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Introduction and outline 51 Introduction and outlineOne of the most challenging ideas in modern physics is the concept of universality: Certainproperties of physical systems do not depend on microscopic details and furthermore areequivalent for seemingly unrelated problems. This is epitomized by systems undergoingsymmetry breaking continuous phase transitions. The most powerful tools to reveal theserelations are delivered by quantum �eld theory, which has celebrated an overwhelmingsuccess in nearly all areas of physics. The study of the O(N)-model, which is a �eld theoryfor the statistics ofN -component spins with short-range interactions, has shown that theircritical behavior is described by a set of exponents which are completely characterizedby the dimension and the underlying symmetry (the number of components of the orderparameter). Universality is ensured since the microscopic details are averaged out, anddo not a�ect the large scale 
uctuations. A variety of techniques have been developedto examine the critical behavior of this model; possibly the most successful one is therenormalization group procedure [2] which analytically justi�es the concept of universality.The technically most convenient implementations are �eld theoretical methods, e.g. the"-expansion about the upper critical dimension of 4, an expansion about the lower criticaldimension of 2, and exact re-summations in the large N limit. (For an review of thesetechniques, see Ref. [3].) The best studied method is the "-expansion about the uppercritical dimension of 4, where calculations have been performed up to �fth order. Togetherwith resummation techniques which take care of the large-order behavior known frominstanton calculus, this is a very powerful tool for extracting critical exponents.On the other hand, �eld theories have strong connections to geometrical problemsinvolving 
uctuating lines. For example, the motion of particles in space-time describes aworld-line. Summing over all world-lines, weighted by an appropriate action, is the Feyn-man path integral approach to calculating transition probabilities, which can alternativelybe obtained from a quantum �eld theory. The latter can be extended to string theory, gen-eralizing the sum over particle trajectories to the sum over trajectories of lines. Anotherexample is the high-temperature expansion of the Ising model. The energy-energy corre-lation function can be expressed as a sum over all self-avoiding closed loops which passthrough two given points. Self-avoidance is necessary in order not to overcount con�gura-tions. We face an important new theoretical concept, which is the subject of this review:Parameterizing the loop by its length, di�erent parts of the loop interact with each otherirrespective of their distance. Treating such phenomena in the framework of �eld-theorydemands an enlargement of the concept of local �eld-theories to multi-local ones. The
Figure 1.1: Budding of 
uid membranes, from [1].
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Figure 1.2: Polymerized tethered membrane in the 
at phase, from [16].�rst direct such approach was developed in the context of self-avoiding polymers, whichare formally equivalent to the loops appearing in the high-temperature expansion of theIsing model, by Edwards and Des Cloizeaux [4{6]. In this approach, hard self-avoidanceis replaced by a soft short range repulsive interaction upon contact of the monomers. Thisinteraction is then studied perturbatively by expanding about ideal random walks. Heretoo, the perturbative expansion can be reorganized into an expansion about the uppercritical dimension of 4, which was shown [7] to be equivalent to the perturbation expan-sion of �4-theory in the limit N ! 0. This equivalence provides two apparently di�erentapproaches for calculating the same exponents.There is much work in the �eld theory community on generalizing results for 
uctu-ating lines to entities of other internal dimensions D. The most prominent example isstring theory, which describes D = 2 world sheets [8{11]. An earlier example is providedby the correspondence between gauge theories and random surfaces [12,13]. The low tem-perature expansion of the Ising model in d dimensions also results in a sum over surfacesthat are d� 1 dimensional. For d = 3, the surfaces are made out of plaquettes, the basicobjects of lattice gauge theories. All these objects share the common property that notonly 
uctuations of shape but also topology changes occur and have to be summed overin the partition function. The biologically relevant representatives of this class of mem-branes are 
uid membranes, which in general are formed by a lipid bi-layer. I contrast to
uid membranes are \tethered", polymerized surfaces [14,15], which have a �xed internalconnectivity, and are thus simpler than their 
uid counterparts. Experimental realiza-tions are e.g. the network formed by spectrin in red blood cells or graphite mono-layers.These systems may be found in three quite di�erent phases: a collapsed compact phase,a 
at phase and an intermediate crumpled swollen phase with fractal dimension of about2.4. Experimentally, the situation is still under debate (cf. section 2.5). In numericalsimulations (cf. section 2.5), generically 
at membranes are found (see �gure 1). The rea-son why eventually no crumpled swollen phase may be observable is that the rigidity of



Introduction and outline 7tethered membranes is { in sharp contrast to 
uid membranes { strongly enhanced by thee�ect of shear waves. Technically, integrating out these degrees of freedom renormalizesthe rigidity, and if the initial rigidity is beyond a certain threshold, the membrane willbecome 
at (see section 2.4). Intuitively this is analogous to a crumpled sheet of paper,which is much more rigid than an uncrumpled one.Numerically, it has been observed that tethered membranes seemingly are always 
at,even when starting with self-avoidance only. This can be traced back to the e�ective(entropic) bending rigidity which is always present in these models. However, since thelargest membranes simulated so far consist of only 75�75 atoms in the simplest spring andbead model, which has the inconvenience of being rather rigid, and of about 25�25 atomsin the more sophisticated plaquette-models, simulations are far form being conclusive.These general physical, including numerical and experimental considerations are presentedin more detail in section 2.For theoretical analysis, it is convenient to further generalize to membranes of arbitrary(inner) dimension D, interpolating between polymers for D = 1 and membranes forD = 2. Simple power counting indicates that self-avoidance is relevant only for dimensionsd < dc = 4D=(2�D), making possible an " = 2D� d(2�D)=2 � (dc(D)� d)-expansion,which was �rst carried to 1-loop order about an arbitrary point on the line " = 0 inRefs. [17{21]. To obtain results for polymers or membranes, one then has the freedom toexpand about any internal dimension D, and the corresponding upper critical dimensionof the embedding space [22]. This freedom can be used to optimize the calculation ofcritical exponents.A major breakthrough in the understanding of these non-local �eld theories is theproof by David, Duplantier and Guitter, that the �eld-theory of a D-dimensional self-avoiding tethered membrane is renormalizable to all orders in perturbation theory. Themain technical tool is the multilocal operator product expansion (MOPE), generalizingthe concept of (local) operator product expansion (OPE), introduced into �eld theorylong time ago by Wilson [23] and Kadano� [24], to the multilocal situation. We shallpresent this technique in section 3. A collection of useful tools is given in section 4, anda condensed version of the above-mentioned proof in section 5.These general arguments have been checked by explicitly going to 2-loop order [25,26].The calculation is technically di�cult but it is valuable to understand the underlying prin-ciples. We therefore review these calculations in section 6, suggesting to the reader moreconcerned with applications to skip this section as well as section 5 with the discussionof the proof of perturbative renormalizability. The most important physical prediction ofthis calculation is that there exists a crumpled swollen phase with fractal dimension ofabout 2.4.Another important question is whether non-leading terms play a role for the criticalbehavior of tethered membranes. This is certainly the case at the tricritical point, whichseparates the crumpled swollen from the compact phase, and which is analyzed in section9. In contrast to polymers, whose tricritical behavior is dominated by the 3-point self-repulsion (which formally punishes triple intersection of the polymer with itself), in thecase of the membrane (D = 2), this role is played by a modi�ed 2-point interaction, notproportional to a �-interaction, but to its second derivative [27]. Subdominant operatorsmay also play a role at the self-avoiding �xed point, at �nite ", i.e. well below the upper



8 K. J. Wiese, Polymerized membranes, a reviewcritical dimension [28].It is well known that di�erent dynamical models can lead to the same static behavior[29]. In the case of polymers, people have paid most attention to purely di�usive dynamics(Rouse model, model A) eventually including the e�ect of hydrodynamics (Zimm model).For a long time, the question whether these dynamical models are renormalizable, stayedopen. As discussed in section 11, the methods mentioned above �nally allowed to settlethis question [30,31].Somehow surprisingly, the same kind of model also applies to the dynamics of an ex-tended elastic object, be it a polymer or a membrane, in quenched disordered. Technically,averaging over disorder generates non-local interactions on the polymer, with interactionsproportional to the disorder correlations. The latter may be taken to be �-distributions.In this respect, it is worth recalling that self-avoidance can also be generated by averagingover all realizations of an (imaginary) random potential, in which the polymer or mem-brane is 
uctuating. In section 12, we review the analysis of a D-dimensional membrane(with D = 0 for a particle, D = 1 for a polymer and D = 2 for a membrane), in aquenched random force �eld with both potential and non-potential parts. In contrast tothe pure potential case, this situation is accessible perturbatively [32,33].As is well-known, string theory is de�ned as the sum over all closed manifolds with ar-bitrary topology. Excluding from this sum self-intersecting con�gurations is a formidabletask beyond current technical capabilities. For polymerized membranes, i.e. with non-
uctuating metric, this sum can indeed be taken, generalizing the high temperature ex-pansion of the O(N)-model mentioned above from a gas of self-avoiding loops of fugacityN , to a similar gas of closed 
uctuating manifolds of internal dimension D [34,35]. As willbe discussed in section 13, this generalization is not unique, leaving space for adaptationof the model to the situation in question. Among others, the model contains a novelmechanism not present in standard �eld theory, which turns �rst order transitions intosecond order ones (\reverse Coleman-Weinberg mechanism"). The model further containsa 1-loop �xed point for the random bond Ising model and �nally allows for an intriguingconjecture regarding the nature of droplets dominating Ising criticality.So far, these models have only been treated via perturbative techniques. An importantquestion is, whether the theory is meaningful beyond perturbation expansion. This is adi�cult issue, which so far is only partially answered for the case of self-avoiding polymers.A little bit easier to answer is the question, whether the perturbative series is well de�ned.For the case of the O(N)-model, it has been shown by Lipatov [36,37], that the series isdivergent, but can be resummed using a Borel-transform. For tethered membranes, thesituation is di�cult, since the usual instanton methods do not apply. In section 14 weshow, what the analog of the instanton for the �4-theory is, and why this implies that theperturbation series is also Borel-summable [38].Finally let us point out that even though the primary aim of this review is to presentfrom a uni�ed viewpoint the theoretical concepts of multilocal �eld-theories, an e�ort ismade to motivate the physical models and experimental relevance. On the other hand,the real progress which goes beyond today's interest, lies in the fundamental technicalachievements, and the author feels that skipping technically important details, wouldrender this review much less useful. In order to keep the text readable, the central ideasare given before embarking on technical calculations, and wherever this is possible, we
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Figure 2.1: Fluid membranes with higher topology. From left to right: a 1-torus [39] and a 2- and 4-torus[40].try to sketch how the techniques developed will be useful later.The general structure of this review is therefore organized so that relevant material,which is necessary to place the following more technical parts in the physical context, iscollected in section 2. The next section is devoted to the necessary elementary technicaltools. The following sections are more specialized and can mostly be read independently,only necessitating section 3, and eventually 4.2 Basic properties of membranes2.1 Fluid membranesLet us start by characterizing the di�erent possible types of membranes. One very popularclass of membranes are 
uid membranes. We all know of soap-bubbles from childhooddays. Biologically more relevant are bilayers of lipid molecules that are composed ofa hydrophilic head and two hydrophobic chains. As shown in �gure 2.2, in water thehydrophobic chains group together and form a lipid bilayer. This is the basis of most ofthe biologically relevant membranes.For an analytical description, one needs the coordinate ~r(x) of the membrane as afunction of an internal parameter x, characterized by the mapping~r : x 2 R2 �! ~r(x) 2 Rd (2.1)and by the induced metric g�� = @�~r@�~r : (2.2)
Figure 2.2: Model of a 
uid membrane: Bilayer of lipid molecules that are composed of a hydrophilichead and two hydrophobic hydrocarbon chains.



