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Abstract

We derive the large order behavior of the perturbative expansion for the continuous model
of tethered self-avoiding membranes. It is controlled by a classical configuration for an effective
potential in bulk space, which is the analog of the Lipatov instanton, solution of a highly non-local
equation. The nth order is shown to have factorial growth as (−cst)n (n!)(1−ε/D), where D is the
“internal” dimension of the membrane and ε the engineering dimension of the coupling constant
for self-avoidance. The instanton is calculated within a variational approximation, which is shown
to become exact in the limit of large dimension d of bulk space. This is the starting point of a
systematic 1/d expansion. As a consequence, the ε-expansion of self-avoiding membranes has a
factorial growth, like the ε-expansion of polymers and standard critical phenomena, suggesting
Borel summability. Consequences for the applicability of the 2-loop calculations are examined.
c© 1998 Elsevier Science B.V.
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1. Introduction

Flexible polymerized tethered membranes (also called polymerized membranes or
tethered membranes) exhibit fascinating statistical properties [1,2]. Tethered mem-
branes with only short-range repulsive interactions (“self-avoidance”) may be seen
as the 2-dimensional analog of polymer chains in a good solvent. They are expected to
exist in two phases: (1) a flat (or rigid) phase with an infinite persistence length but
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non-classical elastic properties, not found for polymers which have a finite persistence
length [315], and (2) a crumpled phase similar to that of polymers [6,7]. At variance
with polymers, the crumpled phase is always swollen (whatever the dimension d of
space is) and has a configuration exponent ν larger than the mean-field exponent νmf =
0, whereas for polymers it is well known that for d > 4 one has ν = νmf = 1/2 while
for d < 4 one has ν > νmf. This follows from a simple dimensional argument, which
shows that self-avoidance is always relevant (in the renormalization group sense) [6].

The properties of the crumpled swollen phase have been much studied theoretically. In
particular, a systematic framework for renormalization group (RG) calculations has been
proposed in Refs. [8110]. It consists of (1) a self-avoiding membrane model (SAM)
which is a non-trivial extension of the continuous Edwards model for polymers [11,12],
and (2) a renormalization procedure which generalizes the direct renormalization [13]
for the Edwards model. For 2-dimensional tethered membranes, the upper critical dimen-
sion duc is infinite, but the SAM model can be extended to membranes with non-integer
internal dimension D < 2, which have a finite duc. Then the framework of Refs. [8,9]
allows one to perform a double expansion both in D (the internal dimension of the
membrane) and d (the dimension of bulk space) to study the physical case (D = 2,
d <∞) of a 2-dimensional membrane in finite dimension d. The starting point for the
ε-expansion (characterized by the dimension D0 < 2 for the membrane) can be chosen
arbitrarily. This provides an additional parameter for the expansion, which can be used
to optimize the calculations [14,21].

This approach, which amounts to performing perturbative renormalization group cal-
culations for D-dimensional membranes, has raised considerable challenges. Whereas
for polymers (i.e. when D = 1) the Edwards model can be mapped onto the local Φ4

field theory with n = 0 components [15], and direct renormalization is equivalent to the
standard renormalization (in the MS scheme) [16], this equivalence does not hold for
D3 1. It was finally shown in [17,18] that the perturbative RG calculations are math-
ematically consistent, by proving that the SAM model is renormalizable to all orders
in perturbation theory. If perturbative calculations are simple at first order (with some
subtle points [19]), they present considerable difficulties at second-order, and require a
lot of analytical and numerical work [20,21].

An important issue is to understand if these calculations make sense beyond pertur-
bation theory, or if non-perturbative effects destroy the consistency of the approach. A
first step is to understand the large order behavior of perturbation theory for the SAM
model. To our knowledge, nothing was known about this problem up to now, except
for D = 1, where one can use the equivalence to the n → 0 limit of Φ4-theory, for
which a non-trivial solution of the equation of motion at negative coupling constant,
the so-called instanton, governs the large order behavior [22,23]; however, this analogy
does not provide a physical picture of which polymer configurations dominate the large
orders. In this paper we shall formulate the problem of the large order behavior for
the Edwards model, in a way which is directly applicable both to polymers and to
membranes.

Let us summarize the organization and the results of this paper. In Section 2 we recall
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the definition of the SAM model. Then we develop a general semiclassical argument
to compute the large orders of the perturbative series for the SAM model. Using the
formulation of the SAM model as a model of a “phantom” membrane (without self-
avoidance) in a random imaginary external potential V , we show that the large orders
are controlled by a real classical configuration for this potential V , which is the analog
for SAM of the instanton for Φ4. This “SAM instanton” potential V is the extremum of
a non-local functional S[V ], which cannot be calculated exactly. We obtain the general
form for the asymptotics of the term of order n, which is

nd/2 (−C)n (n!)1−ε/D, (1)

where D is the internal dimension of the membrane, d the dimension of bulk space,
ε = 2D− d(2−D)/2 the engineering dimension for the self-avoidance coupling in the
SAM model and C a positive constant depending on D and ε (or d). This behavior is
universal: the constant C obtained from the instanton does not depend on the internal
shape or topology of the membrane.

In Section 3 we show that for polymers (D = 1) our results fully agree with the
classical results on the large orders for the Φ4 theory, as obtained from instanton calculus.
We then give a simple physical interpretation of our instanton for the SAM model:
the SAM instanton describes the metastable equilibrium configuration of a membrane
submitted to two competing forces, a contact attractive interaction and a global entropic
repulsion due to thermal fluctuations.

The SAM instanton equations are in general not solvable. In Section 4 we propose a
Gaussian variational approximation scheme and find the instanton potential V and the
large order constant C within this approximation. By construction, this is a lower bound
on the exact result.

The variational results are discussed in Section 5. They qualitatively agree with the
exact results for polymers (D = 1). We estimate the “optimal order” for the ε-expansion,
and we argue that the estimates for the configuration exponent ν obtained from second-
order calculations [20,21] are reasonable, especially for large bulk dimension d. Finally
we observe that they imply that the perturbative series for the SAM model should
become “quasi-convergent” in the limit d →∞.

In Section 6 we study more carefully the validity of the variational approach. We
show that it becomes exact in the limit of large space dimension d → ∞. Technically
one has to keep ε fixed, that is to let the internal dimension D of the membrane go to 2.
To go beyond the leading order, we construct a systematic perturbative expansion around
the variational solution, and show that this expansion can be organized as a systematic
expansion in powers of 1/d, by resumming infinite classes of diagrams. We compute
explicitly the first correction in 1/d for the instanton V and the large order constant C.
In particular, we find that along the critical line ε = 0, the instanton potential V has
log(ε) singularities, but that the large order constant C is finite.

In Section 7 we present our conclusions and discuss open problems.
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2. Large orders and instantons for the SAM model

2.1. The SAM model

We consider a D-dimensional manifoldM with size L and volume V = LD (typically
the D-dimensional torus TD = [0, L]D) in d-dimensional Euclidean bulk space. A
configuration of the manifold is described by the continuous function

x ∈ M→ r(x) ∈ Rd. (2)

The partition function is

Z[b;L] =
∫
D[r]e−H[r;b,L] (3)

with the Hamiltonian

H[r; b, L] =
∫
L

dDx
1
2

(∇r(x))2 +
b

2

∫
L

dDx
∫
L

dDy δd(r(x)− r(y)). (4)

b > 0 is the repulsive 2-point interaction coupling which describes self-avoidance.
The functional integration measure D[r] =

∏
x ddr(x)/Z0 is normalized such that

the partition function of the free Gaussian manifold Z[b = 0, L] = 1. The canonical
dimensions of x, r and b are

[x] = −1, [r] =
D − 2

2
, [b] = 2D − d (2−D)

2
= ε. (5)

We know that the partition function Z and expectation values of in bulk space
translationally invariant operators 〈O〉 are well defined as a perturbative series in the
coupling constant b, as long as the dimension of the manifold D is less than 2 and as
long as ε is positive,

0 < D < 2, ε > 0, (6)

and provided that the size V of the manifold is finite. 3 For ε > 0, perturbation theory
suffers from strong infrared (IR) divergences when the size of the manifold becomes
large L → ∞, which signal a breakdown of mean-field theory and the appearance of
anomalous dimensions in the scaling properties of large self-avoiding manifolds.

For ε → 0, physical UV singularities appear at all orders in perturbation expansion.
They can be absorbed in a renormalization of the coupling constant b and a rescaling
of bulk space (wave function renormalization)

b = bR Zb(bR), r = Z 1/2(bR)rR (7)

3 Strictly speaking, for 0 < ε < D, the first terms in the expansion of the partition function suffer from
short-distance divergences. These ultraviolet (UV) singularities are finite in number and can be recast in a
counterterm proportional to the volume V of the manifold. Moreover, they disappear in physical observables;
they are thus of no physical significance and unimportant for the purpose of this paper.
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so that physical observables are UV finite at ε = 0 when expressed in terms of renor-
malized quantities bR and rR. The theory, although non-local in the internal x-space
of the membrane, is renormalizable [17,18]. As a consequence, it is possible to write
renormalization group equations which encode how the effective renormalized coupling
flows with the length scale, and in particular with the size L of the membrane. The
large L behavior of the membrane is governed by an IR stable fixed point b∗R, which
can in principle be calculated order by order in perturbation theory as a series in ε,
similar to the celebrated Wilson1Fisher ε-expansion. In practice, such calculations are
very difficult, and have been performed only up to second order [20,21].

