva-
ture κ, defined as

f(w) := ln
(
∆(w)/∆(0)

)
,

κ :=
1

2

f ′′(0+)

f ′(0+)2
=

1

2

[
1− ∆(0)∆′′(0+)

∆′(0+)2

]
. (93)

It is constructed such that an exponential decaying ∆(w),
which gives a straight line for f(w), has a vanishing curva-
ture. The definition was motivated by the observation in [86]
that the FRG flow in the massless scheme possesses an expo-
nentially decaying subspace, protected to all orders in pertur-
bation theory. Our simulations in [74] showed no evidence for
this subspace. Still, κ is a scale-free parameter which allows
one to distinguish different shapes.

Our results for the exponents are summarized in table III,
and in Figs. 12 and 13 for the full function ∆̃(w), rescaled
such that ∆̃(0) = −∆̃′(0+) = 1. They show excellent agree-
ment between theory and simulation.

F. Cole-Hopf transformation

The Cole-Hopf transformation is defined by

Z(x, t) = eλ̂u(x,t) ⇔ u(x, t) =
lnZ(x, t)

λ̂
. (94)

It is build to remove the non-linear term proportional to λ from
the KPZ equation (1), and reproduced here,

η∂tu(x, t) = c∇2u(x, t) + λ [∇u(x, t)]
2

+m2
[
w−u(x, t)

]
+F
(
x, u(x, t)

)
. (95)

The transformed equation reads

η∂tZ(x, t) = c∇2Z(x, t) + λ̂Z(x, t)F

(
x,

lnZ(x, t)

λ̂

)
+m2Z(x, t)

[
λ̂w − lnZ(x, t)

]
. (96)

Some remarks are in order:

(i) while the term ∼ m2 in Eq. (95) provides a mass to
the free propagator, i.e. a decay for large distances x
proportional to e−m|x|, it becomes a non-linear term ∼
Z lnZ in the transformed equation (96). For this reason
that one usually sets m→ 0.

(ii) The force f = m2w in Eq. (95), which could be in-
troduced independently of the term linear in u(x, t),
becomes a mass for the Cole-Hopf transformed theory
(96), of the form fλ̂Z(x, t). As a result, the free prop-

agator for Z decays with a factor of e−|x|
√
fλ̂.

This indicates that the Cole-Hopf transformation heavily
shakes up infrared and ultraviolet properties of the theory. It
may therefore not be surprising that in [86] no fixed point was
found, whereas here, with properly defined physical fields,
there is an FRG fixed point. A better understanding of the
Cole-Hopf transformation and its consequences are desirable.
We cannot exclude that it has some bearing on the perturba-
tive treatment [100–103] of the KPZ equation itself, or on the
mapping between the KPZ equation and the corresponding di-
rected polymer problem [53, 104], with all that this entails.

IV. CONCLUSION

We revisited the qKPZ universality class. Using a careful
comparison to numerical simulations in dimensions d = 1,

quantity d qKPZ FT qKPZ sim qEW FT
κ 1 0.1291 0.12(1) 0.1667

2 0.0738 0.07(1) 0.1667

3 0.07704∗ 0.08(3) 0.1667

∆̃′(0+) 1 −0.5909ε −1.248ε −0.5774ε

2 −0.7605ε −1.464ε −0.5774ε

3 −0.7864∗ε −1.67ε −0.5774ε

∆̃′′(0+) 1 0.2590ε 1.169ε 0.2222ε

2 0.4931ε 1.841ε 0.2222ε

3 0.5231∗ε 2.33ε 0.2222ε

TABLE II. Correlator quantities coming from the analytical solution
of the flow equations, setting ∆̃(0) = ε. For qKPZ in d = 3 we fix
λ̃ by supposing that the disorder is marginal; the resulting values are
indicated by an asterisk. Note that ∆̃′(0+) and ∆̃′′(0+) are scheme
dependent, while κ is universal.
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FIG. 12. (colors online) (Left) Correlators in d = 1 from simulations of harmonic depinning (qEW) and anharmonic depinning (in the qKPZ
universality class), compared to the analytic solution of the flow equations. ∆(w) for anharmonic depinning decays slightly faster than the one
for harmonic depinning. The correlators are rescaled such that ∆(0) = |∆′(0+)| = 1. (Right) Difference of the rescaled correlators measured
or analytical. The qKPZ FRG 1-loop solution is around three times closer to the numerical simulation than the same curves for qEW.
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FIG. 13. (Left) Correlators in d = 2 from simulations of harmonic
depinning (qEW) and anharmonic depinning (qKPZ class), com-
pared to the solution of the FRG flow equations. The FRG solution is
much closer to anharmonic depinning than to qEW. The correlators
are rescaled such that ∆(0) = |∆′(0+)| = 1. (Right) Difference
of the rescaled correlators measured and analytical. The agreement
between simulations and theory is of the same order of magnitude
for the two universality class, even if the qKPZ theory is much more
sophisticated.