10 K. J. Wiese, Polymerized membranes, a reviewWe are now looking for the statistical weight of a membrane con�guration. Since the lipidmolecules in the membrane are free to move around, the energy, i.e. \Hamiltonian" of themembrane has to be invariant under coordinate transformations. This is achieved by theCanham-Helfrich Hamiltonian [41,42]H[~r] = Z d2xqg(x) �� + �2 (H(x)�H0)2� : (2.3)d2xpg is the invariant volume-element of the membrane, � its surface tension, and � thebending-rigidity, which is coupled to the square of the mean curvatureH = 12 � 1R1 + 1R2� ; (2.4)where R1 and R2 are the two curvature radii. H0 is a spontaneous curvature, presentin the case of symmetry breaking between the two sides of the membrane. Physically,rigidity is explained by the �nite thickness of the membrane. RG-calculations indicatethat bending-rigidity should be irrelevant at large distances [43,44]; this however hasrecently been criticized in [45].Experimentally, 
uid membranes o�er a wide range of interesting and complex phe-nomena. Let us only mention the budding of a 
uid membrane, as given in �gure 1.1 andthe appearance of higher genus objects (�gure 2.1).For a general review about 
uid membranes, see [44,46{48].Interestingly, the Hamiltonian (2.3) with � = 0 also plays a central role in stringtheory. Here, one of the inner coordinates ~x = �x1x2� is identi�ed as i � time, and theother one as length on the string. Eq. (2.3) is then the action generating the motion ofthe string. Further generalizations use a metric g�� independent of the imbedding space[8,49,9{11]. Strings are considered as one of the most promising candidates for unifyingall fundamental interactions.2.2 Tethered (polymerized) membranesIn this review, we shall concentrate on another class of membranes, which have a �xedand constant internal metric: g�� = ��� : (2.5)These membranes have not yet found applications in high-energy physics, but are realizedin experiments (see section 2.5). They are either called solid, tethered or polymerizedmembranes.A microscopic model is given by the so-called \spring and bead model" (see �gure2.3), which consists of balls (beads) which are connected by springs and form a regularlattice. The model membrane is called \self-avoiding" since the beads cannot intersecteach other. We will discuss Monte-Carlo simulations of this model in section 2.6.A simpler situation occurs when self-intersections are allowed (\phantom-membrane").Simulations as well as renormalization group calculations [50,51] indicate that such amembrane is crumpled for weak bending rigidity, � < �c and 
at for � > �c. At thephase-transition point � = �c, the membrane is in another critical (or more precisely
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Figure 2.3: A tethered membrane (spring and bead model), from [15].tricritical) state with a fractal dimension df in between the dimensions of the crumpledand 
at phases. A mean-�eld treatment of this so-called \crumpling transition" is given insection 2.3. Contrary to intuition, the 
at phase is not destroyed by 
uctuations. This isdemonstrated in section 2.4, where also the tricritical state at � = �c is discussed. On theother hand, in the small-rigidity phase, phantom-membranes will have a fractal dimensionof in�nity. For physical (self-avoiding) membranes which can not intersect themselves,this is clearly impossible, and one expects the physical bounddf � d (2.6)induced by self-avoidance.A continuous model to describe a self-avoiding membrane isH[~r] = Z dDx 12 (r~r(x))2 + b2 Z dDx Z dDy �d(~r(x)� ~r(y)) : (2.7)It has �rst been proposed by Edwards [4] to describe polymers (D = 1). In that case, itis equivalent to scalar �4-�eld theory in the limit of N = 0 components [7]. In 1986 themodel has been generalized to membranes (D = 2), independently by Kardar and Nelson[17,18] and by Aronovitz and Lubensky [19]. They observed that a direct calculation atD = 2 is impossible, but that one can make an analytic continuation from D < 2.In contrast to polymers, with their equivalence to scalar �eld-theory, renormalizationis not evident. At leading order, renormalizability has been veri�ed by Duplantier, Hwa



12 K. J. Wiese, Polymerized membranes, a reviewand Kardar in 1990 [52]. For the general case, an important step was achieved by David,Duplantier and Guitter [53,54] who showed renormalizability of the theoryH[~r] = Z dDx 12 (r~r(x))2 + g Z dDx �d(~r(x)) ; (2.8)which describes a phantom (non self-avoiding) membrane in interaction with a single point(an impurity). The proof is based on a generalization of the forest algorithm introduced byZimmermann [55] to �-like interactions. Their last step was to prove the renormalizabilityof the full model [56,57], which we shall describe in section 5.To extract numerical predictions from the "-expansion is a tedious task. One of theproblems is that since one cannot start from D = 2, an analytic continuation has to beperformed starting at any point (D; d) on the critical curve, which will be de�ned in section3.1. The �rst calculations which tried to �x the expansion-point via a minimal sensitivityscheme at 1-loop order were performed in [22]. The result of df � 3:5 for membranes in 3dimensions even violated the geometric bound of 3 discussed above. It became thereforenecessary to perform 2-loop calculations, not only to test the renormalization proof, butalso to obtain more reliable values for the fractal dimension. This task was accomplishedin [25,26], and we review the main steps in section 6. For membranes in 3 dimensions thesecalculations predict a fractal dimension of about 2.4, eventually seen in some experimentsand numerical simulations, see sections 2.5 and 2.6.It is interesting to note that the model (2.7) can also be used to study self-avoidingfractal objects like Sierpinsky gaskets [58]. (But attention: One has to be careful indistinguishing the fractal and the spectral dimensions of the membrane.)Let us mention still another class of membranes, namely hexatic membranes. Theyplay an intermediate role between tethered and 
uid membranes. For a review see [46]and [59{61].In the rest of this section, we review some simple arguments for tethered membranes,as well as experiments.2.3 Crumpling transition, the role of bending rigidity, and some approximationsLet us start by studying the di�erent terms appearing in a mean-�eld description ofmembranes. Let ~r : x 2 RD �! ~r(x) 2 Rd (2.9)be the coordinates of a D-dimensional manifold embedded into a d-dimensional space. ForD = 1, this represents a polymer, for D = 2 a membrane. Suppose that the underlyinglattice is regular and that after integration over the fast degrees of freedom the e�ectivemodel becomes translationally invariant. An expansion �a la Landau then leads to ane�ective free energy or \Hamiltonian" [62]H [~r(x)] = Z dDx �2(@�@�~r)2 + t2 (@�~r)2 + u (@�~r@�~r)2 + v (@�~r@�~r)2+b2 Z dDx Z dDy �d(~r(x)� ~r(y)) : (2.10)The last term, a self-repulsion upon contact, is a non-local interaction in the internalcoordinates x, but local in the membrane position ~r(x). The local terms are the di�erent
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� L�Flory RGFigure 2.4: Free energy for t < 0 (left) and t > 0 (right) in the limit of large membranes.contributions to the elastic energy. The coe�cients t, u and v weight the elastic andinelastic harmonic energies, whereas � measures the bending-rigidity.The analogy to the usual �4-theory becomes apparent upon identifying the tangents~t� := @�~r as order-parameter. However, this analogy is only valid at the mean-�eld level,and will be destroyed by 
uctuations. Mean-�eld theory suggests a phase-transition att = 0, where the parameter t is equal to T � Tc, the di�erence in temperature T to thecritical temperature Tc.At high temperature, t is positive due to entropy and the correlation between thetangential vectors decays exponentially fast. The membrane is in a crumpled phase.For negative t, the terms proportional to (@r)4 restore positivity of the action, providedthat u + v > 0 and u +Dv > 0. The symmetry is spontaneously broken, and the order-parameter ~t� has a non-zero expectation value, of the form ~t� = �~e�, where ~e� is a setof orthonormal base vectors. At zero temperature, the membrane is in a 
at (ordered)phase, with � = 12s jtju+Dv : (2.11)This resembles the XY-model in 2 dimensions. There, long-range order is destroyed byspin-waves. We shall see in the next section, that 
uctuations renormalize the rigidityof the membrane and render it sti�er. This renormalization is su�cient to make themembrane 
at. For further discussion of the thermodynamic behavior see [63].To incorporate self-avoidance, let us use the Flory-approximation. This consists inreplacing ~r(x) by the radius of gyration RG and derivatives with respect to x by 1=L, aswell as the integration over x by LD, where L is the size of the 
at membrane. This leads(up to numerical factors) toH � �LD�4R2G + tLD�2R2G + (u+Dv)LD�4R4G + bL2DR�dG : (2.12)First of all, the bending-rigidity � can always be neglected with respect to t and u.For t < 0 and in the physical region (D � d), the terms proportional to t and u+Dvdominate and minimizing the free energy leads toRG � L : (2.13)



