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The renormalization ¢-function for supersymmetric nonlinear sigma-models is calculated
up to three-loop order. For a wide class of models, which includes the N-vector model
and matrix models, the result can be summarized as follows: If the (-function for the
bosonic model is (gos(tr) = atp + O(t}), then the (-function for the supersymmetric
model takes the form (susy(tr) = etr +O(t}1). This is the case for arbitrary harmonic
polynomials of the field variables (so called “soft operators").

1. Introduction

Bosonic nonlinear -models have widely been discussed in the past years. The anal-
ysis started with the N-vector model®* and was then generalized for other sym-
metric spaces>®!® and general Riemannian manifolds.!' The form of the manifold
no longer remains fixed. Therefore new consistency-relations arise.® It is claimed
but not proved that there are enough relations to derive all renormalization group
functions from the metric S-function.'?

For the supersymmetric case results from direct loop calculations exist only
for the metric B-function."” These calculations are performed using a massless
propagator. Other renormalization functions (e.g. {;) were neither derived from the
metric f-function nor by direct loop expansions.

In this letter the renormalization (-function, which describes the renormaliza-
tion of polynomial operators in the fields, is actually calculated up to three-loop
order. In contrast to the existing calculations for the metric f-function’” they are
performed using a massive supersymmetric propagator. The results for the bosonic
case are known from Refs. 8, 9 and 15 but are recalculated here in order to enable
a comparison with the supersymmetric functions. In the supersymmetric case our
result is in agreement with Ref. 6, where for the special case of the N-vector model
and the simplest mass-term the (-function was derived from a 1/N?-expansion.

This letter is organized as follows: First we outline some basic ideas and
terminology of space-time supersymmetry and discuss the relation to the super-
symmetry arising in the context of disorder. Then a definition of the nonlinear
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o-model is given. It is discussed how, and whether at all, the model can be renor-
malized. The explicit renormalization is presented in Sec. 5. The results hold for a
wide class of operators and models. This is discussed in the last section.

2. Supersymmetry

In this approach supersymmetry is induced by an additional generator @,, which
extends the two-dimensional Poincaré-algebra®

[Py, M, ] = %(ﬂnr 9vr = Gur Gur)Pa (1)
[Pu, P]=0 (2)
to a superalgebral#16.13
[Qa, Pu] =0, (3)
[Qa; M) = Ds(M,)apQp

= ';_ [7#:7!’10:}3 Qﬁ ) (4)
{Qa, @5} = 2(PY0)as - (5)

It is easy to show that Dg(M,,) has to be a representation of M,,,. Here it is cho-
sen to be the two-dimensional spin representation in order to incorporate spinorial
quantities. With this choice {Qa, @} is fixed up to a prefactor.

As translations by P, are parametrized by a vector z,, translations by Q, are
parametrized by a Grassmannian spinor ,. So one is led to extend scalar fields
o(z) to superfields®* «x(z,#):

#(z,0) == @(z) + 0Y(z) + %é@F(a‘:) i (6)

As there are two independent Grassmannian (anticommuting) variables #; and 5,
the Taylor expansion terminates after the second term. Since x(z,#) is supposed
to be real, p(z) and F(z) are also real scalar fields. ¥(z) is a real (Majorana-)
bi-spinor.

Given the algebra (1)—(5) it is straightforward to construct a representation on
C¥(R? x G?):

(YL ai, , (7
1

Dw(M;w) - ‘;f(g.ur Gua — Gua er)xrai“ ) (8)

Du(Qa) = (P0)u — i ©)

%For the conventions see the Appendix.
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It is easy to see that the Berezin-integral ([ d*0 =(z, ) := —F(z)) of any power of
the superfield 7(z,0) is, up to a total divergence, invariant under translations Qq.
Thus (d = 2)

/ diz d*0x"(z,0) (10)

is supercovariant and may be used as a contribution to an invariant Hamiltonian,
This is not the case for terms like

/d"z:d’ﬂ Qur™(z,0) Qur™(z,0) , (11)

because @, does not anticommute with itself. However one can define a so-called
supercovariant derivative Dy which anticommutes with Q,:

{Da,Qs} =0, (12)
& .
D, = T i(@0)a. (13)
Then
/d”ﬂ diz D7 (z,0) Dom™(z,0) (14)

is invariant under the transformations Q4.