d = 2, and d = 3, we constructed a consistent theory. The

Exponent dim field theory simulations
ζ 1 0.6994 0.636(8)

2 0.4941 0.48(2)

3 0.2991∗ 0.27(3)

ζm 1 0.8555 1.052(5)

2 0.6051 0.61(2)

3 0.3325∗ 0.34(3)

z 1 1.2736 1.10(2)

2 1.4112

3 1.7017∗

A 1 1.2781 1.1(1)

2 1.2479

3 0.8944∗

TABLE III. Critical exponents of the qKPZ class, from simulations
of anharmonic depinning (except for z coming from TL92) and the
analytical resolution of the fixed-point equations. In d = 3 we fix
λ̃ by supposing that the disorder is marginal, indicated by an aster-
isk. Note that our simulations agree with [99], and with the static
exponents of [72] for d ≤ 2, see [74] for a detailed discussion.

crucial ingredient is a flow-equation for the KPZ non-linearity,
which is controlled by dimension d. Behind this feature lies
the observation that all field theories for qEW with SR or LR
elasticity, as well as qKPZ merge into a single theory in di-
mension d = 0. Our theory has predictive powers as long
as we have a sufficient knowledge of the qEW fixed point in
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small dimensions, and we are not too far away from d = 0.
We derived several bounds, respected in low dimensions, but
violated in dimension d = 3; there we currently can only close
our scheme with an adhoc assumption.

We hope that our method of first measuring the effective
theory in a simulation, before attempting to build a field the-
ory, can serve in other contexts as well, as e.g. fully devel-
oped turbulence. Applying our approach to other growth ex-
periments in d = 2 for which no theory is available seems
promising. We hope it will also shed light on the problems in
the standard (thermal) KPZ equation in higher dimensions.
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Appendix A: Field-theory details

As explained in the main text, our field theory is mas-
sive, with a time integrated response function given by Ck =
1/(ck2 + m2). All diagrams are calculated with Ck. In ap-
pendix A 1 we first give all momentum integrals appearing in
the main text or used later. In the following appendix A 2, we
recalculate all diagrams in the massive scheme.

1. Useful momentum integrals

To calculate all integrals, we use the Feynman representa-
tion of the time integrated response,

Ck =
1

ck2 +m2
=

∫
s>0

e−s(cq
2+m2). (A1)

This lets appear a normalization factor∫
k

e−sk
2

=
1

(4πs)d/2
. (A2)

The elasticity c and the massm both appear in the momentum
integrals, and can be taken out by a rescaling of k. As an
example consider

I1 :=

∫
k

1

(ck2 +m2)2
=

1

cd/2

∫
k

1

(k2 +m2)2

=
md−4

cd/2

∫
k

1

(k2 + 1)2
=
md−4

cd/2

∫
k

∫
s>0

s e−s(k
2+1)

=
md−4

cd/2
1

(4π)d/2

∫
s>0

s1−d/2 =
md−4

cd/2
2Γ(1+ ε

2 )

ε(4π)d/2
. (A3)

In the first step, we rescaled k → k
√
c. In the second step

k → k
m . These steps assume that there are no explicit cutoffs

on k, and that the only cutoff is set bym, and dimensional reg-
ularization is used. We then used the auxiliary integral (A1),

and the momentum integral (A2). Below we give a complete
list of all encountered integrals, after rescaling to eliminate the
c and m dependence.