14 K. J. Wiese, Polymerized membranes, a reviewSelf-avoidance can be neglected at large scale.For t > 0, self-avoidance prevents the membrane from collapsing, and balancing theterms of order t and b gives RG � L�Flory (2.14)with the Flory-exponent �Flory = 2 +D2 + d : (2.15)We will show in section 7.5 that Eq. (2.15) is a reasonable approximation in the crumpledphase. In general we will �nd RG � L�� (2.16)with some non-trivial exponent ��.Let us still mention the results for �� in the crumpled phase, obtained by a Gaussianvariational approximation. We shall show in section 7.4 that this approximation becomesexact in the limit of d!1 with probably exponentially small corrections. The work byGoulian [64], Le Doussal [65] and Guitter and Palmeri [66] predicts:�var = 2Dd : (2.17)For 2-dimensional membranes (D = 2), this di�ers from the Flory approximation by termsof order 1=d2. 2.4 Stability of the 
at phaseIn the last section, we saw that a simple scaling analysis suggests the existence of a 
atphase. This phase could of course be destroyed by 
uctuations. We shall show here thatthis is indeed the case for 
uid membranes, but that a non-zero shear-modulus, i.e. a �xedconnectivity, stabilizes the membrane in the 
at phase [59].Our presentation is largely inspired by the lecture of Nelson [67], but we will use an�-expansion here instead of a self-consistent approximation.To describe 
uctuations of a membrane with inner coordinates x = (x1; x2) around a
at con�guration, it is advantageous to use the representation~r(x1; x2) = � 0B@x1 + u1(x1; x2)x2 + u2(x1; x2)h(x1; x2) 1CA : (2.18)The line-element d~r is d~r = � 0B@ (1 + @1u1) dx1 + @2u1 dx2@1u2 dx1 + (1 + @2u2) dx2@1h dx1 + @2h dx2 1CA : (2.19)The deformation of this line-element is described by the deformation-matrix u�� [68]dr2 = �2 �d2x+ 2u�� dx�dx�� : (2.20)



Basic properties of membranes 15With the help of Eq. (2.19) we �nd:u�� = 12 (@�u� + @�u�) + 12(@�h)(@�h) + 12(@�u
)(@�u
) : (2.21)The last term is of higher order in u and can be neglected in the following. (It has to beincluded at order "2.) We shall thus useu�� � 12 (@�u� + @�u�) + 12(@�h)(@�h) : (2.22)The energy of a nearly 
at membrane is the sum of bending-rigidity and deformationenergy H [u; h] = Z d2x ��2 (�h)2 + 12 h2��u2�� + �u2

i : (2.23)�� and � are the Lam�e-coe�cients [68]. (We use �� instead of the usual notation of � [68] toreserve � for the renormalization scale.) ��, �� and � are related to �, u and v by �� = ��2,�� = 4u�4 and � = 8v�4.In this expression, the displacement vector u� appears only quadratic and can thus beeliminated by calculating its path-integralHe� [h] = �kBT ln �Z D [u] e�H[u;h]=kBT � : (2.24)We separate in u��(x) the (q = 0)-mode and use for the other modes the Fourier decom-position u��(x) = u0�� + A0�� +Xq 6=0� i2 [q�~u�(q) + q�~u�(q)] + ~A��(q)� eiqx ; (2.25)where ~u�(q) = Z d2x e�iqxu�(x) (2.26)and ~A��(q) is the Fourier transform of A��(x) = 12@�h(x)@�h(x) :~A��(q) = 12 Z d2x e�iqx@�h(x)@�h(x) : (2.27)For q 6= 0, ~A��(q) is now decomposed into its longitudinal and transversal parts. (Thatthis is indeed possible is shown in appendix A.3.)~A��(q) = i2 [q� ~'�(q) + q� ~'�(q)] + PT��(q)~�(q) ; (2.28)where PT��(q) = ��� � q�q�q2 (2.29)is the transversal projector and ~�(q) = PT��(q) ~A��(q) : (2.30)



16 K. J. Wiese, Polymerized membranes, a reviewWe can now absorb the longitudinal part ~'�(q) of ~A��(q) by shifting the variable ~u�(q):~u�(q) �! ~u�(q)� ~'�(q) : (2.31)It remains to integrate over ~u�(q). To this aim expandT := 2�� ~u��(q)~u��(�q) + � ~u��(q)~u��(�q) (2.32)in the basis of rotational invariants q2, jq~u(q)j2 and ~u(q)~u(�q):T = ��q2j~u(q)2j+ (��+ �)jq~u(q)j2 + (2��+ �)j~�(q)j2 + � �iq~u(q)~�(�q) + c.c.� : (2.33)By a second variable-transformation~u�(q) �! ~u�(q) + �2��+ � iq�q2 ~�(q) (2.34)terms proportional to ~� and ~u are decoupled and we obtainT = 4��(��+ �)2��+ � ~�(q)~�(�q) + quadratic terms in ~u : (2.35)Up to a constant, the e�ective Hamiltonian (2.24) thus becomesHe� [h] = ��2 Z d2x (�h)2 + �K2 Z 0 d2x �P T�� [@�h(x)@�h(x)]�2 : (2.36)The \prime" indicates that the 0-mode is excluded from the integral. The couplingconstant �K is �K = ��(��+ �)2��+ � : (2.37)We see that the shear-modulus �� is responsible for the interaction. For 
uid membranes,�� = 0 and no correction appears, even if � 6= 0.We shall now study Eq. (2.36) in perturbation theory, by using an � = 4�D expansion.A similar technique was employed by Aronovitz and Lubensky in [20], where they studythe RG-
ow for all �elds. A self-consistent method was utilized in [59,67].To carry out an �-expansion, we rewrite the e�ective Hamiltonian (2.36) asHe� [h] = Z2 Z dDx (�h)2 + K2 ZK�� Z 0 dDx �P T�� [@�h(x)@�h(x)]�2 ; (2.38)where �� has been absorbed into the �eld-normalizations (h! h=p��) andK0 = �K��2 = KZKZ2 ��h0(x) = pZ h(x) : (2.39)



Basic properties of membranes 17The renormalization factors Z and Zk absorb the divergences and are �xed by the minimalsubtraction scheme. � is the renormalization scale, � = 4�D the dimension of the barecoupling. Bare quantities are indexed as 0. The vertex isK2 � p2 q2p1 q1 � �D(p1 + p2 + q1 + q2)(2�)D Yi=1;2 (piqi)2 � (pi)2(qi)2(pi + qi)2 : (2.40)We shall now calculate perturbative corrections. As the 0-mode is excluded from theintegration, the contribution to � coming from the \tadpole" is 0:= 0 : (2.41)The second contribution to the renormalization of � is:p pk = Zk  (pk)2 � p2k2(p+ k)2 !2 1k4 : (2.42)A divergence for k !1 is manifest as a pole in 1=� with positive residue C (which needsnot be speci�ed): p pk = (p2)2 C� p�� : (2.43)The divergence of this diagram is subtracted at scale � by choosingZ = 1� 2C� K : (2.44)The sign is such that the interaction re-enforces the bending-rigidity. To analyze therenormalization of the vertex, we remark that due to the transversal projector, all threepossible diagrams are convergent:; ; : (2.45)This is not evident from power-counting. Hence at 1-loop orderZK = 1 ; (2.46)and renormalization becomes particularly simple. The function �(K) and the full scalingdimension �(K) of the �eld h, the roughness-exponent, are obtained from Eq. (2.39) as�(K) = � @@� 0K = ��K1 +K @@K lnZK � 2K @@K lnZ (2.47)�(K) = 4�D2 � 12� @@� 0 lnZ = 4�D2 � 12�(K) @@K lnZ : (2.48)
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Figure 2.5: Estimates of the roughness-exponent � as a function of time. Courtesy of P. Le Doussal, withkind permission; �gure by P. Le Doussal and L. Radzihovsky.Since C is positive, the �-function possesses a positive, IR-stable �xed point at 1-looporder, which we denote K�. Then�� = �(K�) = 4�D4 +O(�2) : (2.49)(This result could have faster been obtained by using the method of exact exponentidentities explained in section 3.9.) In D = 2�� = 12 +O(�2) : (2.50)This can be interpreted as an e�ective k-dependent bending-rigidity�e�(k) � ���k : (2.51)We can now analyze the stability of the 
at phase. Following De Gennes and Taupin [69],we estimate the 
uctuations of the normal to the surface projected on x3 (the componentparallel to h(x)): n3(x) = 1q1 + (rh(x))2 : (2.52)The �rst term of the expansion is the mean of (rh(x))2. Without interaction (K = 0) itis: D(rh(x))2E0 = kBT Z d2q(2�)2 q2��q4 � kBT2��� ln(L=a) ; (2.53)where L and a are IR and UV-cuto�s. As for many two-dimensional systems, the loga-rithmic divergence at large distances indicates that order is destroyed by 
uctuations.



Basic properties of membranes 19For membranes with non-zero shear-modulus, the estimate (2.53) is incorrect. Onehas to take care of the renormalization of �, hence replace � in Eq. (2.53) by �e�(k), givenby Eq. (2.51). This yields:D(rh(x))2Ewith �e� = kBT Z d2q(2�)2 q2�e�(q)q4 = IR-convergent : (2.54)The normals keep their preferred direction parallel to x3, even for systems with in�nitesize. The symmetry is broken and the membrane 
at. This seems to be a violationof the Mermin-Wagner theorem: In fact, the 
uctuations in the membrane give rise tolong-range interactions, for which the Mermin-Wagner theorem is not valid.To conclude: As soon as the membrane is in the phase of high bending-rigidity, i.e.the 
at phase, the in-membrane 
uctuations reinforce the bending-rigidity and stabilizethe membrane. Stated di�erently: The �xed point of the 
at phase is attractive.Nevertheless, the 
uctuations in the height h are large and described by a non-trivialroughness exponent � D(h(x)� h(y))2E � jx� yj2� : (2.55)This exponent was estimated above to be 12 . It can also be calculated by an expansion in1=d [70], � = 4�D [50] or within a self-consistent screening approximation [71] and canbe compared with experiments [72], and numerics [16,73{77]. This should rule out thevalue of � = 12 , proposed in [78{80]. This is summarized in �gure 2.5.We have also mentioned above that the crumpling transition occurs at a critical valueof the bending rigidity. This transition point is a di�erent tri-critical state, accessibleto renormalization-group treatments and numerics. The fractal exponent �� is then 0 inthe crumpled phase, 1 in the 
at phase, and at the crumpling transition given by the1=d-estimate [70,51] ��c = 1� 1d ; (2.56)which agrees with numerical values in d = 3 [81,82]. See also [46,50,63,83{87].Also see [88] for a study of the membrane elasticity at low temperatures and [89] fora stack of membranes.2.5 Experiments on tethered membranesFew experiments have been realized up to now. The most promising are:� The spectrin-network of red blood cells forms a natural membrane, easily accessi-ble experimentally [94,72]. The inconvenience of this system is the large intrinsicbending-rigidity which �rst has to be reduced. No experiment showing a crumpledphase has been done. In the 
at phase, one �nds an anomalous roughness exponent� of about �
at � 0:6 [72], as discussed at the end of the preceding subsection.� 2-dimensional networks of polymers [95] seem to be promising. However, experi-mental measurements are missing. Recently, Rehage and coworkers have succeededin producing su�ciently highly polymerized membranes [96] and experiments to �ndthe fractal phase are planned [97].
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Figure 2.6: Image of a red blood-cell (left) and the underlying spectrin network (right) [90,91] from [92].