2.2. Instanton calculus

By dimensional analysis, the partition function (3) only depends on the dimensionless
coupling constant

g = bLε (8)

via

Z[b;L] = Z[g, L = 1] = Z[g] (9)

and is defined as a series

Z[g] =
∞∑
n=0

zn g
n. (10)

Of course, Z[g] also depends on the shape of the manifold M.
Let us assume that Z[g] is analytic around the origin for −π < arg(g) < π, and

has a discontinuity along the negative real axis. This assumption is natural, since for
g < 0, the membrane is in a collapsed state and the perturbation expansion is performed
around an unstable classical state. Then we can write zn as a dispersion integral

zn =
∮

dg
2iπ

g−n−1Z[g] =

−∞∫
0

dg
π
g−n−1 Im(Z[g+ i0+]). (11)

To obtain the behavior for large n, it turns out that it is sufficient to evaluate the
integral in (11) in a saddle-point approximation. Indeed, we shall show that, at least
for 0 < ε < D, the integral is at large n dominated by the discontinuity of Z[g] at
small negative g. Moreover, Z[g] is dominated by a saddle point, when re-expressed as
a functional integral over properly defined auxiliary fields.

The Hamiltonian (4) is non-local and involves a distribution of the field r. It is
convenient to introduce as an auxiliary field the density of the membrane in bulk space

ρ(r) =
∫

dDx δd(r− r(x)) (12)
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and to write the interaction term as∫
dDx

∫
dDy δd(r(x)− r(y)) =

∫
ddrρ(r)2. (13)

Introducing a potential V (r) conjugate to ρ(r), we can re-express the interaction term
in the partition function through a Hubbard1Stratonovich transformation as

exp

[
−b

2

∫
dDx

∫
dDy δd(r(x)− r(y))

]
=
∫
D[ρ]

∫
D[V ]

× exp

[∫
ddr

(
V (r)

[
ρ(r)−

∫
dDx δd(r− r(x))

]
− b

2
ρ(r)2

)]
, (14)

where∫
D[ρ] =

+∞∫
−∞

∏
r∈Rd

dρ(r),
∫
D[V ] =

+i∞∫
−i∞

∏
r∈Rd

dV (r)
2iπ

. (15)

Inserting Eq. (14) into Eq. (3) and integrating over ρ yields

Z(b;L) =
∫
D[r]

∫
D[V ] e−H[r,V ;b,L] (16)

with the new effective Hamiltonian

H′[r, V ; b, L] =
∫
L

dDx

(
1
2

(∇r(x))2 + V (r(x))

)
− 1

2b

∫
ddr V (r)2. (17)

This representation is nothing but the generalization of the well-known formulation of
the Edwards model as a model of free random walks in an (imaginary) annealed random
potential. As above, Z is a function of the dimensionless coupling g and we replace
b→ g and L→ 1 as in Eqs. (8) and (9).

As argued before, we aim in calculating the partition function for small negative g.
For that purpose, it is convenient to rescale the coordinates and the potential V (r),

x→ (−g)
1

D−ε x, r→ (−g)
2−D

2(D−ε) r, V → (−g)
−D
D−ε V, (18)

so that we now consider a membrane with size L̄ = (−g)
−1
D−ε and volume

V̄ = L̄D = (−g)
−D
D−ε . (19)

This yields the rescaled Hamiltonian

H′resc[r, V ; L̄] =
∫
L̄

dDx

(
1
2

(∇r(x))2 + V (r(x))

)
− V̄

2

∫
ddr V (r)2. (20)

The integral over r for fixed potential V defines the free energy density E[V ] of a
“phantom” (i.e. non-self-avoiding) membrane in the external potential V

Z[V ] = e−V̄ E[V ] =
∫
D[r] e−

∫
L̄

dDx 1
2 (∇r(x))2+V (r(x))

. (21)



F. David, K.J. Wiese / Nuclear Physics B 535 [FS] (1998) 5551595 561

The partition function finally becomes

Z(g) =
∫
D[V ] e−V̄

[
E[V ]+ 1

2

∫
ddr V (r)2

]
. (22)

The crucial point of this formulation is that according to Eq. (19), as long as

0 < ε < D, (23)

the limit g→ 0− corresponds to the thermodynamical limit when the volume V̄ → ∞.
In this limit the free energy density E[V ] has a finite limit (from extensivity) so that
the volume appears only as a global prefactor in the exponential of (22). Hence in
the large V̄ limit the integral (22) is dominated by a saddle point Vinst, which is an
extremum of the effective energy S[V ] for an infinite and flat membrane. The latter is
defined as

S[V ] = E[V ] +
1
2

∫
ddr V (r)2, (24)

where E[V ] is defined in (21) as the free energy density of an infinite flat membrane
in the potential V . This saddle point Vinst(r) is the non-trivial instanton, since the action
S of the trivial extremum V (r) = 0 is real and does not contribute to the discontinuity
of Z(g). Moreover, as the instanton is obtained through the thermodynamical limit
L̄ → ∞, it is independent of the shape of the initial membrane. This implies that the
large order behavior of perturbation theory is universal, and does not depend on the
internal geometry of the membrane. Let us now derive the saddle-point equations.

The variation of the free energy density is in general

δE[V ]
δV (r)

= 〈δ[r]〉V , (25)

where δ[r] is the normalized density of the membrane

δ[r] =
ρ[r]
V =

1
V

∫
dDx δd(r− r(x)) (26)

(which has a finite limit when the volume becomes infinite), and 〈 〉V denotes the
expectation value for the phantom membrane in the potential V , as defined in Eq. (21).
Hence, extremizing S[V ] leads to the variational equation for the instanton potential
Vinst,

0 = 〈δ[r]〉Vinst + Vinst(r). (27)

Let us postpone the solution of Eq. (27) and first ask what the consequences of the
existence of an instanton for the large order behavior are. Denoting by Sinst the action
for the instanton S[Vinst], we deduce from Eqs. (19) and (21) that for small negative
g, the discontinuity of Z(g) behaves as

Im(Z(g)) ≈ exp
[
−(−g)

−D
D−ε Sinst

]
(28)
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and the integral representation for zn (11) can be evaluated by the saddle-point method
at large n. This saddle point is at

gc = −
[

Sinst

n(1− ε/D)

]1−ε/D
(29)

and replacing the integral in (11) by its value at gc gives the large n behavior at leading
order

zn ∼ (−C)n (n!)1−ε/D, C =

[
1− ε/D
Sinst

]1−ε/D
. (30)

Let us briefly discuss this result. For 0 6 ε < D, perturbation theory is divergent
with alternating signs. For ε = 0, one recovers the typical factorial behavior (−C)nn! of
field theories, provided that Sinst remains UV finite. As we shall see in the next section,
our result (30) coincides for D = 1 with the large order behavior deduced from the
Φ4 model with n = 0 components. The reasoning seems to break down at ε = D, but
we shall see that in fact the factor of C, when considered as a function of D and ε, is
regular at ε = D and can be continued to the region ε > D. Thus, the asymptotics (30),
although derived for 0 < ε < D, is valid in the whole physical domain 0 < ε < 2D. A
more rigorous argument is as follows: Eqs. (28) and (29) are still valid for ε > D; the
instanton then governs the behavior of the discontinuity of Z(g) at large g. This means
that the saddle point of Eq. (30) for large n now is at large negative g.

To go beyond this estimates, one must (i) compute the instanton and its action,
and (ii) integrate the fluctuations around the instanton in (22). If one assumes that
this calculation goes along the same lines as in standard field theory, one must first
isolate the zero-modes, i.e. the collective coordinates of the instanton. As we shall see
later, the instanton Vinst is rotationally invariant and is characterized by its position in
d-dimensional space only. Thus it has d zero-modes, each of them gives a factor V1/2

(by a standard collective coordinates argument), and the remaining fluctuations δ⊥V
(orthogonal to the translational variations δµV ∼ ∂Vinst/∂r

µ) give a finite determinant
A. Therefore we expect the semiclassical estimate for the discontinuity to be

Im(Z(g)) ' A−1/2 V̄d/2e−V̄Sinst (31)

and that the large n behavior is more precisely

zn = A′nd/2 (−C)n (n!)1−ε/D [1 + . . .] . (32)

Finally we shall see that the action of the instanton remains finite in the limit ε→ 0.
As in standard Φ4 theory, one expects UV divergences to appear only for fluctuations
around the instanton, and that these divergences are canceled by the same renormaliza-
tions as in perturbation theory. This would imply that our large order estimate (30) is
also valid for the renormalized theory at ε = 0, in particular for the renormalization group
functions which enter into the ε-expansion of the scaling exponents. Renormalization
however has to be taken into account when evaluating the constant A′ in (32).
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3. The polymer case and physical interpretation of the instanton

Before discussing membranes, let us study in detail the special case D = 1, where
the model reduces to the Edwards model for polymers. Using the well-known mapping
between the problem of a Brownian walk in a potential V (r) and quantum mechanics
of a single particle in the same potential, the free energy density E[V ] of a linear
chain fluctuating in a potential V (r) is in the thermodynamic limit given by the lowest
eigenvalue E0 of the operator

H = −∆
2

+ V (r), (33)

where ∆ is the Laplacian in d dimensions. Thus we have

E[V ] = E0. (34)

Denoting by Ψ0(r) the ground-state wave function, and using Eq. (27) and the standard
result from first-order perturbation theory

〈δ[r]〉V =
δE0[V ]
δV (r)

= 〈Ψ0|
δH

δV (r)
|Ψ0〉 = |Ψ0(r)|2, (35)

we obtain the instanton potential

Vinst(r) = − (Ψ0(r))2 . (36)

The eigenvalue equation HΨ0 = E0Ψ0 becomes non-linear

1
2
∆Ψ0 + E0 Ψ0 +Ψ0

3 = 0. (37)

Since Ψ0 obeys the normalization condition

‖Ψ0‖2 =
∫

ddrΨ0(r)2 = 1, (38)

the wave function Ψ0 and the ground-state energy E0 are fully determined by Eqs. (37)
and (38). Eq. (37) has non-trivial normalizable solutions for 2 < d < 4 and E0 < 0.
In addition, the ground state Ψ0 is rotational symmetric, i.e. does not vanish at finite r.
The action for the instanton (24) finally reads

Sinst = E0 +
1
2

∫
ddrΨ0

4. (39)