∫
k

1

k2 + 1
=

Γ
(
1− d

2

)
(4π)d/2

, (A4)∫
k

k2

(k2 + 1)2
=
d

2

∫
k

1

k2 + 1
, (A5)∫

k

1

(k2 + 1)2
=

Γ
(
2− d

2

)
(4π)d/2

≡
2Γ(1 + ε

2 )

ε(4π)d/2
, (A6)∫

k

k2
1

(k2 + 1)3
≡ 1

4

∫
k

1

(k2 + 1)2
, (A7)∫

k

k2

(k2 + 1)3
≡ d

4

∫
k

1

(k2 + 1)2
, (A8)∫

k

k4

(k2 + 1)4
≡ d(d+ 2)

24

∫
k

1

(k2 + 1)2
. (A9)

Integral (A6) is the key-integral used to define the renormal-
ized disorder correlator ∆̃(u), see Eqs. (49)-(50). It is there-
fore useful to express as far as possible all integrals w.r.t. to
integral (A6), or including the dimensions w.r.t integral (A3).

2. Diagrams

a. The coefficient a0

According to [86], Eq. (A3)

= λ∆′(0+)ũu̇

∫
k

ck2

(ck2 +m2)3
, (A10)

∫
k

ck2

(ck2 +m2)3
= c−

d
2

∫
k

k2

(k2 +m2)3

= c−
d
2md−4

∫
k

k2

(k2 + 1)3
. (A11)

The relevant integral is Eq. (A8), thus in Eq. (38)

a0 =
d

4
. (A12)

Note that it does not modify η in dimension d = 0.
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b. The coefficient a1

The first correction (in momentum space) to ũ∇2u is

= −2∆′(0+)λ

∫
k

kp

(c(k + p)2 +m2)(ck2 +m2)

= 4∆′(0+)λ

∫
k

c(kp)2

(ck2 +m2)3
+O(p3)

= ∆′(0+)λ̂(cp2)I1. (A13)

Note that −p2u↔ ∇2u. This yields in Eq. (39)

a1 = 1. (A14)

c. The coefficient a2

The second correction (in momentum space) to ũ∇2u is

= −4∆(0)λ2

∫
k

(kp)[k(k + p)]

(c(k + p)2 +m2)(ck2 +m2)2

=
4∆(0)λ2

cd/2+1

∫
k

2k2(kp)2

(k2 +m2)4
− (kp)2

(k2 +m2)3
+O(p3)

= 4∆(0)λ̂2(cp2)I1
d− 1

3
. (A15)

This implies in Eq. (39)

a2 =
d− 1

3
. (A16)

d. The coefficient a3

Denoting by p1 and p2 the momenta entering into the two
external fields to the right, we have up to higher-order correc-
tions in the pi

=

∫
k

4λ2∆′(0+)
(kp1)α(kp2)β

(ck2 +m2)
3 ũ−p1−p2up1up2

=

∫
k

4λ2∆′(0+)
k2

d (p1 · p2)

(ck2 +m2)
3 ũ−p1−p2up1up2

= −
∫
k

4λ2∆′(0+)
k2

d

(ck2 +m2)
3 ũ(∇u)2

= −4∆′(0+)
λ2

d

∫
k

k2

(ck2 +m2)3
ũ(∇u)2

= −∆′(0+)λλ̂I1ũ(∇u)2. (A17)
We used Eq. (A9). This yields in Eq. (40)

a3 = 1. (A18)

e. The coefficient a4

= −8
∆(0)

d
λ3

∫
k

k4

(ck2 +m2)
4 ũ(∇u)2, (A19)

= 4
∆(0)

d
λ3

∫
k

k4

(ck2 +m2)4
ũ(∇u)2. (A20)

Together their amplitude (without the factor of ∆(0) and
ũ(∇u)2) is

− 4λ3

dcd/2+2

∫
k4

(k2 +m2)4
= −λλ̂2 d+ 2

6
I1. (A21)

Therefore in Eq. (40),

a4 =
d+ 2

6
. (A22)

f. The coefficient a5

It is given by twice the integral (A9), thus for Eq. (41)

a5 =
d(d+ 2)

12
. (A23)

3. Depinning force

The perturbative calculation gives in absence of KPZ terms

F (1)
c = −∆′(0+)

∫
k

1

ck2 +m2
. (A24)

The new contribution induced by the KPZ term is

F (2)
c = = λ∆(0)

∫
k

k2

(ck2 +m2)2
. (A25)

(There is a combinatorial factor of 1/2 from ∆(ut − ut), fol-
lowed by a 2 for the number of possible contractions.) The
total is

Fc = F (1)
c + F (2)

c

'
[
∆′(0+) +

d

2

λ

c
∆(0)

] ∫
k

1

ck2 +m2
. (A26)
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González, A.E. Bolzán and A.J. Arvia, Dynamic scaling anal-
ysis of two-dimensional cell colony fronts in a gel medium:
A biological system approaching a quenched Kardar-Parisi-
Zhang universality, Phys. Rev. E 90 (2014) 022706.