Figure 2.7: Image of a graphite membrane taken by a transmission electron microscope [93]. The lineardimension is about 1 micrometer.� Molybdene disul�de (MoS2) can be produced in extremely pure form. The experi-ments which we know of [98] �nd it in a strongly folded phase.� Graphite oxide: For this material, experiments have been realized: Graphite is alayered material, and only very weak (van der Waals) forces exist between di�erentlayers. One therefore may cut out a piece of such a layer. By an exothermic reactionof graphite with some oxidant (the principle of black powder), one obtains a samplewhich consists of pieces of a single layer of graphite, decorated with oxygen-atomsat its border. One expects that these membranes have a very small bending-rigidity.
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Figure 2.8: Static structure factor of graphite oxide membranes membranes in alkalic solution as functionof the wave-vector q obtained from light-scattering in the visible domain. Taken from [93] (left) and [99](right).The �rst experiments undertaken by Hwa et al. [93] have shown such a crumpledphase with a fractal dimension near to the Flory results (df = 2:5) besides a col-lapsed and a 
at phase. This was achieved by varying the concentration of H+ ofthe dispersion. In later experiments by Spector et al. [99] this intermediate phasewas no longer observed. The interpretation of these experiments is however notunambiguous. Extrapolating the light-scattering data of [93] reproduced on �gure2.8 predicts a fractal dimension of df = 2:4 whereas the very similar data of [99] leadto df = 2:3. However, based on a technique, where the sample is frozen ultra-fast,then cut into thin samples and analyzed via transmission electron microscopy, theauthors of [99] were unable to see fractal objects and therefore concluded on theabsence of a fractal phase. This debate certainly deserves further clari�cation. Formore details see [100].In summary: The experimental situation is not very transparent.Let us still mention another very amusing class of experiments. Crunching a thinaluminum foil in the attempt to form a ball [101,102], also allows to measure a fractaldimension, which turns out to be very close to the Flory-result of Eq. (2.15). This resultis easily reproduced on a table-top experiment with paper, see �gure 2.9. However, sincecrunching aluminum foil is certainly a non-equilibrium process, this may be a coincidence.2.6 Numerical simulations of self-avoiding membranesIn this section we review existing numerical simulations of tethered membranes. If notstated otherwise, these are membranes (D = 2) embedded into 3 dimensions.The �rst simulations for self-avoiding membranes were performed for very small sys-tems (121 beads) by Kantor, Kardar and Nelson [14,15] in 1986. They obtained �� =0:80� 0:05 in agreement with the Flory-approximation. Here, as in most of the simula-tions, self-avoidance is e�ective between the beads (of �nite size) of the network. There
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log2(1=L) = 12(German DinA size)Figure 2.9: Result of crunching a sheet of paper of linear size L to a ball of diameter R. This leads to afractal dimension of df = 2:4, equivalent to �� = 0:82.exists thus a maximal angle smaller than �, by which the membranes can be folded. (Fora visualization, see �gure 2.3.)As we discussed in section 2.4, phantom membranes show a crumpling transitioninduced by bending-rigidity. Shortly after this had been established numerically [81,82],an attempt was made to study this transition in the presence of self-avoidance [103{107].The transition has completely disappeared and the membranes were always found 
at forany (positive) value of the bending-rigidity. A simple explanation due to Abraham andNelson [16] goes as follows: the simulated model consists out of beads (of �nite size) andtethers linking the beads together. The tether-length is chosen such that the beads cannotpenetrate through the holes left in-between. Then, the range of possible con�gurations isrestricted and is re-interpreted as an e�ective bending-rigidity. This bending-rigidity wasclaimed responsible for the 
at phase, following the scenario of the crumpling transitionof a phantom membrane, induced by bending-rigidity.The question therefore arises, whether the 
at phase is an artifact of the simulations,or whether it is generic. Let us mention two simulations in this context: The �rst is due toKantor and Kremer [108]. They studied the usual bead-and-tether model, but restrictedself-avoidance on the membrane to a �nite distance l. Since now the interaction is local,one can study the crumpling transition induced by the bending-rigidity �. For � > �ca 
at phase is found, whereas for � < �c the membrane is found in a crumpled state.Taking now the limit of large l, the value of the critical bending-rigidity �c scales to 0.They then concluded that this indicates that the 
at phase persists down to �c = 0. Itwould be nice to have more extensive simulations available than the 169 to 331 beadsstudied there.In another simulation, Liu and Plischke [109] have found an intermediate fractal phaseby adding long-range attraction, and then adjusting the temperature. This intermediatephase was found for some range of temperature and membranes of up to 817 particles.In a similar simulation, Grest and Petsche [110] were also able to �nd this intermediate



Basic properties of membranes 23phase, but only for a speci�c value of the temperature. This is not surprising from therenormalization-group point of view: Long-range forces are in general relevant operators,such that a �ne-tuning is necessary to reach the critical point. Let us also mention anothertrick used in [110]: They rendered the membrane much more 
exible by adding additionalbeads between the nodes of the lattice, forming the membrane.A similar idea is to dilute the membrane by randomly cutting o� links [111,112]. Thisattempt was not very fruitful: The 
at phase persisted up to the percolation threshold.The best numerical realization of tethered membranes is obtained by imposing self-avoidance not between beads but between the plaquettes forming the membrane. The�rst such simulation was carried out by Baumg�artner et al. [113,114], who indeed foundthe fractal phase. Within a very similar simulation, Kroll and Gompper [115] were notable to con�rm these conclusions. A repetition of these simulations with larger systemsas those studied there (up to 496 plaquettes) would be very much welcome to clarify thesituation.Other interesting simulations are for membranes in a 4-, 5-, 6- and 8-dimensionalspace. Grest found in [116] that membranes are 
at in dimensions d = 4, but crumpledswollen in larger dimensions. Complementary simulations by Barsky and Plischke [117]con�rm this conclusion. These simulations are in agreement with the value of �� predictedby the Gaussian variational ansatz, �var = 2D=d (see section 7.4), and larger than the2-loop results (see �gure 7.5 of page 86).Remains to mention simulations on a Sierpinsky gasket with fractal dimension of about1.585 and spectral dimension of about 1.356 [58]. As in the case of polymers, the resultsfor d = 3 are in agreement with the Flory-approximation Eq. (2.15).Also the folding transition of a membrane has been studied numerically [118].Let us also mention studies of tethered membranes in con�ned geometries [119{121],of boundary e�ects [122], with negative bending-rigidity [123], of dynamics [124], and acouple of short reviews about the simulational aspects of tethered membranes [125,126].2.7 Membranes with intrinsic disorderA lot of publications have been devoted to the treatment of tethered (phantom) mem-branes with intrinsic disorder, including two-dimensional gels [71,111,127{144]. Let usgive a brief summary of the main ideas, following the �rst publications [127{131]. Twokinds of disorder can be added. Since we are interested in the stability of the 
at phaseto such disorder, we study the Hamiltonian of a membrane in an expansion about a 
atcon�guration, generalizing Eq. (2.23). We consider the general case of a D-dimensionalmembrane embedded in a d-dimensional space, such that~r(x) = �  x� + u�(x)hj(x) ! ; (2.57)where u(x) 2 RD describes the D in-membrane (stretching) modes and ~h(x) 2 Rd�Dthe 
uctuations in the d � D transverse directions. The full Hamiltonian then reads ingeneralization of Eq. (2.23)H [u; h] = Z dDx ��2 ��~h�2 + 12 h2��u2�� + �u2

i + ���(x)u��(x) + ~c(x)�~h(x) ; (2.58)



24 K. J. Wiese, Polymerized membranes, a reviewwhere we recall the de�nition of the deformation-matrixu�� = 12 (@�u� + @�u�) + 12(@�~h)(@�~h) + 12(@�u
)(@�u
) : (2.59)���(x) is a quenched random stress �eld, or variation of the metric. Microscopically itis due to di�erent tether-lengths in the spring and bead model of �gure 2.3. ~c(x) is aquenched random curvature �eld, favoring the mean curvature �~h(x), and breaking there
ection symmetry between the two sides of the membrane. It may be caused by alocal di�erence in the chemical composition between the two sides of the membrane. Thecorrelations are short ranged, of the form���(x)�
�(x0) = [������
� + 2���(��
��� + �����
)] �D(x� x0)ci(x)cj(x0) = ����ij�D(x� x0) : (2.60)To study the renormalization group 
ow, the model is replicated, and the disorder aver-ages are taken. This leads to an e�ective Hamiltonian similar to the pure model, but nowwith couplings between di�erent replicas. One can then parallel the calculations of thepure model. The outcome is that at �nite temperature, the long-wavelength properties ofthe membrane are unchanged. New physics emerges at or very near to zero temperature,characterized by a new non-trivial �xed point. Membranes with non-zero random spon-taneous curvature are found in a 
at phase with non-trivial critical exponents, analogousto the 
at phase of the pure model at non-zero temperature [129{131]. This �xed pointis accessible within an "-expansion. Membranes with disorder in the metric are moredi�cult to access, since the �xed point lies outside the perturbatively accessible domain[127,128]. 3 Field theoretic treatment of tethered membranes3.1 De�nition of the model, observables, and perturbation expansionWe start from the continuous model for a D-dimensional 
exible polymerized membraneintroduced in [19,17]. This model is a simple extension of the well known Edwards' modelfor continuous chains. The membrane 
uctuates in d-dimensional space. Points in themembrane are labeled by coordinates x 2 RD and the con�guration of the membrane inphysical space is described by the �eld r : x 2 RD �! r(x) 2 Rd , i.e. from now on wenote r instead of ~r. In section 2.3 we had discussed that at high temperatures the freeenergy for a con�guration is given by the (properly rescaled) HamiltonianH[r] = Z2�D Zx 12(rr(x))2 + bZb�" Zx Zy ~�d(r(x)� r(y)) : (3.1)The so-called renormalization-factors Z and Zb have the form Z = 1 + O(b) and Zb =1+O(b); they will be explained later. The reader may safely set both to 1 for the moment.The integral Rx runs over D-dimensional space and r is the usual gradient operator. Thenormalizations are Zx := 1SD Z dDx ; SD = 2 �D=2�(D=2) (3.2)
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Figure 3.1: The critical curve "(D; d) = 0. The dashed line corresponds to the standard polymer pertur-bation theory, critical in d = 4.and ~�d(r(x)� r(y)) = (4�)d=2�d(r(x)� r(y)) : (3.3)The latter term is normally used in Fourier-representation~�d(r(x)� r(y)) = Zp eip[r(x)�r(y)] ; (3.4)where the normalization of Rp is given byZp = ��d=2 Z ddp (3.5)to have Zp e�p2a = a�d=2 : (3.6)All normalizations are chosen in order to simplify the calculations, but are unimportantfor the general understanding. (They are collected in appendix A.1). � is an internalmomentum scale, such that �x is dimensionless. It is introduced to render the couplingb dimensionless. The �rst term in the Hamiltonian is a Gaussian elastic energy whichis known to describe the free \phantom" surface. The interaction term corresponds (forb > 0) to a weak repulsive interaction upon contact. The expectation values of physicalobservables are obtained by performing the average over all �eld-con�gurations r(x) withthe Boltzmann weight e�H[r]. This average can not be calculated exactly, but one canexpand about the con�gurations of a phantom, i.e. non-interacting surface.