To make contact to the instanton analysis in the Landau1Ginsburg1Wilson (LGW)
Φ4-theory with n = 0 components, remark that Eqs. (37), (38) hold if and only if Ψ0

and E0 are extrema of the action

S′[Ψ,E] = E +
∫

ddr

[
1
2

(∇Ψ)2 − EΨ2 − 1
2
Ψ4

]
. (40)
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This is the standard Landau1Ginsburg1Wilson action with negative coupling associated
to Ψ4 and mass m2 = −2E. Moreover, at the extrema, the two actions are equal,

Sinst [Ψ0, E0] = S′ [Ψ0, E0] . (41)

The relation becomes clearer by the change of variables

Ψ(r) =

(
−2E
4− d

)1/2

Φ

((
−2E
4− d

)1/2

r

)
. (42)

The action S′ then reads

S′[Ψ,E] = E +
(
−2E
4− d

)2−d/2

SLGW[Φ] (43)

with

SLGW[Φ] =
∫

ddr

[
1
2

(∇Φ)2 +
4− d

2
Φ2 − 1

2
Φ4

]
. (44)

We can extremize (43) with respect to E and Φ independently, and denoting by Φ0 and
E0 these extremizing solutions, we get

E0 =

(
d

2
− 2

)
SLGW [Φ0]

1
d/2−1 . (45)

The change of variables in Eq. (42) was constructed such that the instanton action takes
the simple form

Sinst = S′[Ψ0, E0] =

(
d

2
− 1

)
SLGW[Φ0]

1
d/2−1 . (46)

Since for polymers (D = 1) d/2− 1 = 1− ε/D, we can use Eq. (30) to write the large
order constant C of the Edwards model as

1
C = SLGW[Φ0]. (47)

This result could have been derived directly from the standard field theoretical formula-

tion of the Edwards model as an n = 0 component (Φ2)
2

model.
The equation for the instanton derived from the action (44) admits a regular solution

Φ0(|r|) for any 0 6 d 6 4, so that nothing special occurs at the point d = 2 (i.e.
ε = D = 1) as one might have expected from Eq. (30). Let us note that since the
“mass” in Eq. (44) is equal to 4− d, it is positive for d < 4 but vanishes at the critical
dimension d = 4, so that the instanton solution Φ0 still exists for d = 4. In Fig. 1 we plot
C−1(d) for 0 6 d 6 4, as obtained from numerical integration. Note that for d > 4, no
solution for the instanton with finite action exists.

It is interesting to give a physical interpretation of the instanton for the Edwards
model, since this interpretation is the same for membranes with D 3 1. Let us first
recall the standard interpretation of the instanton for the LGW model with action (44),
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1

C
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variational

exact

Fig. 1. 1/C as obtained from a numerical solution of Eq. (47), compared to the variational bound derived
later in Eq. (64).

i.e. negative Φ4-coupling. The classical false vacuum Ψ(r) = 0 is separated from the true
vacua Ψ(r) = ∓∞ by a finite barrier. The instanton solution Ψ0 describes a metastable
droplet of true vacuum (with Ψ0(r) 3 0 inside the droplet) in the false vacuum, which
is on the verge of nucleating. Indeed, if the droplet is slightly larger, the positive surface
energy dominates and the droplet shrinks and finally vanishes, while if it is slightly
smaller, the negative volume energy dominates and the droplet expands.

We now consider the energy density S[V ] given by Eq. (24). It corresponds to the
total free energy of a polymer globule trapped in the potential well V (r) < 0, where
this effective potential results from the attractive 2-point interaction between elements
of the polymer (since we are at negative coupling, b < 0). To see how S varies with
the average gyration radius of the polymer, it is convenient to consider the following
scale transformation on V :

V (r)→ Vλ(r) = λ
2D

2−D V (λr). (48)

A simple dimensional analysis shows that under (48)

E[V ]→ λ
2D

2−D E[V ],
∫
V 2 → λ

2ε
2−D

∫
V 2 (49)

(here D = 1 and ε = 2 − d/2). As long as ε < D, and for large λ, i.e. when
shrinking the polymer globule, it is the first term E < 0 which dominates and the total
free energy S becomes large and negative; while for small λ, i.e. when expanding the
globule, it is the second term on the r.h.s. of (24) which is larger than 0, and which
dominates. Thus in this mean field picture, i.e. neglecting thermal fluctuations around
the instanton, large globules tend to expand, while small globules tend to collapse. This
has a simple physical interpretation: the polymer trapped in its own potential is subject
to two opposite forces: (i) attractive forces between its elements which would like
to make the polymer collapse, (ii) entropic repulsion which exerts a pressure on the
well and would like to expand the polymer (until it becomes a free random walk).
What our calculation implies is the simple fact that for large radius (i.e. small λ)
entropic repulsion dominates, while at small radius (large λ) attraction dominates and
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the polymer collapses. Thus the instanton solution describes a polymer with attractive
interactions on the verge of collapsing into its dense (and most stable) phase; this is
similar to the instanton in the LGW theory which describes a bubble of true vacuum on
the verge of nucleating and destroying the false vacuum.

4. Gaussian variational calculation

For D3 1 (and in general for 0 < D < 2 non-integer) we know of no exact method
to calculate the instanton. A simple and natural approximation is the variational method,
i.e. the Hartree1Fock approximation.

To evaluate the free energy density E[V ] of the free, i.e. non-interacting membrane
in a potential V , and described by the Hamiltonian

HV =
∫

dDx

(
1
2

(∇r)2 + V (r)

)
, (50)

we introduce the trial Gaussian Hamiltonian

Hvar =
∫

dDx
∫

dDy
1
2
r(x)K(x− y)r(y)

=
∫

dDk
(2π)D

1
2
r̃(k)K̃(k)r̃(−k), (51)

where ˜ denotes the Fourier transform. The free energy for the trial Hamiltonian is

Evar =− 1
V log

[∫
D[r] e−Hvar

]
=
d

2

∫
dDk

(2π)D
log[K̃(k)/k2], (52)

and the factor of 1/k2 comes from the normalization of the measure D[r] taken such
that E[V = 0] = 0. V is the total volume of the membrane.

The Hartree1Fock approximation amounts in replacing E[V ] by the best variational
estimate Evar[V ],

E[V ] 6 Evar[V ] = Evar +
1
V 〈HV −Hvar〉var. (53)

〈 〉var denotes the average with respect to the trial Hamiltonian Hvar and one must look
for the trial Hamiltonian Hvar (i.e. the kernel K) which minimizes Evar[V ]. Denote by
Ṽ (p) the Fourier transform of the potential V (r). Since the variational Hamiltonian is
Gaussian, it is easy to compute the second term on the r.h.s. of (53), V−1〈HV −Hvar〉var

in the infinite volume limit:

〈V (r(0)〉var +
1
2

[
〈∇r(0))2〉var −

∫
dDxK(x)〈r(x)r(0)〉var

]
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=
∫

ddp
(2π)d

Ṽ (p)〈eipr(0)〉var +
∫

dDk
(2π)D

k2 − K̃(k)
2

〈r̃(k)r̃(−k)〉var

=
∫

ddp
(2π)d

Ṽ (p) exp

[
−p

2

2

∫
dDk

(2π)D
1

K̃(k)

]
+
d

2

∫
dDk

(2π)D

(
k2

K̃(k)
− 1

)
.

(54)

Combining Eqs. (24), (52) and (54), we finally obtain the variational estimate for the
total energy of the instanton

Svar[V ] = Evar[V ] +
1
2

∫
ddr V (r)2

=
∫

ddp
(2π)d

(
Ṽ (p) exp

(
−p

2

2

∫
dDk

(2π)D
1

K̃(k)

)
+

1
2
Ṽ (p)Ṽ (−p)

)
+
d

2

∫
dDk

(2π)D

(
log

[
K̃(k)
k2

]
+

k2

K̃(k)
− 1

)
. (55)

We now extremize Eq. (55) both with respect to K̃ (variational approximation) and
with respect to Ṽ (to obtain the instanton solution). Extremizing with respect to K̃(k)
yields the equation

K̃(k) = k2 − 1
d

∫
ddp

(2π)d
p2Ṽ (p) exp

[
−p

2

2

∫
dDk

(2π)D
1

K̃(k)

]
, (56)

which implies that the variational Hamiltonian depends just on a mass mvar,

K̃(k) = k2 +m2
var. (57)

Extremizing Eq. (55) with respect to Ṽ (p) gives

Ṽ var
inst(p) = − exp

[
−p

2

2
A

]
(58)

with

A =
∫

dDk
(2π)D

1

K̃(k)
= mD−2

var

Γ(1− D
2 )

(4π)D/2
. (59)

Γ is Euler’s Gamma function. Thus, in the variational approximation the instanton
potential is Gaussian. Inserting Eq. (58) into Eq. (56) yields the self-consistent equation
for mvar

m2
var =

1
d

∫
ddp

(2π)d
p2 e−p

2 A =
1
2

(4π)−d/2A−1−d/2. (60)

We finally get in terms of D, ε and d = 2(2D − ε)/(2−D)

mvar =
√

4π

[
2Γ

(
2−D

2

)1+d/2
]1/(D−ε)

. (61)
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The final result for A reads

A =
1

4π
Γ

(
2−D

2

) −2
D−ε

2
D−2
D−ε . (62)

We can now insert these results into Eq. (55), and after straightforward calculations get
the variational instanton action

Svar
inst = Svar[V var

inst] =
(

1− ε

D

)[
2Γ

(
2−D

2

)d/D]D/(D−ε)

. (63)

The corresponding variational estimate for the large order constant C defined by Eq. (30)
is

1/Cvar = 2Γ

(
2−D

2

)d/D
. (64)

As claimed in the previous section, although intermediate results are singular at ε = D,
the final result is regular for all ε > 0. We shall discuss the physical significance of
these results in the next section.