[78] S. Atis, A.K. Dubey, D. Salin, L. Talon, P. Le Doussal and K.J.
Wiese, Experimental evidence for three universality classes
for reaction fronts in disordered flows, Phys. Rev. Lett. 114
(2015) 234502, arXiv:1410.1097.

[79] O. Narayan and D.S. Fisher, Dynamics of sliding charge-
density waves in 4-epsilon dimensions, Phys. Rev. Lett. 68

http://dx.doi.org/10.1103/PhysRevLett.98.155701
http://arxiv.org/abs/cond-mat/0606160
http://arxiv.org/abs/cond-mat/0606160
http://dx.doi.org/10.1103/PhysRevB.75.220201
http://dx.doi.org/10.1103/PhysRevB.75.220201
http://arxiv.org/abs/cond-mat/0610821
http://dx.doi.org/10.1103/PhysRevE.79.050106
http://dx.doi.org/10.1103/PhysRevE.79.050106
http://arxiv.org/abs/arXiv:0810.4395
http://dx.doi.org/10.1103/PhysRevLett.76.1481
http://dx.doi.org/10.1080/00018730050198152
http://dx.doi.org/10.1080/00018730050198152
http://arxiv.org/abs/cond-mat/0001070
http://dx.doi.org/10.1140/epjst/e2014-02266-y
http://arxiv.org/abs/arXiv:1404.5325
http://arxiv.org/abs/arXiv:1703.07541
http://dx.doi.org/10.1103/PhysRevE.67.021602
http://arxiv.org/abs/cond-mat/0207288
http://arxiv.org/abs/cond-mat/0207288
http://dx.doi.org/10.1103/PhysRevE.50.1024
http://dx.doi.org/10.1103/PhysRevE.50.1024
http://dx.doi.org/10.1016/0550-3213(95)00268-W
http://arxiv.org/abs/cond-mat/9501094
http://arxiv.org/abs/cond-mat/9501094
http://dx.doi.org/10.1103/PhysRevE.56.5013
http://arxiv.org/abs/cond-mat/9706009
http://arxiv.org/abs/cond-mat/9706009
http://dx.doi.org/10.1023/B:JOSS.0000026730.76868.c4
http://arxiv.org/abs/cond-mat/9802068
http://arxiv.org/abs/cond-mat/9802068
http://dx.doi.org/10.1103/PhysRevE.72.035101
http://arxiv.org/abs/cond-mat/0501315
http://arxiv.org/abs/arXiv:2102.01215
http://dx.doi.org/10.1103/PhysRevLett.74.920
http://arxiv.org/abs/cond-mat/0404512
http://dx.doi.org/10.1103/PhysRevLett.117.087201
http://arxiv.org/abs/arXiv:1601.01331
http://arxiv.org/abs/arXiv:2109.01197
http://dx.doi.org/10.1103/PhysRevE.57.2574
http://arxiv.org/abs/cond-mat/9708222
http://dx.doi.org/10.1103/PhysRevB.57.7642
http://dx.doi.org/10.1103/PhysRevB.57.7642
http://dx.doi.org/10.1103/PhysRevB.46.11520
http://dx.doi.org/10.1103/PhysRevB.46.11520
http://dx.doi.org/10.1103/PhysRevResearch.2.043385
http://arxiv.org/abs/arXiv:1909.01319
http://dx.doi.org/10.1103/PhysRevLett.96.015702
http://arxiv.org/abs/cond-mat/0411652
http://arxiv.org/abs/cond-mat/0411652
http://dx.doi.org/10.1103/PhysRevE.75.031601
http://arxiv.org/abs/hep-th/0606247
http://dx.doi.org/10.1209/0295-5075/87/56001
http://arxiv.org/abs/arXiv:0904.4156
http://dx.doi.org/10.1016/S0370-1573(98)00008-8
http://dx.doi.org/10.1016/S0370-1573(98)00008-8
http://dx.doi.org/10.1103/PhysRevLett.78.4885
http://dx.doi.org/10.1103/PhysRevX.8.021075
http://dx.doi.org/10.1103/PhysRevX.8.021075
http://dx.doi.org/10.1103/PhysRevLett.121.058002
http://dx.doi.org/10.1103/PhysRevA.45.R8313
http://dx.doi.org/10.1103/PhysRevA.45.R8313
http://dx.doi.org/10.1103/PhysRevA.45.R8309
http://dx.doi.org/10.1103/PhysRevE.51.4655
http://dx.doi.org/10.1103/PhysRevLett.87.187002
http://dx.doi.org/10.1103/PhysRevLett.87.187002
http://arxiv.org/abs/cond-mat/0104198
http://arxiv.org/abs/arXiv:2207.08341
http://dx.doi.org/10.1103/PhysRevLett.110.107203
http://dx.doi.org/10.1103/PhysRevLett.110.107203
http://dx.doi.org/10.1103/PhysRevB.100.184420
http://dx.doi.org/10.1103/PhysRevE.90.022706
http://dx.doi.org/10.1103/PhysRevLett.114.234502
http://dx.doi.org/10.1103/PhysRevLett.114.234502
http://arxiv.org/abs/arXiv:1410.1097
http://dx.doi.org/10.1103/PhysRevLett.68.3615