26 K. J. Wiese, Polymerized membranes, a reviewSuch a perturbation theory is constructed by performing the series expansion in powersof the coupling constant b. This expansion su�ers from ultraviolet (UV) divergenceswhich have to be removed by renormalization and which are treated by dimensionalregularization, i.e. analytical continuation in D and d. A physical UV-cuto� could beintroduced instead, but would render the calculations more complicated. Long-rangeinfrared (IR) divergences also appear. They can be eliminated by using a �nite membrane,or by studying translationally invariant observables, whose perturbative expansion is alsoIR-�nite in the thermodynamic limit (in�nite membrane). Such observables are \neutral"products of vertex operatorsO = NYa=1 eikar(xa) ; NXa=1 ka = 0 : (3.7)An example is given at the end of subsection 3.3.Let us now analyze the theory by power-counting. We use internal units � � 1=x,and note [x]x = 1, and [�]x = � [�]� = �1 . The dimension of the �eld and of thecoupling-constant are:� := [r]x = 2�D2 ; " := [b�"]� = 2D � �d : (3.8)In the sense of Wilson [2] the interaction is relevant for " > 0, see �gure 3.1. Perturbationtheory is then expected to be UV-�nite except for subtractions associated to relevantoperators. We shall come back to this point later.For clarity, we represent graphically the di�erent interaction terms which have to beconsidered. The local operators are 1 = 1 (3.9)12(rr(x))2 = : (3.10)The bi-local operator, the dipole, is~�d(r(x)� r(y)) = : (3.11)The expectation-value of an observable ishO[r]ib = Z D[r]O[r] e�H[r]Z D[r] e�H[r] : (3.12)Perturbatively, all expectation-values are taken with respect to the free theory:hO[r]i0 = Z D[r]O[r] e� 12�D Rx 12 (rr(x))2Z D[r] e� 12�D Rx 12 (rr(x))2 : (3.13)A typical term in the expansion of (3.12) is(�bZb�")n ZZ : : : ZZ hO : : : ic0 ; (3.14)where the integral runs over the positions of all dipole-endpoints.



Field theoretic treatment of tethered membranes 273.2 Locality of divergencesIn this section, we show that all divergences are short distance divergences. Note that evenfor massless theories and in the absence of IR-divergences, this is not trivial. Divergencescould as well appear, when some of the distances involved become equal, or multiple ofeach other. A simple counter-example is the integral of ���jaj � jbj�����d, where a and b aretwo of the distances involved.That divergences only occur at short distances (i.e. when at least one of the distancesinvolved tends to 0), is a consequence of Schoenbergs theorem [145]. Here, we present anproof, based on the equivalence with electrostatics.We �rst state that with our choice of normalizations (see appendix A.1), the freecorrelation-function C(x1; x2)C(x1; x2) := 1d �12 [r(x1)� r(x2)]2�0 = jx1 � x2j2�D� (2�D)SD Z dDp(2�)D 1p2 �1� eip(x1�x2)� (3.15)is the Coulomb potential in D dimensions. Furthermore, the interaction part of theHamiltonian H is reminiscent of a dipole, and can be written asHint = bZb�" Zx1 Zx2 ~�d(r(x1)� r(x2))= bZb�" Zx1 Zx2 Zk eik[r(x1)�r(x2)] ; (3.16)where k may be seen as a d-component (vector-) charge.The next step is to analyze the divergences appearing in the perturbative calculation ofexpectation values of observables. To simplify the calculations, we focus on the normalizedpartition function ZZ0 = 1Z0 Xall con�gurations e�H = De�HintE0 : (3.17)To exhibit the similarity to Coulomb systems, consider the second order term12 DH2intE0 = (bZb�")22 Zx1 Zx2 Zy1 Zy2 Zk Zp Deik[r(x1)�r(x2)] eip[r(y1)�r(y2)]E0= (bZb�")22 Zx1 Zx2 Zy1 Zy2 Zk Zp e�EcEc = k2C(x1 � x2) + p2C(y1 � y2)+kp [C(x1 � y2) + C(x2 � y1)� C(x1 � y1)� C(x2 � y2)] ; (3.18)where Ec is the Coulomb-energy of a con�guration of dipoles with charges �k, and �p, re-spectively. More generally, for any number of dipoles (and even for any Gaussian measure)we have DeiPi kir(xi)E0 = e�Ec ; Ec = 12Xi;j hkir(xi) kjr(xj)i0 : (3.19)



28 K. J. Wiese, Polymerized membranes, a reviewSince Pi ki = 0, the latter can be rewritten with the help of the usual correlation functionC(x� y) = 12d D[r(x)� r(y)]2E0 asEc = � 14dXi;j kikj D[r(xi)� r(xj)]2E0 : (3.20)As for any con�guration of dipoles, speci�ed by their coordinates and charges, the totalcharge is zero, the Coulomb-energy is bounded from below, i.e.Ec � 0 : (3.21)Formally, this is proven by the following line of equalities (remember that D < 2)Ec = 12Xi;j hkir(xi) kjr(xj)i0= (2�D)SD2 Z dDp(2�)D Xi;j kikj 1p2 eip(xi�xj)= (2�D)SD2 Z dDp(2�)D 1p2 �����Xi kieipxi �����2 � 0 : (3.22)The last inequality is again due to the global charge neutrality, which ensures convergenceof the integral for small p. Hence, Ec vanishes, if and only if the charge density vanisheseverywhere. This implies that e�Ec � 1 ; (3.23)and the equality is obtained for vanishing charge density. Noting Ec = Pi;j kikjQij, Eq.(3.22) even states that as long as xi 6= xj for all i 6= j, Qij is a non-degenerate form on thespace of ki with Pi ki = 0. This implies that integrating e�Ec as in Eq. (3.18) over all kiwith Pi ki = 0 gives a �nite result, as long as not some of the xi coalesce. Consequently,divergences in the integration over xi can only appear when at least some of the distancesvanish, as stated above.This does of course not rule out IR-divergences. We will see later that they are absentin translationally invariant observables. An explicit example is given at the end of thenext section; for a proof see [57].3.3 More about perturbation theoryLet us apply the above observation to evaluating the integrals in Eq. (3.18); this will givean intuitive idea of the kind of counter-terms needed to cancel the UV-divergences, aswill be made formal later. The basic idea is to look for classes of con�gurations which aresimilar. The integral over the parameter which indexes such con�gurations is the productof a divergent factor, and a \representative" operator. For the case of two dipoles, onewith charge k and the other with charge p�k, and approaching its endpoints (as indicatedby the dashed lines below), one only sees a single dipole with charge p from far away, i.e.kp�k �k�p+k � p �p � e�k2(jsj2�D+jtj2�D) : (3.24)



Field theoretic treatment of tethered membranes 29The second factor on the r.h.s. contains the dominant part of the Coulomb energy Ec =k2(jsj2�D + jtj2�D) of the interaction between the two dipoles; s and t are the distancesbetween the contracted (approached) ends. The integral over k is now factorized, and weobtain Zk e�k2(jsj2�D+jtj2�D) = (jsj2�D + jtj2�D)�d=2 : (3.25)Finally integrating over p in Eq. (3.24) gives back the �-interaction multiplied with( j ), where we de�ne the coe�cient as� ��� � = �jsj2�D + jtj2�D��d=2 : (3.26)The notation, which will be explained later, reminds of a scalar product or projectionof a singular con�guration of two dipoles onto a single dipole. Eq. (3.26) contains thedominant UV-divergence upon approaching the endpoints; this will be made formal later.As an example of an expectation value, use in Eq. (3.7) the observable O = eik[r(s)�r(t)],which is the generating function for the moments of [r(s)� r(t)]; the series up to �rstorder in b reads (remind Zb = 1 +O(b))hOib = e�k2C(s�t) �(1 + b�" Zx Zy "1� exp 14k2 [C(s�x)+C(t�y)�C(s�y)�C(t�x)]2C(x�y) !#C(x�y)�d=2+O(b2)) : (3.27)Note that the integral over x and y is IR-convergent, but UV-divergent at " � 0: Thereis a singularity for jx � yj ! 0. This is a general feature of such expectation values.The purpose of the rest of this section is to introduce the basic tools to handle thesedivergences. On the example of Eq. (3.27), this is veri�ed in exercise 6, see page 178.3.4 Operator product expansion (OPE), a pedagogical exampleThroughout this review, we will use the techniques of normal-ordering and operator prod-uct expansion to analyze the short distance behavior of the theory. Since their technicalsimplicity is as little recognized as their 1 to 1 correspondence to standard Feynman-graphs, we shall give here a pedagogical derivation of the 2-loop result for the exponent �in standard scalar �4 theory, before discussing the case of a membrane in the next section.Complementary material can be found in [146]. Readers familiar with the procedure cancontinue with section 3.5.De�ne the renormalized �4-Hamiltonian asH = Zd� 2 Zx 12(r�(x))2 + bZb�� Zx :�4(x): : (3.28)The integration measure is normalized asZx = 1Sd Z ddx ; Sd = 2 �d=2�(d=2) ; (3.29)