5. Discussion of the variational result

5.1. D = 1

It is interesting to compare the variational estimate with the exact result for polymers,
i.e. for the case D = 1. Let us consider the LGW instanton action, as given by Eq. (44).
It is equal to the inverse of the large order constant C. In Fig. 1 we have plotted the
variational result for 1/Cvar, as given by Eq. (64) and the exact result for 1/C obtained
by numerical solution, as a function of 0 < d < 4. First we note that always

C > Cvar, (65)

as expected from the variational inequality E 6 Evar. This implies that the variational
method gives an underestimate of the large orders.

Second the variational estimate becomes good for small d, and exact for d → 0. This
is not unexpected, since in that limit the membraneM has no inner degrees of freedom,
and the functional integration over V (r) reduces to a simple integration over V ∈ R.
Since this integral is Gaussian, the variational method becomes exact.

Finally, the variational estimate for C is regular when d → 4, and then equals 1/(2π2);
this is 50% smaller than the exact result 3/(4π2). Thus the variational method is only
qualitatively correct when ε = 0. This is not so surprising, since the limit ε → 0 is
somewhat peculiar. Indeed when d = 4 the ground-state energy E0 in the equation (37)
for the wave function Ψ0 is then equal to 0. Then the most general solution to Eq. (37)
(for d = 4 and E0 = 0) is



F. David, K.J. Wiese / Nuclear Physics B 535 [FS] (1998) 5551595 569

Ψ0(r) =
2r0

r2
0 + r2

, (66)

with r0 an arbitrary scale (the size of the instanton). r0 is fixed by the normalization
condition (38) which cannot be fulfilled at d = 4 for finite r0. In fact a more careful
analysis of the rotationally invariant solutions of Eqs. (37) and (38) (see Appendix A)
shows that as d → 4, E0 should scale as E0 ∼ 4−d and that for 0 < 4−d� 1 the true
solution Ψ0 is well approximated by Eq. (66) (at least as long as |r|2(4 − d) � 1)
with an instanton size r0 which vanishes as d → 4 as

r0 ∼
1√

| log(4− d)|
. (67)

The corresponding instanton potential Vinst = −|Ψ0|2 is also singular in the d → 4 limit
(it may be considered as a Dirac-like δ-function), and is very poorly approximated by
the Gaussian variational solution at D = 1, d = 4 for the potential

V var = −16π2e−16π2r2

, (68)

with positive width. As usual with variational methods, the approximation for the ground-
state energy is much better than that for the wave function.

5.2. Consequences for the ε-expansion

Of course, one is interested in the consequences of these large order estimates for the
ε-expansion of the scaling exponents for self-avoiding membranes and polymers. Let us
recall that in renormalized perturbation theory one computes the renormalization group
β-function β(g), as a power series in g of the form 4

β(g) = −εg+ B1g
2 +O(g3). (69)

Its zero at g∗ = ε/B1 +O(ε2) is the IR fixed point which governs the scaling limit for
large membranes. Other anomalous dimensions, like the dimension ν(g) of the field r
(which gives the fractal dimension of the membrane) can also be computed as a series
in g. Their values at the fixed point g∗ give the scaling exponents of the membrane, and
may be expanded as power series in ε.

By analogy with the ordinary Wilson1Fisher ε-expansion for LGW field theories,
let us assume that the large orders of the function β(g) and of the other anomalous
dimensions are given by the instanton estimate, and that they can be resummed by
Borel techniques. We are not able at the moment to give any more precise arguments to
this last claim (which is still a conjecture even for the LGW theories). Then a simple
calculation consists in estimating the “optimal” order nopt beyond which the ε-expansion
starts to diverge. If we only know the first n terms of the expansion, we expect that for
n < nopt “ordinary” resummation procedures (like Padé) will be sufficient. If n > nopt,

4 Strictly speaking g is now the renormalized coupling constant gR.
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or if one seeks higher precision, knowledge of the large orders and more sophisticated
resummation methods are required. Assuming that for ε = 0 the nth coefficient of β(g)
is of order (−Cg)nn!, and that we can approximate the fixed point g∗ by its first-order
estimate ε/B1, the term of order n in the ε expansion should behave as(

−εC
B1

)n
n!. (70)

The optimal order nopt is obtained when the absolute value of (70) is the smallest, that
is for

noptε '
B1

C , (71)

where B1 is the one-loop coefficient of the β-function, and C the large order constant
as obtained from the instanton calculus.

With our choice of normalizations for the coupling constant b in the Hamiltonian (4),
the one-loop coefficient of the β-function is

B1 =
1
2

[
(2−D)SD

4π

]d/2

S2
D

1 +
1

2−D

(
Γ
(

D
2−D

))2

Γ
(

2D
2−D

)
 , (72)

with SD the volume of the unit sphere in D dimensions

SD =
2πD/2

Γ
(
D/2

) . (73)

Let us replace C in Eq. (71) by the variational approximant Cvar given by Eq. (64).
Setting finally ε = 0 in B1/C (since we are interested in the expansion around ε = 0),
we obtain the following variational estimate for the r.h.s. of (71):

noptε '
16

(2−D)2

[
Γ
(

4−D
2

)
Γ
(
D
2

) ] 4
2−D

1 +
1

2−D

(
Γ
(

D
2−D

))2

Γ
(

2D
2−D

)
 . (74)

Let us recall that in practice the ε-expansion is used as follows: in order to compute for
instance the scaling exponent ν for a membrane with internal dimension D = 2 in d-
dimensional space, one starts from some point D′ 3 D, ε = 0 (i.e. d′ = 4D′/(2−D′)),
uses an expansion in ε and D − D′ (or some more general expansion parameters) to
evaluate ν(D′), which thus depends on the expansion point D′. ν is then taken as the
best estimate ν(D′opt), as determined for instance by a minimal sensitivity criterion.
Membranes (D = 2) always correspond to ε = 4, so setting ε = 4 and replacing D

by D′ in Eq. (74), should give an estimate of the “optimal order” nopt(D′) for the
ε-expansion at D′. The result for nopt(D′) is plotted in Fig. 2.

Some interesting comments can be made on this curve. For D′ > 1.6, nopt(D′) > 2
and becomes large as D′ → 2, while for D′ < 1.6, nopt(D′) < 2 and becomes small as
D′ → 0. In the first regime (D′ → 2) we thus expect that the power series in ε will
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Fig. 2. Optimal order nopt(D′) for the ε-expansion for membrane as function of the extrapolation (dimension)
parameter D′, as obtained from the variational estimate for the large orders.

behave like a convergent series, up to some quite large order nopt. In the second regime
(D′ small), we expect that the power series in ε will be divergent from the very first
terms. This is in agreement with the calculations at second order in Refs. [20,21]. For
large d, the 2-loop results for ν can neatly be resummed, and the stability of the various
resummation procedures and extrapolation schemes analyzed in [20,21] is good. The
final estimates are close to the prediction of a variational approximation 4/d for ν. For
smaller values of d stability is less good, but in all cases, the reliable extrapolations are
obtained for values of the extrapolation dimension D′ ' 1.6 or larger. It is not possible
to resum safely the 2-loop results if one starts the ε-expansions from D′ 6 1.5. Thus it
seems that our rough estimates for the large order behavior may explain some general
features of the calculation at second order, and corroborate the results of the estimates
of Refs. [20,21].

5.3. Limit D → 2

Of course these arguments are valid if the variational approximation for the instanton
action stays (at least qualitatively) correct in the limit D → 2. First let us note that,
although Eqs. (63) and (64) give estimates for Sinst and C which are singular when
D → 2, our variational formula for nopt is much less singular, since according to
Eq. (74) it behaves as

nopt(D)g ' 1
ε

16 e−4γ

(2−D)2
as D → 2, ε fixed, (75)

with γ = 0.577216 the Euler’s constant. It has also been noted in [19] that instead of
using the simple coupling constant b in the Hamiltonian (4) it might be more physical
and convenient to use as coupling constant the “second virial coefficient” z , defined as

z =

[
(2−D)SD

4π

]d/2

bLε. (76)
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Using z as expansion parameter instead of g = bLε, the large order constant C in
Eqs. (10) and (30) is now

Cz = C
[

(2−D)SD
4π

]−d/2

, (77)

which in the variational approximation reads

Cvar
z =

1
2

[
(2−D)SD

4π
Γ

(
2−D

2

)2/D
]−d/2

'Cst

(
2−D

2

)2−ε/2

as D → 2, ε fixed , (78)

with Cst = 1
2 (π e−2γ)2−ε/2. Therefore, in this normalization also the singularities as D →

2 are simply algebraic. The same remark holds for the coupling constant normalization
used in [20,21].

This prompts us to study the consistency of the variational approximation in the limit
D → 2 (or equivalently d → ∞) for fixed ε. As we shall see, in fact the variational
approximation becomes exact in that limit. This makes the arguments of this section
fully valid.

6. Beyond the variational approximation and 1/d corrections

In this section we show that the variational result is nothing but the leading term of a
systematic expansion in 1/d. In ordinary theories like the one described by the effective
Hamiltonian HV which appears in Eq. (50) for a fixed potential V (r)

HV [r] =
∫

dDx

[
1
2

(∇r)2 + V (r)

]
, (79)

this result is not unexpected. For fixed D, the limit d →∞ is nothing but the limit where
the number of components n = d of the field r becomes large. In this limit, and provided
that the model is O(n) invariant, it is known that the variational approximation becomes
exact and a systematic 1/n expansion can be constructed. For the problem considered
here, the existence of a 1/d expansion is not that easy to prove for two (related)
reasons. First, the potential V (r) is not fixed, it is also a variable which has to be
determined self-consistently, and it has a singular behavior when d →∞. In particular
one cannot simply take the limit d → ∞ while D < 2 is fixed, as can be seen on the
exactly solvable case of polymers (D = 1) discussed in Section 4. Indeed in this case,
the equation for the instanton has no physical solution for d > 4. Second, the physically
meaningful limit is to take d → ∞ while ε = 2D − d(2− D)/2 is kept fixed. In this
limit, D → 2 and one expects potentially dangerous additional singularities, since the
massive free propagator is known to have a logarithmic singularity at short distance for
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D = 2. There is a subtle interplay between the corresponding 1/(2−D) poles and the
terms which would naively disappear in the large d limit.