The construction given above however should not be confused with internal
supersymmetries, which arise in the treatment of disorder (p. 683 of Ref. 10) and
characteristically leave invariant terms like

2+ 00. (15)

This term is affected by @, as can be seen from Eq. (5). Moreover @, does not
preserve any scalar quantity like (15).

3. The Nonlinear Sigma-Model

The Hamiltonian of the O(N)-symmetric bosonic model in Cartesian coordinates
{z',..., 2" o} withd=2and n = N -1 is®*:

Haos = [ d¥ 5(Va)? 4 5(Vo)? ~ Ho, (16)

where ¢ is expressed in terms of = as

o=+1-72%. (17)

The supersymmetric generalization isb":

Hsusy = jddt d’¢ %bqﬂ'Daﬂ' + =DaoDoo — Ho (18)

| =

7 and o are both superfields. Again (17) is used to eliminate o.
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4. Renormalization

The renormalization of the model is achieved by replacing
1 Y P 1.
—HMHsusy g = — [ dzd°@=DyrgDynpg + —DyogDyog — Hgop (19)
ty : ip 4 4

through

1 F 2 1] = 1 =
_HSUSY,R = P—fdd:c dzﬂ—— -—DQNRDG‘H'R-}- —DQO'HDQO'R — HRG'H (20)
tr tr Zi \4 4

and

1

‘ﬂ'ﬂ:ﬁﬂ"g, (21)
1

J‘R:ﬁﬂg, (22]
1

tp = —utt 23

R Zlﬂ B (23)

Hgp = 1H (24)

R—ZH B-

The renormalizability of the bosonic model has been proved by Brézin et al. * It is
possible to generalize this result for the supersymmetric case, for details see Ref. 17.
The proof is straightforward if one replaces every field by a superfield and takes care
of the anticommuting property of the supercovariant derivative. Additionally one
finds that like in the bosonic case
Zy

Zy = V7 (25)
i.e. the renormalization of the external field H is not independent.

Since the model is renormalizable one is free to renormalize any quantity. The
simplest one is the free energy'®: In one-loop order there is only one graph to be
calculated, whereas for the renormalization of the two-point function I'?) there are
six graphs. The well known problem which arises in the supersymmetric case is that
due to supersymmetry the free energy always vanishes. Nevertheless it is possible
to define an equivalent Fsusy # 0 by explicit breaking of supersymmetry.!” This is
also done if one calculates the two-point function: It depends on z and #.

5. Results for the Standard Model

The calculations are performed employing the superpropagator technique as
described in Ref. 7. The minimal subtraction scheme is used combined with di-
mensional reduction. Dimensional reduction means that one does the calculation of
the supersymmetric algebra in two dimensions until there are only left mere scalars
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or scalar products of (space-) vectors. The integrals arising in that way are analyt-
ically continued to d = 2 + ¢ dimensions. This prescription is well-defined since for
the spinorial part the representation as bi-spinors is valid also for three-dimensional
space-time. This is simply the Pauli representation of quantum mechanics.

Up to three-loop order the divergent part of the free energy is

14¢/2 1+4¢ 2
(3) " H HB H tBHB (21’!—1’1)
w(tB, Hp) = e 2+e) 82
H‘*“" %42,n(20e —20ne+ 3ne 4 16— 20n 4+ 12ne? — 1262 +6n%)
96e3
(25)
14¢ 142¢ 2
Fsusv(ts, Ha) = 7+ 2(1+¢) 8¢?
H}f""t"’ n(12e—12ne+3n%e+8— 10n+3n2)
- e (27)
One can extract the Z-factors:
n n(2n—-1) ,
=14+—t e
ZBm(tR) + - Rt % tR
nn—2) n(n-1) n(2n—1)(3n-2)
+( il potampi = th+0(ty), (28)
Fiosyey 214 Bigy a0t )yge 20 g 1)§3" Vs oih), (29
£ 2e Ge
-1 -1 -1)2
Zrmatn) =14 tnt (54 £ 8 4o, (30)
€ 2e £
-1 =% ' L
Zy susy(tr) = 1+ = —trt (m = ) th + O(tk) . (31)