30 K. J. Wiese, Polymerized membranes, a reviewwhere Sd is the surface of the d-dimensional unit sphere. This is done in order to obtainfor the free expectation values (denoted by subscript 0)C(x� y) := h�(x)�(y)i0 = jx� yj2�d : (3.30)Note the similarity and di�erence between the de�nitions in Eq. (3.15) and Eq. (3.30); thedi�erence results from the 0-mode, which has to be subtracted in the case of polymersand membranes (D < 2), but not of the �4-model (d > 2).The dimensional regularization parameter � is� = 4� d ; (3.31)and � is the renormalization (subtraction) scale. Note the di�erence to Eq. (3.8), wherewe use " instead of �. The renormalization Z-factors, introduced to render the theory�nite, start with 1, and higher order terms in b will be added to cancel the divergences.The dots \:" indicate the normal-order procedure. We de�ne the normal order of anoperator O as :O : = O � all tadpole-like diagrams constructed from O : (3.32)In other words: By normal-ordering an operator, we just subtract all self-contractions.Let us give some examples:�2(x): = �2(x)� C(0) 1:�4(x): = �4(x)� 6C(0) :�2(x): �3C2(0) 1 (3.33)Note that on the right-hand side all subtracted terms are normal-ordered. One can ofcourse recursively replace them, which for :�4(x): e.g. leads to:�4(x): = �4(x)� 6C(0)�2(x) + 3C2(0) 1 : (3.34)In the dimensional regularization scheme, these relations are much simpli�ed through therule that C(0) � 0. Note also that the normal-order prescription is associative.Normal ordering is a powerful tool to organize the perturbation expansion. Let us showthis by proceeding to the real calculation. We want to study the short-distance behaviorof two operators :�4(x) : and :�4(y) : in an OPE. To this aim we �rst normal-order theproduct of the two interactions::�4(x): :�4(y): = :�4(x)�4(y):+16 :�3(x)�3(y): C(x� y)+72 :�2(x)�2(y): C2(x� y)+96 :�(x)�(y): C3(x� y)+24 1 C4(x� y) : (3.35)It is now essential that the normal-ordered product of two operators is free of divergenceswhen these operators are approached; the divergences are contained in the factors ofpowers of C(x� y). E.g. at leading order, the �rst term in Eq. (3.35) becomes:�4(x)�4(y): = :�8(z): + : : : ; (3.36)



Field theoretic treatment of tethered membranes 31where z = x+y2 . Let us now consider the perturbation expansion of the expectation valueof an observable OhOib := 1Z Z D [�] e�HO = De�bZb�� R :�4(x):OEconn0 ; (3.37)where h: : :i0 denotes the free expectation value, and we retain only diagrams that areconnected to points in the observable O. The term quadratic in b contains (setting allZ-factors equal to 1 for the moment)b2�2�2 Zx Zy :�4(x): :�4(y): O ; (3.38)Observe now that Zx Zy :�4(x): :�4(y): (3.39)possesses short-distance divergences according to Eq. (3.35). More explicitly, the �rst twoterms, :�4(x)�4(y): and 16 :�3(x)�3(y): C(x�y) are free of divergences when jx�yj ! 0.The third one is upon integration over x and y72 Zx Zy :�2(x)�2(y): C2(x� y) = 72A Zz :�4(z): + �nite ; (3.40)where A = Zt C2(t) = ��1Z0 dtt td � t2(2�d) = 1���� : (3.41)It is very important to note that the integral over C2(x � y) is localized at x � y = 0.This means that for any smooth function f(x; y)Zx Zy C2(x� y) f(x; y) = ���� Zz f(z; z) +O(�0) ; (3.42)or more formally that C2(x� y) becomes in the limit of �! 0 a distributionC2(x� y) = ���� Sd�d(x� y) +O(�0) : (3.43)This explains why in Eq. (3.40) we could simply replace :�2(x)�2(y): by :�4(z):. It is noweasy to see that after introduction of a renormalization factorZb = 1 + 36b� (3.44)a second term of order b2 will appear in the perturbation expansion, namely�36b2��� Zz :�4(z): O ; (3.45)



32 K. J. Wiese, Polymerized membranes, a reviewwhich will cancel the divergence. This is the only renormalization necessary at 1-looporder. Especially, no counter-term for Rx 12 : (r�(x))2 : is necessary at leading order in b.However, it demands a renormalization at second order, arising form the term:�(x)�(y): C3(x� y) : (3.46)As above, we now have to analyze the integral (t = x� y)Zt C3(t) :�(x)�(y): : (3.47)Noting that Zt C3(t) = Z dtt td t3(2�d) = Z dtt t2��2 (3.48)the leading term is a relevant (quadratic) divergence. We therefore have to expand �(x)and �(y) up to second order�(x) = �(z) + x� y2 r�(z) + 12 �y � x2 r�2 �(z) +O �(x� y)3� (3.49)to obtain:�(x)�(y): = :"�(z) + x� y2 r�(z) + 12 �x� y2 r�2 �(z) +O �(x� y)3�#�"�(z) + y � x2 r�(z) + 12 �y � x2 r�2 �(z) +O �(x� y)3�#:= :�(z)2 : �14 :[(x� y)r�(z)]2 : +14 :�(z) [(x� y)r]2 �(z): +O �(x� y)3� :(3.50)With the help of Eq. (3.48), Eq. (3.47) becomes��1Z0 dtt t2��2 ":�(z)2 : � t24d :(r�(z))2 : + t24d :�(z)��(z): +O �(t)3�#= �2�2��2 + 2� :�(z)2 : ���2�2� 14d h:(r�(z))2 : � :�(z)��(z):i + �nite : (3.51)The �rst term does not come with a pole in 1=� and in addition scales to 0 in the largeL = 1=� limit. It will thus be neglected. The remaining two terms are equivalent up toa total derivative, and thus Eq. (3.38) yields another divergent term24b2d� Zz 12 :(r�(z))2 : O : (3.52)This is renormalized (canceled) by settingZ = 1� 24(d� 2)d b2� = 1� 12b2� + �nite : (3.53)



Field theoretic treatment of tethered membranes 33The last step is as usual to calculate the renormalization group functions �(b) and �(b),quantifying the 
ow of the coupling b and the �eld � upon changing � [147]1. The resultis �(b) := � @@� 0b = ��b + 36b2 +O(b3) (3.54)�(b) := � @@� 0 lnZ = 24b2 +O(b3) : (3.55)Note that the �-function has a non-trivial IR-stable �xed point (�(b�) = 0) at b� = �=36and that this is su�cient to get the exponent � up to order �2:� = �(b�) = �254 : (3.56)Finally, let us still note the equivalence of the OPE with standard Feynman-diagrams.The �rst integral was:�2(x)�2(y): Zx�y C2(x� y) = : (3.57)Usually, this is written in momentum space asp�! = Zk 1(k + p)2 1k2 : (3.58)The other diagram was:�(x)�(y): Zx�y C3(x� y) = : (3.59)Note that if we parameterize the latter by the momentum p which is running through,then p�! = Zq1 Zq2 1q21 1q22 1(q1 + q2 + p)2 � 1� p2�2� : (3.60)The factor of p2 is the equivalent of the derivatives appearing in Eq. (3.51).3.5 Multilocal operator product expansion (MOPE)In section 3.2, we showed that for self-avoiding membranes divergences only occur at shortdistances. The situation is thus similar to local �eld-theories for which we discussed in thelast section how the techniques of operator product expansion can be used to analyze thedivergences. Our aim is now, to generalize these techniques to the multilocal case [56,57].Intuitively, in the context of multilocal theories { by which we mean that the interaction1For membranes, a derivation of the renormalization group functions is given in appendix A.4



34 K. J. Wiese, Polymerized membranes, a reviewdepends on more than one point { we also expect multilocal operators to appear in such anoperator product expansion, which therefore will be called \multi-local operator productexpansion" (MOPE). Its precise de�nition is the aim of this section, whereas we shallcalculate some examples in the following one.We start our analysis by recalling the general form of a (local) operator productexpansion of two scaling-operators �A(z + �x) and �B(z + �y) in a massless theory inthe limit of �! 0: �A(z + �x)�B(z + �y) =Xi Ci(z; �x; �y) �i(z) ; (3.61)where Ci(z; �x; �y) are homogeneous functions of �Ci(z; �x; �y) = �[�A]x+[�B ]x�[�i]xCi(z; x; y) : (3.62)Here [�]x is the canonical dimension of the operator � in space-units such that [x]x = 1, asobtained by naive power-counting. If the theory is translationally invariant, Ci(z; x; y) isalso independent of z, and we will suppose that this is the case, if not stated otherwise2.Also recall that this relation is to be understood as an operator identity, i.e. it holdsinserted into any expectation value, as long as none of the other operators sits at thepoint z, to which the contraction is performed.An example for the multilocal theory is
( i 

i i CΣ= , , )
:(3.63)Let us explain the formula. We consider n dipoles (here n = 5) and we separate the2n end-points into m subsets (here m = 3) delimited by the dashed lines. The MOPEdescribes how the product of these n dipoles behaves when the points inside each of them subsets are contracted towards a single point zj. The result is a sum over multilocaloperators �i(z1; : : : ; zm), depending on the m points z1; : : : ; zm, of the formXi Ci(x1 � z1; : : :) �i (z1; z2; : : : ; zm) ; (3.64)where the MOPE-coe�cients Ci(x1 � z1; : : :) depend only on the distances xl � zj insideeach subset. This expansion is again valid as an operator-identity, i.e. inserted into anyexpectation value and in the limit of small distances between contracted points. Again,no other operator should appear at the points z1; : : : ; zm, towards which the operatorsare contracted. As the Hamiltonian (3.1) does not contain a mass-scale, the MOPE-coe�cients are as in Eq. (3.62) homogeneous functions of the relative positions between the2Translation invariance is e.g. broken when regarding systems with boundaries or initial time problems,see section 8.4 and [148] for a review. It is also broken when the underlying metric is not constant, see[57,149].



Field theoretic treatment of tethered membranes 35contracted points, with the degree of homogeneity given by simple dimensional analysis.In the case considered here, where n dipoles are contracted to an operator �i, this degreeis simply �n�d� [�i]x. This means thatCi(�(x1 � z1); : : :) = ��n 2�D2 d�[�i]xCi(x1 � z1; : : :) ; (3.65)where [�i]x is the canonical dimension of the operator �i and �d(2�D)=2 is simply thecanonical dimension of the dipole.In order to evaluate the associated singularity, one �nally has to integrate over allrelative distances inside each subset. This gives an additional scale factor with degreeD(2n �m). A singular con�guration, such as in Eq. (3.63), will be UV-divergent if thisdegree of divergence D(2n�m)� n2�D2 d� [�i]x ; (3.66)is negative. It is super�cially divergent if the degree is zero and convergent otherwise.The idea of renormalization, formalized in section 3.8 and proven to work in section 5, isto remove exactly these super�cially divergent contributions recursively.3.6 Evaluation of the MOPE-coe�cientsThe MOPE therefore gives a convenient and powerful tool to calculate the dominant andall subdominant contributions from singular con�gurations. In this section, we explainhow to calculate the MOPE-coe�cients on some explicit examples. These examples willturn out to be the necessary diagrams at 1-loop order.In the following we shall use the notion of normal-ordering introduced in section 3.4.The �rst thing, which we use, is that:eikr(x) : = eikr(x) : (3.67)Explicitly, tadpole-like contributions which are powers ofZ dDp 1p2 (3.68)are omitted. This is done via a �nite part prescription (analytic continuation, dimensionalregularization), valid for in�nite membranes, for which the normal-order prescription isde�ned. Let us stress that this is a pure technical trick, which is not really necessary.However, adopting this notation, the derivation of the MOPE-coe�cients is much simpli-�ed, and we will henceforth stick to this convention. The suspicious reader may alwayscheck that the same results are obtained without this procedure. This is clear from theuniqueness of the �nite-part prescription.The key-formula for all further manipulations is:eikr(x) : :eipr(y) : = ekpC(x�y) :eikr(x)eipr(y) : : (3.69)This can be proven as follows: Consider the (free) expectation value of any observable Otimes the operators of Eq. (3.69). Then the the left- and right-hand sides of the above