6.1. Expansion around the variational solution

To evaluate the corrections to the variational approximation, we expand around the
variational Hamiltonian

Hvar[r] =
∫

dDx

[
1
2

(∇r)2 +
m2

var

2
r2

]
(80)

by writing

HV [r] =Hvar[r]−
∫

dDx ∆(r), (81)

∆(r) =
m2

var

2
r2 − V (r). (82)

The saddle-point equation (27) which defines the instanton potential V is

V (r0) + 〈δ(r0 − r(x0))〉V = 0, (83)

where 〈. . .〉V denotes the expectation value of . . . taken with respect to the Hamiltonian
HV

〈. . .〉V =

∫
D[r] . . . e−HV∫
D[r] e−HV

, (84)

for an infinite flat membrane. (Recall that this was the limit we had to take in Eq. (22).)
This implies that the point x0 can be chosen arbitrarily on the membrane. It is simpler
to use the Fourier transform of V ,

Ṽ (k) =
∫

ddr eikr V (r), (85)

so that Eq. (83) reads

Ṽ (k0) + 〈eik0r(x0)〉V = 0. (86)

We now expand around the variational solution, using Eq. (81), to rewrite the expecta-
tion value on the l.h.s. of Eq. (86) as a connected correlation function computed with
the variational Hamiltonian

〈eik0r(x0)〉V = 〈eik0r(x0) · e
∫
x
∆〉Cvar, (87)

where 〈. . .〉var denotes the expectation value of . . . taken with respect to the variational
Hamiltonian Hvar

〈. . .〉var =

∫
D[r] . . . e−Hvar∫
D[r]e−Hvar

. (88)
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The suffix 〈. . .〉C means the connected correlation function in the usual sense: since
Hvar is a free Gaussian Hamiltonian, using Wick’s theorem, correlation functions like
that in Eq. (87) can be expressed as Feynman diagrams involving the free variational
propagator in D dimensions

Gvar(x) =
∫

dDq
(2π)D

e−iq·x

q2 +m2
var

(89)

and vertices obtained by expanding the “perturbation term” ∆(r) of Eq. (82) in powers
of r; the connected correlation function in Eq. (87) is just given by the restriction to
connected diagrams.

Similarly, the free energy density E[V ] defined by Eq. (21) can be written as a sum
over connected vacuum diagrams.

6.2. Resummation of tadpoles and reorganization in terms of normal products

In these calculations, we encounter numerous “tadpole diagrams”, which result from
the evaluation of 〈r(x)r(y)〉var at coinciding points x = y. A standard way to resum these
tadpoles is to use normal products. This procedure consists in replacing any monomial
P[r(x)] of the field r(x) at a single point x by the corresponding normal product
(or normal ordered operator) : P[r(x)] :, defined such that the expectation values
of any products of normal ordered operators 〈: P1 : . . . : PQ :〉var at non-coinciding
points x1 3 . . .3 xQ is equal to the sum over all Feynman diagrams without tadpoles
which appear in the evaluation of 〈P1 . . .PQ〉var. All normal ordered operators can be
obtained 5 from the normal ordered exponential, satisfying the relation

eikr(x) = e−
k2

2 Cvar : eikr(x) :, (90)

where Cvar is the tadpole diagram amplitude

Cvar = Gvar(0) =
∫

dDq
(2π)D

1
q2 +m2

var
= mD−2

var C (91)

with

C = (4π)−D/2Γ(1−D/2). (92)

Cvar coincides with the factor of A in Eq. (59) of Section 4. Since Cvar depends on the
mass mvar in Eq. (91) which is chosen to be the mass appearing in Hvar, the normal
ordered products : [. . .] : depend explicitly on a mass scale m, and should be denoted
by : [. . .] :m. This mass scale dependence will be omitted in this section, since we shall
always choose m = mvar.

With these notations, we can rewrite the operators in HV and Hvar in terms of normal
products. This gives

(r(x))2 = dCvar 1+ : (r(x))2 : (93)

5 By differentiating with respect to k.
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with the identity operator 1. For V (r) we have

V (r) =
∫

ddk
(2π)d

Ṽ (k) e−
k2

2 Cvar : e−ikr :

=
∞∑
m=0

(−i)m

m!

∫
ddk

(2π)d
e−

k2

2 Cvar Ṽ (k) :
(
kr
)m

: . (94)

If we make the additional assumption that V (r) is rotational invariant, then Ṽ (k)
depends only on |k| = k and only the even terms m = 2n are non-zero in Eq. (94).
Integrating over k and after some algebra we obtain

V (r) =
∞∑
n=0

(
−1

4

)n
Γ(d/2)

Γ(n+ d/2)
Mn

n!
:
(
r2
)n

: (95)

with the moments Mn given by

Mn =
∫

ddk
(2π)d

(
k2)n e−

k2

2 Cvar Ṽ (k)

= 2
(4π)−d/2

Γ(d/2)

∞∫
0

dk kd+2n−1 e−
k2

2 Cvar Ṽ (k). (96)

Thus we finally can write Eq. (86) for Ṽ (k) as

Ṽ (k) + e−
k2

2 Cvar

〈
: eikr(x0) : e

∫
x
∆
〉C

var

= 0, (97)

with the “perturbation” ∆(r) written in terms of normal products as

∆(r) =

[
d

2
m2

varCvar −M0

]
1 +

[
1
2
m2

var +
1

2d
M1

]
: r2 :

−
∞∑
n=2

(
−1
4

)n
Γ(d/2)

Γ(n+ d/2)
Mn

n!
:
(
r2
)n

: . (98)

Let us first evaluate ∆(r) when we simply take for V the variational estimate Vvar

given by Eqs. (58) and (59),

Ṽ (k)→ Ṽvar(k) = −e−
k2

2 Cvar . (99)

We get for the moments

Mn →Mvar
n = −Γ(n+ d/2)

Γ(d/2)

(
4πCvar

)−d/2C−nvar (100)

and we can use the self-consistent equation (60) for mvar which is in our notation

2m2
varCvar =

(
4πCvar

)−d/2
(101)

to get for ∆(r)
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∆(r)→ ∆var(r) =m2
varCvar

(d
2

+ 2

)
1 +

∞∑
n=2

(
−1

4Cvar

)n 2
n!

:
(
rn
)2

:

 . (102)

The coefficient of the : r2 : term is zero, since M1 = −d m2
var.

This means that when we take Vvar as potential V , ∆ is indeed an interaction term,
which contains no “mass renormalization”, but only higher order interaction terms.

6.3. A convenient rescaling

To check whether these terms are unimportant in the large d limit, it is better to
rescale all quantities in terms of the variational mass mvar, that we take as unit of scale.
Thus let us rescale

x → (mvar)−1 x, q → mvar q,

r → (mvar)D/2−1r, k → (mvar)1−D/2k,

V → (mvar)D V.
(103)

In these units, all previous results obtained in this section are given by the same
equations, 6 provided that we replace

mvar → 1, Cvar → C, (104)

that we do not rescale Ṽ in Eq. (97), and that we rescale the free energy density E[V ]
as

E[V ]→ mD
var E[V ]. (105)

Thus we got rid of the complicated d and D dependence of mvar and keep only the
simple factor of C given by Eq. (92) in the calculations.

6.4. The variational solution as D → 2

In order to estimate “how close” the variational potential Vvar is from the exact
instanton potential, let us consider the instanton equation (97), where we replace V by
Vvar and ∆ by ∆var. Then of course Eq. (97) is not satisfied, since〈

: eikr(x0) : e
∫
x
∆var

〉C

var

3 1. (106)

This would be true only if all the n > 2 terms in the expansion (102) for ∆var were
zero.

We can compute the l.h.s. of Eq. (106) in perturbation theory. The first interaction
vertices with their coefficients are depicted on Fig. 3. Let us note that the 2-point vertex,
corresponding to the : r2 : coefficient in Eq. (102), is zero. The “0-point” vertex,

6 Except of course Eq. (101).
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Fig. 3. The interaction vertices from ∆(r) in the variational approximation.

k4

16 C

x0

The two diagrams with a tadpole do not contribute!

Fig. 4. First-order graphs in the variational approximation.

corresponding to the coefficient of the identity operator 1, disappears in the connected
correlation functions (since by definition 〈[. . .] 1〉Cvar = 0), but will be present in the
free energy density E . The propagator is simply (q2 + 1)−1. The zeroth order term in
the expansion of Eq. (106) is〈

: eikr(x0) :
〉

= 1 (107)

because all tadpoles are subtracted by the normal product prescription. In Fig. 4 we have
depicted the only diagram which appears at order C−1 with its combinatorial weight
resulting from its symmetry factor, the interaction vertex coefficients and the contrac-
tions of the d-dimensional indices of the r’s. We have also depicted the other possible
diagrams which do not contribute, since they contain a tadpole which is subtracted by
the normal order prescription. The diagrams at order C−2 are depicted on Fig. 5, to-
gether with their weight. In general, these diagrams contain internal closed loops, which
give a factor of d, and open chains which must end at some kr(x0) in the exponential
: exp

(
ikr(x0)

)
:, thus giving a factor of k2.

We can now look at the limit when the internal dimension of the membrane D goes
to 2, while ε is fixed. In this limit, the bulk dimension of space d goes to infinity as

d =
2(2D − ε)

2−D ' 8− 2ε
2−D (108)

and the tadpole amplitude C given by Eq. (92) diverges like d, since
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Fig. 5. Second-order graphs in the variational approximation.
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Fig. 6. Free energy density.

C = (4π)−D/2Γ(1−D/2) ' 1
2π

1
2−D ' d

1
4π(4− ε)

. (109)

On the other hand, the Feynman amplitude of the first diagram depicted in Fig. 4 and
of those of Fig. 5 are finite when D → 2, since they do not have any long distance
(infra-red) or short distance (ultra-violet) divergences for 0 6 D 6 2. This implies that
as D → 2, the contributions of diagrams that we are considering vanish at least as fast
as 2−D ' 1/d.