The - and (-functions are defined as®;

EtR
1+‘Ra 1HZ1(iR)

a
B(tr) == o], R

(32)

C(tr) := p% ! InZ(tg) = ,B(tﬂ)atikln Z(tr). (33)

bThe subscript “B” indicates that the differentiations are performed for fixed bare quantities.
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So one arrives at

Bros(tr) = €tp + (1 —n)th + (1 — n)th + O(th), (34)
Bsusy(tr) = etr + (1 = n)ty + O(tg), (35)
(Bos(tr) = ntr + gn(n — 1)ty + O(tg), (36)
(susy(tr) = ntg + O(t%) . (37)

The results for the bosonic case has already been given in Ref. 8. The f-function
for the supersymmetric case has been obtained in Ref. 1. The result for the super-
symmetric (-function is in agreement with 1/N?-calculations.®

As there are 51 graphs to be calculated, it is useful to have some consistency
conditions in order to ensure that the calculations are correct. To extract the §- and
¢-functions from the free energy in three-loop order one has to fulfill 10 equations,
but five equations will already be sufficient. Then the 8- and (-functions have to
be finite. Together these tests are very sensitive.

6. Generalizations

Two generalizations can be given:

6.1. Renormalization of arbitrary polynomials in # and o
(soft operators)

In order to avoid operator-mixing one has to choose eigenfunctions of the renor-

malization group equation. One finds that these are harmonic polynomials in the
fields:

Al e Pt =11+ 0= 1) by (38)

If one adds a term

/ d4z d*0 by (39)
to the Hamiltonian, its renormalization is performed via
cl,B = Z; c,ln . (40)

The calculation is essentially the same as in Sec. 5 with the same diagrams but
different prefactors. The (-function

G(tr) = p% Bln Zi(tp) = ﬁ(tn)%ln Zi(tr) (41)
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becomes
(1 -1 I(n=1)(1 -1
G = 2D, HO=N0I Dt o), (@)
{l+n-1
Gi.susy = “%tﬁ‘ + O(tg) .- (43)

The result for the bosonic case is consistent with Refs. 9, 11 and 15.

6.2. Renormalization of generalized nonlinear sigma-models

Let the expansion of the Hamiltonian Hsusy of a generalized nonlinear o-model®
in the fields 7 be

Hsusy = /d"z d0a+ b wini 4 plyriniatal 4.
+csf)Da1riDa1rj + CS;Lvr" 7 Don*Dor! + -+ (44)
with arbitrary constants a, b*) and ¢!*), This property holds for example for matrix

models. In order to perform the renormalization one again has to calculate the
same diagrams. Let the {-function for the bosonic model be

(Bos(tr) = dtr + O(t%) (45)

then

Csusy(tr) = dtr + O(tg) . (46)
This property is essentially due to the fact that in two- and three-loop orders there
is no contribution to the free energy proportional to 1/, which is the only term

that contributes to the (-function. This is definitely not the case if another measure
is taken in momentum space (see the Appendix).

By the same method one can conclude that the term ~ t% in (45) actually van-
ishes. This is generally true for models fulfilling the bosonic equivalent of Eq. (44).
Appendix. Conventions

Euclidean notation is used. The metric is

Guv = 61.:9 (A.l)

and so upper and lower indices are treated equally. In order to construct Majorana-
(real) spinors, which are needed to make the superfield real, we use a Majorana-
representation for the Dirac matrices:

core(t5) we(1d) #e(i 4) o
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As usual ,
P=Y P (43)
p=1
and the adjoint spinor
Xp = Xavas (A.4)
so that
XY = XaVa - (A.5)

The measure of momentum space is normalized according to (d =2+ ¢)

a2 1 1
e e
f (27)4 1 + 22 £ (A6)
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