36 K. J. Wiese, Polymerized membranes, a reviewequation read L = DO :eikr(x) : :eipr(y) : E0R = ekpC(x�y) DO :eikr(x)eipr(y) :E0 :First of all, for O = 1, the desired equality of L = R holds, because D:eikr(x)eipr(y) :E0 = 1and D:eikr(x) : :eipr(y) :E0 = ekpC(x�y). Now consider a non-trivial observable O, and contractall its �elds r with eikr(x) or eipr(y), before contracting any of the �elds r(x) with r(y).The result is a product of correlation-functions between the points in O and x or y, andthese are equivalent for both L and R. However, contracting an arbitrary number oftimes eikr(x), leaves the exponential eikr(x) invariant. Completing the contractions for Ltherefore yields a factor of ekpC(x�y), and the latter one also appears in R. Thus, theequality of L and R holds for all O and this proves Eq. (3.69).Now proceed to the �rst explicit example, the contraction of a single dipole withendpoints x and y. x y = Zk :eikr(x) : :e�ikr(y) : : (3.70)This con�guration may have divergences when x and y come close together. Let us stressthat in contrast to �4-theory, these divergences are not obtained as a �nite sum of productsof correlators: Since C(x � y) = jx � yj2�D, the latter is always well-behaved at x = y.The singularity only appears when summing an in�nite series of diagrams as we will donow. To this purpose, we �rst normal-order the two exponentials using Eq. (3.69)Zk :eik[r(x)�r(y)] : e�k2jx�yj2� : (3.71)Note that the operators eikr(x) and e�ikr(y) are free of divergences upon approaching eachother, since no more contractions can be made. The divergence is captured in the factore�k2jx�yj2� . Therefore, we can expand the exponential : eik[r(x)�r(y)] : for small x � y andconsequently in powers of [r(x)� r(y)]. This expansion isZk :�1+ ik [r(x)� r(y)]� 12 (k [r(x)� r(y)])2 + : : :�: e�k2jx�yj2� : (3.72)We truncated the expansion after the third term. It will turn out later that this issu�cient, since subsequent terms in the expansion are proportional to irrelevant operatorsfor which the integral over the MOPE-coe�cient is UV-convergent.Due to the symmetry of the integration over k the term linear in k vanishes. Also dueto symmetry, the next term can be simpli�ed with the resultZk "1� k22d : [r(x)� r(y)]2 : + : : :# e�k2jx�yj2� : (3.73)Finally, the integration over k can be performed. Recall that normalizations were chosensuch that Rk e�sk2 = s�d=2 to obtainjx� yj��d 1� 14 : �(x� y)rr�x+ y2 ��2 : jx� yj��(d+2) + : : : : (3.74)



Field theoretic treatment of tethered membranes 37The second operator has a tensorial structure, which has to be taken into account in orderto construct the subtraction operator. Using the short-hand notation � � = 12(@�r)(@�r),we can write this symbolically as= � ����1�1 + � ����� �� � � + : : : ; (3.75)with the MOPE-coe�cients (reminding Feynman's bra-ket notation)� ����1� = jx� yj��d (3.76)� ����� �� = �12 (x� y)� (x� y)� jx� yj��(d+2) : (3.77)As long as the angular average is taken (and this will be the case when integratingthe MOPE-coe�cient to obtain the divergence), we can replace in Eq. (3.75) � � by:= 12(rr)2 and Eq. (3.77) by� ���� � = � 12D jx� yjD��d : (3.78)Next consider a real multi-local example of an operator-product expansion, namelythe contraction of two dipoles towards a single dipole:x+u=2x�u=2 y+v=2y�v=2 = Zk eik[r(x+u=2)�r(y+v=2)] Zp eip[r(x�u=2)�r(y�v=2)] : (3.79)This has to be analyzed for small u and v, in order to control the divergences in the latterdistances. As above, we normal-order operators which are approached, yieldingeikr(x+u=2)eipr(x�u=2) = :eikr(x+u=2) : :eipr(x�u=2) : = :eikr(x+u=2)eipr(x�u=2) : ekpC(u) : (3.80)A similar formula holds when approaching e�ikr(y+v=2) and e�ipr(y�v=2)e�ikr(y+v=2)e�ipr(y�v=2) = :e�ikr(y+v=2) : :e�ipr(y�v=2) : = :e�ikr(y+v=2)e�ipr(y�v=2) : ekpC(v) :(3.81)Eq. (3.79) then becomesZk Zp :eikr(x+u=2)+ipr(x�u=2) : :e�ikr(y+v=2)�ipr(y�v=2) : ekp[C(u)+C(v)] : (3.82)In order to keep things as simple as possible, let us �rst extract the leading contribu-tion before analyzing subleading corrections. This leading contribution is obtained whenexpanding the exponential operators (here exempli�ed for the second one) as:e�ikr(y+v=2)e�ipr(y�v=2) : = :e�i(k+p)r(y) (1 +O(rr)): (3.83)and dropping terms of order rr. This simpli�es Eq. (3.82) toZk Zp :ei(k+p)r(x) : :e�i(k+p)r(y) : ekp[C(u)+C(v)] : (3.84)



38 K. J. Wiese, Polymerized membranes, a reviewIn the next step, �rst k and second p are shiftedk �! k � p ; then p �! p + k2 : (3.85)The result is (dropping the normal-ordering according to Eq. (3.67))Zk eik[r(x)�r(y)] Zp e( 14k2�p2)[C(u)+C(v)] : (3.86)The factor of Rk eik[r(x)�r(y)] is again a �-distribution, and the leading term of the shortdistance expansion of Eq. (3.86). Derivatives of the �-distribution appear when expandinge( 14k2�p2)[C(u)+C(v)] in k2; these are less relevant and only the �rst sub-leading term will bedisplayed for illustration:Zk eik[r(x)�r(y)] Zp e�p2[C(u)+C(v)]  1 + k24 [C(u) + C(v)] + : : :!= � ��� � + � ��� � + : : : ; (3.87)where in analogy to Eqs. (3.75) and (3.77)� ��� � = [C(u) + C(v)]�d=2 ;� ��� � = 14 [C(u) + C(v)]1�d=2 (3.88)and = ~�d(r(x)� r(y)) ; = (��r)~�d(r(x)� r(y)) : (3.89)Let us already mention that the leading contribution proportional to the �-distributionwill renormalize the coupling-constant, and that the next-to-leading term is irrelevant andcan be neglected. The same holds true for the additional term proportional to (rr) whichwas dropped in Eq. (3.83).There is one more possible divergent contribution at the 1-loop level, namely .We now show that the leading term of its expansion, which is expected to be proportionalto , is trivial. To this aim consideru x y z = Zk;p :eikr(u) : :e�ikr(x) : :eipr(y) : :e�ipr(z) := Zk;p :eikr(u) : :e�ikr(x) eipr(y) e�ipr(z) : e�p2C(y�z) ekp[C(x�z)�C(x�y)] : (3.90)We want to study the contraction of x, y, and z, and look for all contributions which areproportional to = Zk :eikr(u) : :e�ikr((x+y+z)=3) : : (3.91)



Field theoretic treatment of tethered membranes 39The key-observation is that in Eq. (3.90) the leading term is obtained by approximatingekp[C(x�z)�C(x�y)] � 1. All subsequent terms yield factors of k, which after integration overk give derivatives of the ~�d-distribution. The result is that� ���� �� � ����1� = 0 : (3.92)This means that divergences of are already taken into account by a proper treat-ment of the divergences in , analyzed in Eq. (3.75).3.7 Strategy of renormalizationIn the last two sections, we discussed how divergences occur, how their general structure isobtained by the MOPE, and how the MOPE-coe�cients are calculated. In the next step,the theory shall be renormalized. The basic idea is to identify the divergences throughthe MOPE, and then to introduce counter-terms which subtract these divergences. Thesecounter-terms are nothing else than integrals over the MOPE-coe�cients, properly regu-larized, i.e. cut o�.In order to properly understand this point, let us recall the two main strategies em-ployed in renormalization: The �rst one subtracts divergences in correlation-functions orequivalently vertex-functions. This amounts to adding counter-terms to the Hamiltonianwhich can be interpreted as a change of the parameters in this Hamiltonian. Calculatingobservables with this modi�ed Hamiltonian leads to �nite physical expectation values,but it is not evident that the integrals appearing in these calculations are convergent.The other procedure is inspired by ideas employed in a formal proof of renormalizabil-ity, or more precisely when applying the R-operation to the perturbation expansion, aswill be discussed in the next section 5. It consists in adding to the Hamiltonian counter-terms which are integrals, such that each integrand which appears in the perturbativeexpansion becomes an integrable function, and as a consequence the integrals and thusthe perturbation expansion are �nite. Of course, to �nally obtain the critical exponents,the integral counter-terms have to be reduced to numbers. However, we really want tothink of them as integrals in the intermediate steps. The reason is the following: It isextremely di�cult to calculate observables. However, this is not really necessary as longas one is only interested in renormalization. The above-mentioned procedure is then suf-�cient to ensure �niteness of any observable as long as there is no additional divergencewhen the dipole is contracted towards this observable. The latter situation would requirea new counter-term, which is a proper renormalization of the observable itself. The proce-dure of considering whole integrals as counter-terms is in the heart of our renormalizationprocedure, and the reader should bear this idea in mind throughout this review.3.8 Renormalization at 1-loop orderLet us continue on the concrete example of the 1-loop divergences, from which are ob-tained the scaling exponents to �rst order in the dimensional regularization parameter ".Explicitly, the model shall be renormalized through two renormalization group factors Z