This result is in fact valid for all the diagrams which appear at higher orders in the
evaluation of the l.h.s. of Eq. (106). All diagrams vanish individually at least as 1/d,
and it is possible to generate a systematic expansion in powers of 1/d. Of course there
will be an infinite number of diagrams which contribute at a given order in 1/d, that
we shall characterize later. Let us assume that the sum of all diagrams which contribute
at a given order is convergent. (This turns out to be true at least as long as ε > 0.)
Then this implies that the saddle-point equation (97) holds at leading order in 1/d for
the variational solution

Ṽvar(k) + e−
k2

2 Cvar

〈
: eikr(x0) : e

∫
x
∆var

〉C

var

= e−
k2

2 Cvar O
( 1
d

)
, (110)

when we take the limit (2−D) ∼ d−1 → 0, ε and k fixed.
A similar statement can be made for the vacuum diagrams which appear in the

perturbative expansion of the free energy density. The first terms of this expansion are
depicted on Fig. 6. The first two graphs denote the tree and one-loop contributions given
respectively by (minus) the first term in the expansion of ∆var

E(0)
var = −C

(
2 +

d

2

)
(111)

and by the loop integral
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E(1)
var =

d

2

∫
dDq

(2π)D
log
[
1 + 1/q2

]
=
d

D
C. (112)

The sum of these two terms gives the variational free energy density

Evar = C
(
−2− d

2
+
d

D

)
= − ε

D
C (113)

which is of order O(d), while higher order corrections are at least of order O(1) (in
our normalization where mvar = 1).

What are the consequences of this remarkable fact? First it will be possible to solve the
saddle-point equation (97) order by order in 1/d, and to show that the exact instanton
potential V differs from the variational solution only by corrections of order 1/d,

Ṽ (k) = Ṽvar(k)
[
1 +O(d−1)

]
(114)

which are finite as long as ε > 0. Using this fact we can show that the variational
instanton action, which is in our normalizations

Svar = Evar +
1
2

∫
V 2

var =
(

1− ε

D

)
C, (115)

is of order O(d), and differs from the exact instanton action by subdominant terms of
order O(1). This justifies the use of the variational method as well as the large order
analysis of the ε-expansion results made in the previous section.

6.5. Leading 1/d correction for the instanton potential

In order to study the 1/d corrections, let us rewrite the normal product expansion
(95) for the exact instanton potential V as

V (r) = 2C
∞∑
n=0

(
−1
4C

)n
µn
n!

:
(
r2
)n

: . (116)

With our rescaling in Eq. (103), starting from Eq. (96), the moments µn are given by

µn =
2Cn+d/2

Γ(n+ d/2)

∞∫
0

dk kd+2n−1 e−k
2C/2 Ṽ (k). (117)

We assume that V differs from Vvar by O(d−1), or equivalently that

µn = −1 +
δn
d
, δn = O(1). (118)

The perturbation ∆(r) given by Eq. (98) is then

∆(r) = C
(
d

2
− 2µ0

)
+
δ1

2d
: r2 : +(−2C)

∞∑
n=2

(
−1
4C

)n
µn
n!

:
(
r2
)n

: . (119)

This generates the 2n-point interaction vertices for the perturbative expansion around
the variational Hamiltonian depicted in Fig. 7.
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Fig. 7. The vertices from ∆(r), Eq. (119).

Fig. 8. The chain of bubbles.

The first vertex with n = 0 is just the correction to the free energy. The additional
2-point vertex is a mass correction and is of order 1/d. The 2n-point vertices (n > 2)
are similar to those of Fig. 3 and are of order 1/dn−1.

Before embarking on the detailed calculations, let us recall what we are about to
do. Our equation for the exact instanton potential V is a self-consistent equation (since
both sides contain V ), and was written as a perturbative expansion with respect to the
variational solution as

−Ṽ (k) eC k
2/2 =

〈
: eikr(x0) : e

∫
x
∆
〉C

var

. (120)

∆, given in Eq. (119), contains all terms of the exact potential V with the exception of
those already taken into account in the variational Hamiltonian.

It is then easy to see that the perturbative expansion generates diagrams, which can
be organized in a 1/d expansion in terms of the chain of bubbles depicted on Fig. 8.
Indeed, each 4-point vertex carries a factor of C ∼ 1/d and each bubble carries a factor
of d, so that the whole chain is of order 1/d. A careful but simple analysis shows that
only four different classes of diagrams contribute to the r.h.s. of Eq. (120) at order 1/d;
they are depicted on Fig. 9. The suffix n (n = 0, 1) refers to the minimal number of
bubbles in the chain in order not to have tadpoles. The situation is thus quite similar to
the 1/n expansion in models with a n-component field with O(n) symmetry.

The amplitude for a single bubble diagram with external momentum p is

= B(p) =
∫

dDq
(2π)D

1
q2 + 1

1
(p + q)2 + 1

=
Γ(2−D/2)

(4π)D/2
J(p) (121)

with

J(p) =

1∫
0

dx
[
1 + x(1− x)p2

] D
2−2

(122)

and can be expressed in terms of hypergeometric functions. In particular one has
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Fig. 9. 1/d diagrams for the expansion of 〈: eikr(x0) : e
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Fig. 10. 1/d diagrams for the expansion of the free energy density E at order O(1).

B(0) = (1−D/2)C. (123)

Taking into account the symmetry factor, the amplitude for the n -truncated chain of
Fig. 8 is the geometric function

n
= H(n)(p) =

∑
m>n

[
(−µ2)

d

4C
B(p)

]m
(124)

so that in particular the untruncated chain is

0
= H(0)(p) =

[
1 + µ2

2D − ε
4

J(p)

]−1

. (125)

Similarly, the free energy density E can be expanded in 1/d in terms of diagrams
involving chains of bubbles. The diagrams which are present at order O(1) are depicted
in Fig. 10.

The last diagram is the 2 -truncated closed chain of bubbles, whose amplitude is
(taking into account the symmetry factors)

n = G(n) =
∫

dDp
(2π)D

∑
m>n

1
m

[
(−µ2)

d

4C
B(p)

]m
. (126)

With these notations, we now compute the 1/d correction for V . With the symmetry
factors for the diagrams of Fig. 9, Eq. (97) for Ṽ is at that order
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Ṽ (k) = −e−
k2

2 C

1 +
−k2δ1

2 d

+
0

k2 µ2 δ1

8C
+ 1 k2µ2

4C

+ 0 −k4µ2

16C
+

0

1 −k2 d (µ2)2

16C2

+
0

2 k2µ3

8µ2C
+O

(
1
d2

) . (127)

Since we are interested in computing Ṽ at order 1/d only, and since the diagrams on
the r.h.s. of Eq. (127) are of order O(1), we can use the ansatz (118) and replace µ2

and µ3 by −1 on the r.h.s. of (127) (but keep δ1). Now we use Eq. (123), which
implies that

= (4− ε)
C
d

+O
(

1
d

)
, (128)

and from Eq. (124) we have

0

∣∣∣∣
p=0

=
4
ε

+O
(

1
d

)
. (129)

We can also rewrite

0 = 2
(

4C
−d µ2

)2

. (130)

We obtain
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Ṽ (k) =−e−k
2C/2

1 + (−k2)

δ1
2(4− ε)C

εd2
+ 1 1

εC

+ 2 ε− 4
2dε

+ (k4) 2 C
d2

+O
(

1
d2

) . (131)

Now we have to compute δ1. It is fixed by Eq. (117) which relates the µn’s to Ṽ .
Indeed we have from Eqs. (117) and (118)

δ1 = d + d
2C1+d/2

Γ(1 + d/2)

∞∫
0

dk kd+1 e−k
2C/2 Ṽ (k) (132)

and using Eq. (131), performing the k-integral and keeping only the leading terms as
d →∞, we obtain the equation

δ1 =
(4− ε)

ε
δ1 + 1 d2

2C2ε
+ 2 (−d)

Cε
+O

(
1
d

)
.

(133)

Finally, we can use the simple relation (derived in Appendix B)

D 2 = (4−D) 2 +
µ2 d

C
1 (134)

to express δ1 in terms of the simple closed chain of bubbles G(2) defined by Eq. (126)

δ1 =
d

2C (2− ε)
2 +O

(
1
d

)
. (135)

Inserting this result into Eq. (131), we obtain the potential Ṽ , and we can calculate the
moments µn from Eq. (117). Since for n� d, the moments are independent of n, we
find that

µn = −1 +
δ1

d
+O

(
1
d2

)
∀ n > 0. (136)
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Therefore the ansatz (118) is consistent and our calculation at order 1/d makes sense,
provided that the closed chain of bubbles G(2), which is a function of D, ε and µ2, has
a finite limit as D → 2 (and µ2 = −1). This is the case as long as ε > 0. Indeed, the
chain G(2) is given by Eq. (126) and using Eqs. (121) and (122), it is given in the
limit D → 2 by

G(ε) = 2

∣∣∣∣∣∣∣∣∣∣
D=2

=
∫

d2q

(2π)2

[
− log

[
1−

(
1− ε

4

)
J(q)

]
−
(

1− ε

4

)
J(q)

]
, (137)

where

J(q) = J(q)|D=2 =

1∫
0

dx
[
1 + x(1− x)q2

]−1

=
2

q
√
q2 + 4

log

[√
q2 + 4 + q√
q2 + 4− q

]
. (138)

Indeed, we have for J(q)

0 < J(q) < 1 ∀ q3 0; J(q) ' 1− q2

6
as q→ 0;

J(q) ' 2
q2

log(q2) as q→∞, (139)

hence the integral (137) defining the function G(ε) is convergent for any ε > 0.
Similarly, the chain with a marked point is given in the limit D → 2 by

G(ε) = 2

∣∣∣∣∣∣∣∣∣∣
D=2

=
∫

d2q

(2π)2

[
1

1−
(
1− ε

4

)
J(q)

− 1−
(

1− ε

4

)
J(q)

]

= (4− ε)
d
dε
G(ε). (140)

It is finite for ε > 0, but has a logarithmic divergence at ε = 0, since from (139) the
integrand in (140) behaves as q−2 as q → 0 when ε = 0. A simple calculation shows
that Ḡ has a logarithmic singularity of the form
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Ḡ(ε) ' 3
2π

log

(
1
ε

)
as ε→ 0. (141)

With these notations, the final result for the instanton potential at order 1/d is

Ṽ (k) = e−k
2C/2

[
− 1 +

1
d

(
k2

(
1

2− εG(ε) +
4− ε

2
G′(ε)

)
− k4 1

4π
G′(ε)

)
+O

(
1
d2

)]
. (142)

We note that the corrections to the variational potential are finite as long as 0 < ε < 2,
but are singular at ε = 0 and ε = 2. The singularity at ε = 2 is not surprising. We have
seen from Eq. (61) that the variational mass mvar itself is singular at ε = D, which
corresponds in the limit D→ 2 to ε = 2. Therefore it is expected that the corrections to
the variational result will also be singular. The singularity at ε = 0 is new, since mvar is
regular at ε = 0. We shall come back to this issue later.