16

(1992) 3615–18.
[80] O. Narayan and D.S. Fisher, Threshold critical dynamics of

driven interfaces in random media, Phys. Rev. B 48 (1993)
7030–42.

[81] H. Leschhorn, T. Nattermann, S. Stepanow and L.-H. Tang,
Driven interface depinning in a disordered medium, Annalen
der Physik 509 (1997) 1–34, arXiv:cond-mat/9603114.

[82] T. Nattermann, S. Stepanow, L.-H. Tang and H. Leschhorn,
Dynamics of interface depinning in a disordered medium, J.
Phys. II (France) 2 (1992) 1483–8.

[83] P. Chauve, P. Le Doussal and K.J. Wiese, Renormalization of
pinned elastic systems: How does it work beyond one loop?,
Phys. Rev. Lett. 86 (2001) 1785–1788, cond-mat/0006056.

[84] P. Le Doussal, K.J. Wiese and P. Chauve, 2-loop functional
renormalization group analysis of the depinning transition,
Phys. Rev. B 66 (2002) 174201, cond-mat/0205108.

[85] P. Le Doussal, K.J. Wiese and P. Chauve, Functional renor-
malization group and the field theory of disordered elastic sys-
tems, Phys. Rev. E 69 (2004) 026112, cond-mat/0304614.

[86] P. Le Doussal and K.J. Wiese, Functional renormalization
group for anisotropic depinning and relation to branching pro-
cesses, Phys. Rev. E 67 (2003) 016121, cond-mat/0208204.

[87] P. Le Doussal and K.J. Wiese, Driven particle in a random
landscape: disorder correlator, avalanche distribution and
extreme value statistics of records, Phys. Rev. E 79 (2009)
051105, arXiv:0808.3217.

[88] P. Grassberger, D. Dhar and P. K. Mohanty, Oslo model, hy-
peruniformity, and the quenched Edwards-Wilkinson model,
Phys. Rev. E 94 (2016) 042314, arXiv:1606.02553.

[89] A. Shapira and K.J. Wiese, unpublished.
[90] P.C. Martin, E.D. Siggia and H.A. Rose, Statistical dynamics

of classical systems, Phys. Rev. A 8 (1973) 423–437.
[91] P. Le Doussal and K.J. Wiese, How to measure Functional RG

fixed-point functions for dynamics and at depinning, EPL 77
(2007) 66001, cond-mat/0610525.

[92] A.A. Middleton, P. Le Doussal and K.J. Wiese, Measur-
ing functional renormalization group fixed-point functions for
pinned manifolds, Phys. Rev. Lett. 98 (2007) 155701, cond-
mat/0606160.

[93] A. Rosso, P. Le Doussal and K.J. Wiese, Numerical cal-
culation of the functional renormalization group fixed-point
functions at the depinning transition, Phys. Rev. B 75 (2007)
220201, cond-mat/0610821.

[94] J.A. Bonachela, M. Alava and M.A. Muñoz, Cusps in sys-
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