40 K. J. Wiese, Polymerized membranes, a review(renormalizing the �eld r) and Zb (renormalizing the coupling b). Recalling Eq. (3.1), thisis H[r] = Z2�D Zx 12(rr(x))2 + bZb�" Zx Zy ~�d(r(x)� r(y)) ; (3.93)where r and b are the renormalized �eld and renormalized dimensionless coupling constant,and � = L�1 is the renormalization momentum scale.Let us start to eliminate the divergences in the case, where the end-points (x; y)of a single dipole are contracted towards a point (taken here to be the center-of-massz = (x+ y)=2). The MOPE isx y = �x y ����1�1 + �x y ����� �� � � + : : : : (3.94)The MOPE-coe�cients were obtained in the last section as�x y ����1� = jx� yj��d ; (3.95)�x y ����� �� = �12 (x� y)� (x� y)� jx� yj��(d+2) : (3.96)We now have to distinguish between counter-terms for relevant operators and thosefor marginal operators. The former can be de�ned by analytic continuation, while thelatter require a subtraction scale. Indeed, the divergence proportional to 1 is given bythe integral Z��1<jx�yj<L �x y ����1� = LZ��1 dxx xD��d = 1D � " ��D�" � L"�D� ; (3.97)where � is a high-momentum UV-regulator and L a large distance regulator. For " � 0this is UV-divergent but IR-convergent. The simplest way to subtract this divergence istherefore to replace the dipole operator byx y �! x y � x y ; (3.98)where x y = jx � yj��d. This amounts to adding to the bare Hamiltonian (3.1) theUV-divergent counter-term �H1 = �bZb�" Zx Zy jx� yj��d ; (3.99)which is a pure number and thus does not change the expectation-value of any physicalobservable.We next consider marginal operators: In the MOPE of Eq. (3.94), the integral over therelative distance of Rx�y�x y ���� �� � � is logarithmically divergent at " = 0. In order to�nd the appropriate counter-term, we use dimensional regularization, i.e. set " > 0. An



Field theoretic treatment of tethered membranes 41IR-cuto� L, or equivalently a subtraction momentum scale � = L�1, has to be introducedin order to de�ne the subtraction operation. As a general rule, let us integrate over alldistances appearing in the MOPE-coe�cient, bounded by the subtraction scale L = ��1.De�ning � ����� ��L := Zjx�yj<L �x y ����� �� (3.100)we need the following counter-term in the Hamiltonian�H = �b�" � ����� ��L Zx � � x ; (3.101)subtracting explicitly the divergence in the integrals, as discussed in the last section. Thereader is invited to verify this explicitly in exercise 6 (see page 178) on the example ofthe expectation value of O = eik[r(s)�r(t)], as given in Eq. (3.27).Since the angular integration in Eq. (3.100) reduces � � to , we can replace Eq.(3.101) by the equivalent expression�H = �b�" � ���� �L Zx x ; (3.102)for which the numerical value of the diagram is calculated as� ���� �L = Zjx�yj<L �x y ���� � = � 12D LZ0 dxx x2D��d = � 12D L"" : (3.103)We can now subtract this term in a minimal subtraction scheme (MS). The internaldimension of the membrane D is kept �xed and (3.103) is expanded as a Laurent seriesin ", which here starts at "�1. Denoting by h j i"p the term of order "p of the Laurentexpansion of h j iL for L = 1, the residue of the pole in Eq. (3.103) is found to be� ���� �"�1 = � 12D 1" : (3.104)We shall also frequently employ the notation for the residue� ���� �" = � 12D : (3.105)It is this pole that is subtracted in the MS-scheme by adding to the Hamiltonian acounter-term �H = � b� ���� �"�1 Zx x : (3.106)Note that by going from Eq. (3.101) to Eq. (3.106), we have reduced the integral counter-term to a number. We recall our initial remark that if one wants to check that thiscounter-term renders the theory �nite, one should think of it as its de�ning integral



42 K. J. Wiese, Polymerized membranes, a review(3.101), and verify that in the resulting perturbation theory, the �rst-order divergence isabsent.Similarly, the divergence arising from the contraction of two dipoles to a single dipoleis subtracted by a counter-term�H = b2�2" D ��� EL Zx Zy x y ; (3.107)with D ��� EL = Zjxj<L Zjyj<L � ��� � : (3.108)Reducing this integral counter-term to a number, we subtract the residue of the singlepole ofD ��� EL = Zjxj<L Zjyj<L � ��� � = Zjxj<L Zjyj<L �jxj2� + jyj2���d=2 : (3.109)Note that the regulator L cuts o� both integrations. One can now either utilize somesimple algebra or show by the methods of conformal mapping (see section 4.3) that theresidue is obtained by �xing one distance to equal 1 and by freely integrating over theremaining one D ��� E" = 1Z0 dxx xD �1 + x2�D��2D=(2�D) : (3.110)(Recall that d=2 = 2D=(2�D)+O(").) The above is easily related to Euler's B-functionand reads D ��� E" = 12�D � � D2�D�2� � 2D2�D� : (3.111)As a result, the model is UV-�nite at 1-loop order, if we use in the renormalized Hamil-tonian (3.93) the renormalization factors Z and ZbZ = 1� (2�D)� ���� �" b" + O(b2) (3.112)Zb = 1 + D ��� E" b" + O(b2) : (3.113)Note that due to Eq. (3.92) no counter-term for is necessary.The renormalized �eld and coupling are re-expressed in terms of their bare counter-parts through r0(x) = Z1=2 r(x) ; b0 = b ZbZd=2 �" : (3.114)Finally, the renormalization group functions are obtained from the variation of the cou-pling constant and the �eld with respect to the renormalization scale �, keeping the bare



Field theoretic treatment of tethered membranes 43coupling �xed. (For a derivation, see appendix A.4). The 
ow of the coupling is writtenin terms of Z and Zb as�(b) := � @@� b0b = �"b1 + b @@b lnZb + d2b @@b lnZ= �"b +  D ��� E" � �d� ���� �"! b2 +O(b3)= �"b + 0B@ 12�D � � D2�D�2� � 2D2�D� + (2�D)d4D 1CA b2 +O(b3) : (3.115)Similarly, the full dimension of the �eld (the exponent entering into the correlation func-tion) is obtained as�(b) := 2�D2 � 12� @@� b0 lnZ = 2�D2 � 12�(b) @@b lnZ= 2�D2 "1� b� ���� �"#+O(b2)= 2�D2 �1 + b 12D�+O(b2) : (3.116)Note that minimal subtraction is used on the level of counter-terms or equivalently Z-factors. Since Z enters as Zd into the �-function, the latter also contains a factor of din the 1-loop approximation, i.e. Zd is not minimally renormalized. In order to calculatethe leading order in ", the factor of d can be replaced by dc = 4D2�D .The �-function has a non-trivial �xed-point with �(b�) = 0, which has positive slopeand thus describes the behavior of the model at large distances:b� = "12�D � � D2�D�2� � 2D2�D� + 1 +O("2) : (3.117)
The anomalous dimension �� := �(b�) becomes to �rst order in "�� = 2�D2 266641 + "2D 112�D �( D2�D )2�( 2D2�D ) + 137775 +O("2) : (3.118)For polymers, this result reduces to the well-known formula��(D = 1) = 12 + 4� d16 +O((4� d)2) : (3.119)



44 K. J. Wiese, Polymerized membranes, a review3.9 Non-renormalization of long-range interactionsLong-range interactions are in general not renormalized [56]. This is very useful, as it im-mediately enforces scaling relations among the critical exponents, which in some cases arealready su�cient to determine these exponents. Let us explain the non-renormalizationby analyzing the long-range interaction (� > 0)= Zk jkj��eik[r(x)�r(y)]� jr(x)� r(y)j��d (3.120)Then the most simple singular con�gurations which give rise to a renormalization of theinteraction are those for which two interactions are contracted to a single one, as we havediscussed in 3.5. We claim that their multilocal operator product expansion (MOPE),, does not contain a contribution proportional to , but that the leading termis proportional to the short-range interaction . This is a consequence of the analyticstructure of the long-range interaction: The contraction is in complete analogy toEq. (3.87) and with the same notations as there= Zk Zp jkj��jpj��ei(k+p)[r(x)�r(y)]ekp[C(u)+C(v)]+subdominant terms : (3.121)In order to obtain a long-range term, a singularity at k + p = 0 is necessary. However,expression (3.121) is analytic at k + p = 0, and no long-range term is generated. This iseasily generalized to any contraction towards and hence to any order in perturbationtheory.Let us now analyze the consequences. We want to study tethered membranes withlong-range interactions, generalizing Eq. (3.1) or Eq. (3.93) toHLR = Z2�D Zx + b�� Zx Zy : (3.122)Note that since in contrast to Eq. (3.1) the interaction is not renormalized, there is onlyone Z-factor in Eq. (3.122), namely for elasticity. This does, however, not mean that the�-function is trivial. In analogy to Eq. (3.114), the relation between bare and renormalizedcoupling is b0 = bZ(d��)=2�� ; (3.123)where Z is as in Eq. (3.114) the renormalization of the �eld, and� = 2D � �(d� �) : (3.124)The �-function now reads�(b) = � @@� b0b = "�� + �� d2 � @@� lnZ# b : (3.125)



Some useful tools and relation to polymer theory 45Using the fact that � @@� lnZ is nothing but (�2) times the anomalous dimension of the�eld, see Eq. (3.116), we make the replacement� @@� lnZ = 2(� � �(b)) (3.126)in Eq. (3.125). The result is �(b) = � [2D � (d� �)�(b)] b : (3.127)This �-function has to zeros: For � < 0, the �xed point at b� = 0 is attractive. For � > 0the non-trivial zero and �xed point of �(b) is at b� > 0, implying the exponent-identity�� = �(b�) = 2Dd� � : (3.128)Non-renormalization of the coupling thus allows to obtain �� without calculating anydiagram. Since this observation is quite generally useful, let us give a heuristic derivationof Eq. (3.128). We may then consider the formal derivation given above as a proof of theheuristic argument, and employ the latter con�dently throughout this review.\Power counting" for the dimension D of the interaction at a �xed point yieldsD = 2D � ��(d� �) ; (3.129)and this power-counting gives the correct dimension of the operator, since the latter hasno proper renormalization. Three di�erent scenarios are now possible: If D < 0, then theassociated coupling scales to 0, and the operator plays no role in the large scale limit. IfD > 0, then the associated coupling grows under renormalization and we are not at anIR-�xed point; by de�nition this is not the situation considered here. The last possibilityis that we are at an IR-�xed point, and this is (at least for one coupling) equivalent toD = 0. It again follows the exponent identity�� = �(b�) = 2Dd� � : (3.130)Also the crossover from short-range to long-range self-avoidance in a model with bothcouplings can be discussed in this framework. Following the line of arguments given above,long-range self-avoidance will scale to 0 and the short-range �xed point is completelyattractive as long as D, Eq. (3.129), evaluated with �� as obtained from short-range self-avoidance only, is negative. As a consequence always that interaction wins, which yieldsthe larger value for ��.Physically, long-range forces play an important role for charged membranes, as dis-cussed in [150].4 Some useful tools and relation to polymer theory4.1 Equation of motion and redundant operatorsThe equation of motion re
ects the invariance of the functional integral under a globalrescaling of the �eld r. This has important consequences. Consider the expectation value