6.6. 1/d correction to the instanton action

It is now easy to compute the corrections to the instanton action S, defined by
Eq. (24). The free energy density E has the following graphical expansion:

E(V ) =−C
(
d

2
− 2µ0

)
+

d

2
− 1

2
2 +O

(
1
d

)
,

(143)

where the amplitude for the simple loop is given by Eq. (112)

=
∫

dDq
(2π)D

log
[
1 + 1/q2

]
=

2
D
C. (144)

The second term in Eq. (24) is

1
2

∫
ddr V (r)2 =

1
2

∫
ddk

(2π)d
|Ṽ (k)|2. (145)

Within our rescaling (103) this term is

1
2

∫
V 2 → C

2Cd/2

Γ(d/2)

∞∫
0

dk kd−1|Ṽ (k)|2 (146)
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and from Eqs. (117) and (118) it is simply obtained from the moment µ0 by

1
2

∫
V 2 = C

[
− 1− 2µ0 +O(d−2)

]
. (147)

Thus the instanton action, which is the sum of Eqs. (143) and (147) is finally given at
order 1/d by

S(V ) =C
(
d

2
+ 4

)
− d

2
− 1

2
2 +O

(
1
d

)

= C
(

1− ε

D

)
− 1

2
G(2)(D, ε) +O

(
1
d

)
. (148)

This result holds within the rescaling (103). The first term on the r.h.s. of Eq. (148) is
the variational result, and is of order O(d). The second term is of order O(1). Thus the
first correction to the variational result is given by the closed loop diagram of Eq. (137).

According to Eq. (105), to recover the normalization used in the previous sections,
we have simply to multiply Eq. (148) by mD

var, where mvar is the variational mass as
given by Eq. (61).

6.7. Discussion of the result

(1) The corrections of the variational instanton potential do in fact not contribute to
the correction of the instanton action. Indeed, they are entirely contained in the moment
µ0 which disappears in Eq. (148). This is not surprising, since the instanton potential
V is defined by a variational principle with respect to V .

(2) The correction to the instanton action is finite as ε→ 0, while from Eq. (142) the
correction to the potential V diverges as log(ε). The divergences occur in fact because
the chain of bubbles of Fig. 8, H(0)(q), has a singularity at small momentum q as
D → 2 and ε→ 0. According to Eqs. (125) and (139), it behaves as

0

∣∣∣∣∣∣
q→0

' 1
q2/6 + ε/4 +O(2−D)

. (149)

In other words, this chain of bubbles behaves as a massless propagator at ε = 0 and
D = 2. We have no physical interpretation of these IR singularities, and why they cancel
in the instanton action. However, the fact that as D → 2 the instanton potential is
singular as ε → 0 is similar to the situation at D = 1 discussed in Section 5.1. Here
also, we know from the exact solution that the instanton potential is singular when
ε→ 0 (d→ 4), while the instanton action is regular, and in fact Eq. (67) corresponds
also to a logarithmic behavior as ε→ 0. Therefore, it is reasonable to conjecture that at
next orders in 1/d, the IR singularities which occur as ε→ 0 in the instanton potential
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Fig. 11. The function G(ε) defined in Eq. (137) from the chain of bubbles in D = 2.

still disappear in the instanton action. This would imply that the coefficient C has a
regular behavior when ε→ 0 and that the limits d →∞ and ε→ 0 can be exchanged,
providing further consistency to our arguments for the large order behavior of the ε-
expansions for the SAM model. As already seen in Section 3 for the polymer, analytic
continuation to ε < 0 is meaningless.

(3) The 1/d correction to the instanton action Sinst is negative, as expected, since it
should improve the variational estimate for Sinst, which is an upper bound.

(4) It is interesting to see if the 1/d correction can be used to improve the variational
estimates for quantities of physical significance, such as the large order constant C. Let
us start from the result (148) for the instanton action S at first order in 1/d, and insert
it into Eq. (30) for C. We obtain

C−1 = C−1
var

[
1− G

(2)(D, ε)
2C(D)

+O(d−2)

]
. (150)

Now we only keep the leading 1/d corrections on the r.h.s. of Eq. (150) in the limit
d →∞, for fixed ε by using

G(2)(D, ε) = G(ε) +O(d−1), C(D) =
d

4π
1

4− ε +O(1), (151)

with G(ε) given by (137). We thus obtain

C−1 = C−1
var

[
1− 2π(4− ε)G(ε)

1
d

+O(d−2)

]
. (152)

We have plotted in Fig. 11 the function G(ε) for 0 < ε < 4, as obtained by a
straightforward numerical integration. G is maximal for ε = 0, where we have G(0) =
0.6014 . . .

Let us estimate the first 1/d correction for the case of polymers in d = 4 dimensions.
We simply have to set d = 4 and ε = 0 in (152). We find that the 1/d correction is

2π(4− ε)G(ε)
1
d
→ 2πG(0) = 3.78 . . ., (153)
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which is much larger than 1! Thus the 1/d correction is very large for d = 4 and one
should take into account the subleading corrections and resum them. We recall that for
d = 4 and ε = 0 we have C−1

exact/C−1
var = 2/3 = 0.666 . . . In practice, we expect that for

ε = 0 the 1/d corrections will be smaller or equal to the variational O(d0) result for
d > 16! Therefore we cannot use naively the 1/d corrections that we have calculated
to improve the variational estimates. In the next subsection we propose an improved
resummation procedure, which takes into account some of the higher order corrections
which are contained in the bubble chain diagrams, and which gives much better results.

6.8. An attempt to go beyond the first 1/d correction

In the last section we have shown that a straightforward 1/d-expansion cannot be
applied to small dimension, as e.g. polymers in d = 4. In this section, we propose a
different approximation scheme. It consists in summing exactly the chain of bubbles
G(2), and keeping the full D, d-dependence when extrapolating to low dimensions,
instead of expanding this quantity about d = ∞. First, in Eq. (126), only the leading
d-dependence had been kept. Taking into account the complete d-dependence, we obtain

n = G(n) =
d

d + 2

∫
dDp

(2π)D
∑
m>n

1
m

[
(−µ2)

d + 2
4C

B(p)

]m
. (154)

Eliminating as before B(p) in favor of J(p), d in favor of ε and replacing µ2 by
its leading contribution µ2 = −1 (justified later), we obtain for the correction to the
variational result

S − Svar

Svar
=

D(2D − ε)
(2 +D − ε)(D − ε)

sin πD
2

π

×
∞∫

0

dp pd−1

[
ln

(
1− 2 +D − ε

4
J(p)

)
+

2 +D − ε
4

J(p)

]
, (155)

In the remainder, we shall focus on the case D = 1, for which we can most easily test
Eq. (155). In D = 1, J(p) is exactly given by

J(p) =
4

4 + p2
. (156)

Eq. (155) is then integrated (using the residue calculus) with the result

S − Svar

Svar

∣∣∣∣
D=1

=
2d

(d + 2)(d− 2)

(√
3− d

2
+
d

8
− 7

4

)
. (157)

Note that as discussed in Section 3, this solution is only valid for ε > 0, i.e. d 6 4. The
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Fig. 12. The inverse of the large order constant 1/C for the Edwards model (D = 1) as a function of the
bulk dimension d. The dotted curve is the O(1) variational estimate, the dashed curve the estimate from
Eq. (158), the continuous curve the exact result.

large order estimate is finally obtained as

C−1(D = 1) ' 2πd/2

[
1 +

d

d + 2

(√
3− d

2
+
d

8
− 7

4

)
+ . . .

]
, (158)

which is plotted in Fig. 12. We see that this corrects 50% of the deviation of the
variational result from the exact result in d = 4, and is even better in lower dimensions.
Note that this is not the straightforward 1/d-correction, obtained in Section 6.7. In
the following, we want to justify that the result given in Eqs. (157) and (158) is
meaningful for small dimensions by analyzing the case D = 1 and d = 4, i.e. ε = 0,
where calculations are most easily done.

The first observation is that H(0)(p) is nicely convergent for all values of p. In
contrast to D = 2, no divergence at p = 0 appears.

The next observation is that all terms in the chain of bubbles G(2) are positive and the
sum is rapidly converging. (If we denote by 100% the difference between variational
estimate and exact result, the contributions of the first terms are 28%, 11%, 4%, . . .,
respectively, which add up to the 50% given above.)

We also observe that most of the missing contributions to S(V ) are positive: Let us
call a vertex even, if it possesses an even number of pairs of lines, and odd otherwise.
Any even vertex then contributes a factor of 1, whereas any odd vertex contributes a
factor of (−1) (see Eqs. (116) and (118)). Since all integrals are positive, in order to
build up a negative contribution, an odd number of odd vertices has to be taken. One
sees by inspection that this is more difficult than for a positive diagram (containing
even vertices and an even number of odd vertices). The first diagram of this kind is

(159)
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Another hint comes from a second class of diagrams, which can be summed, namely
all “watermelon” diagrams with two vertices only:

(160)

The first diagram, equivalent to 28%, is already contained in G(2), the following con-
tribute 6%, 1.5%, . . ., respectively. They can be resummed and are then given by the
integral

∞∫
0

dx

(
1− e−2x

4

)−d/2

− 1− d

8
e−2x, (161)

which contributes about 8.2% in d = 4, when neglecting the first diagram already taken
into account in G(2).

A more systematic approach to understand why higher order vertices are subdominant,
is to look for an additional small parameter. We have seen that C ∼ d for d → ∞.
Comparing the ratio d/C at d =∞ and d = 4, we obtain (always for ε = 0)

d/C|d=4

d/C|d=∞
=

1
2π

. (162)

This suggests (as exemplified by the preceding calculation) that higher order vertices,
which come with additional factors of 1/C, indeed contribute an additional small factor.

The last point to verify, is that also the 1/d-correction to the potential is small. In the
notation of Eqs. (116) and (118), the parameter δ1/d, given in Eq. (135), reads

δ1

d

∣∣∣∣
D=1,ε=0

=
1

4C
2

∣∣∣∣∣∣∣∣∣∣
D=1,ε=0

+O
(

1
d2

)
=

1
12

+O
(

1
d2

)
(163)

It is indeed small.
Another important limit to verify is d → 0. We have argued in Section 5.1 that in

that limit the variational result becomes exact. Our correction in Eq. (155) consistently
vanishes. Diagrammatically this can be seen from the fact that any diagram which
contributes to the free energy has at least one closed loop, and therefore comes with
a factor of d. This is also the leading contribution for small d: due to the “islands
and bridges theorem”, which states that if from any island an even number of bridges
starts, it is always possible to construct a path which uses any bridge exactly once, the
minimal number of closed loops, and thus factors of d, for any given diagram is one. It
is therefore impossible to simply reorganize the perturbative expansion in a d-expansion.
However, the large-d expansion should respect this exact property. This is not assured
by the naive 1/d-expansion, but by our modified result discussed here.
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All these arguments suggest that Eq. (158) is a sensible correction to the variational
result, and should be improved by taking into account higher order vertices, although
this expansion is not a systematic expansion in a small parameter.

7. Conclusion

Let us first summarize the results of this paper. We have developed a general for-
mulation to estimate the large orders of perturbation theory for the Edwards model
of self-avoiding membranes and polymers. We have shown that these large orders are
controlled by a semi-classical effective potential V (r), solution of a non-local ex-
tremization problem. This effective potential is the analog to the Lipatov instanton in
Landau1Ginsburg1Wilson models. In the case of polymers (membranes wi-th internal
dimension D = 1), this SAM instanton corresponds precisely to the Lipatov instanton
for the n = 0 components LGW model. The large order behavior for the SAM model
is derived in the general case (D 3 1). The equations for the SAM instanton are
solved within a Gaussian variational approximation. The result is for D = 1 compared
to the exact results from Lipatov’s method, and is found to be qualitatively correct for
polymers in d = 4 dimensions. Finally it is shown that the variational result is the first
term of a systematic expansion in 1/d, where d is the dimension of space in which the
membrane fluctuates.

All these results are new, and represent a considerable advance in the understanding
of self-avoiding membranes beyond the first orders of perturbation theory. A number of
interesting issues still has to be addressed.
1 We have seen that a systematic expansion in 1/d can be constructed, of which the

variational approximation is only the leading term. However, adding the first correction in
1/d to the instanton action does not give reliable results for small d. This is a numerical
problem which comes from the fact that in the interesting cases the corrections in
1/d are already quite large. We have proposed a modified procedure to resum the first
corrections which gives better results when applied to the case of polymers (D = 1,
d = 4), but more systematic resummation methods are needed in order to improve in a
reliable way the variational results.
1 We have not calculated the contributions from the fluctuations around the instanton,

which should give the value of the global constant A′ in Eq. (32). This calculation is
technically more difficult than the one for the instanton action itself.
1 We have only discussed shortly and at a qualitative level the consequences of our

results for the ε-expansion of the scaling exponents. It would be interesting to obtain
more precise results. In particular, the discussion relies on the limit ε→ 0 for the large
order estimates. We have shown that this limit exists in the variational approximation,
but that the 1/d corrections then suffer from IR divergences. These divergences cancel
for the instanton action at first order in 1/d, and we conjectured that this feature persists
at higher orders. Further studies are needed to clarify this important problem.
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Finally, let us mention that our approach can be applied to other classes of interactions
between membranes.
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Appendix A. The Φ4 instanton in the limit d→ 4

The instanton equation (37) for Ψ0 is, assuming rotational invariance, i.e. Ψ0(r) =
Ψ0(r) with r = |r|,

Ψ ′′0 +
d − 1
r

Ψ ′0 + 2E0 Ψ0 + 2Ψ3
0 = 0. (A.1)

We look for a solution which is regular at the origin, which has no zero for finite r and
which vanishes at infinity, i.e.

0 < Ψ0(r) <∞ for 0 6 r <∞, Ψ0(r)→ 0 when r→∞. (A.2)

E0 6 0 is fixed by the normalization (38)

‖Ψ0‖2 =
∫

ddrΨ0(r)2 =
2πd/2

Γ(d/2)

∞∫
0

dr rd−1 Ψ0(r)2 = 1. (A.3)

From Eq. (45) we know that E0 can be extracted from the action of the instanton for
the LGW action (44), which is finite when d → 4, such that E0 behaves as

E0 ∝ d − 4. (A.4)

For d = 4 and E0 = 0, the general solution of Eq. (A.1) is not normalizable and reads

Ψ0(r) =
2 r0

r2 + r2
0

. (A.5)

For d 3 4, E0 < 0 and r→∞, Ψ0 is a solution of the linearized equation Ψ ′′ + (d −
1)/rΨ ′ + 2E0Ψ = 0, given by a Bessel function

Ψ0(r) ' r1−d/2 Kd/2−1

(
|2E0|1/2 r

)
. (A.6)

Assuming that

r2
0|E0| � 1 when d → 4, (A.7)
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it has the asymptotics

Ψ0(r) ∝
{
r2−d for r2 |2E0| � 1

r
1−d

2 e−|2E0|1/2 r for r2 |2E0| � 1
. (A.8)

For r0 � r� |2E0|−1/2, Ψ0 decays algebraically as 1/r2. It is exponentially decreasing
for r� (−2E0)−1/2. We may thus approximate the integral in Eq. (A.3) by

‖Ψ0‖2 ≈ 2π2

a/
√

4−d∫
r0

dr r3
(r0

r2

)2
≈ 2π2 r2

0 log

[
a

r0
√

4− d

]
, (A.9)

where a is the proportionality factor in Eq. (A.4). From the constraint ‖Ψ0‖ = 1 we
deduce that the size of the instanton r0 becomes small as d → 4 and scales as

r2
0 ∼

1
| log (4− d) | . (A.10)

This is consistent with the assumption (A.7).

Appendix B. A simple relation

We derive the relation

D 2 = (4−D) 2 +
µ2 d

C
1 . (B.1)

For that purpose, we write the amplitude for the last diagram as an integral over p, the
D-dimensional momentum which flows through the chain of bubbles

1 =
∫

dDp
(2π)D

D(p)H(1)(p)

=
2(4π)−D/2

Γ(D/2)

∞∫
0

dp pD−1D(p)H(1)(p). (B.2)

The definition (124) for the chain of bubbles was

H(1)(p) =
1

=

[
1 + µ2

d

4C
B(p)

]−1

− 1, (B.3)
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and D(p) is the amplitude for the bubble with a single mass insertion

D(p) = p→ =
∫

dDq
(2π)D

1
(q2 + 1)2

1
(p+ q)2 + 1

. (B.4)

We are careful in distinguishing the vector p from its modulus p = |p|. Similarly the
amplitudes for the first two diagrams are

2 =
2(4π)−D/2

Γ(D/2)

∞∫
0

dp pD−1

[
− log

[
1 +µ2

d

4C
B(p)

]
+ µ2

d

4C
B(p)

]
,

(B.5)

and

2 =
2(4π)−D/2

Γ(D/2)

∞∫
0

dp pD−1

[(
1 + µ2

d

4C
B(p)

)−1

− 1 + µ2
d

4C
B(p)

]
.

(B.6)

We can obtain D(p) from B(p). Let us introduce a mass m and consider

D(p,m) =
∫

dDq
(2π)D

1
(q2 +m2)2

1
(p+ q)2 +m2

(B.7)

and similarly let us introduce a mass in the bubble B of Eq. (121) and define

B(p,m) =
∫

dDq
(2π)D

1
(q2 +m2)

1
(p+ q)2 +m2

. (B.8)

It is easy to see that one has

m
d

dm
B(p,m) = −4m2D(p,m), (B.9)

and since by homogeneity

B(p,m) = mD−4 B(p/m), (B.10)

we deduce that (setting at the end m = 1)

(D − 4)B(p)− p d
dp
B(p) = −4D(p). (B.11)

We can use Eq. (B.11) to express D(p) in terms of B(p) and its derivative in Eq. (B.2)
and integrate by part in order to eliminate the derivative of B. We obtain
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1 =
2(4π)−D/2

Γ(D/2)

∞∫
0

dp pD−1

{(
1− D

4

)
B(p)

[(
1 +

µ2d

4C
B(p)

)−1

− 1

]

−D
4

[
4C
µ2d

log

(
1 +

µ2d

4C
B(p)

)
− B(p)

]}
. (B.12)

Using Eqs. (B.5) and (B.6) we obtain the identity (B.1).
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