Uni GH Essen preprint
January 24, 2000

Polymerized Membranes, a Review

Kay Jorg Wiese*
Fachbereich Physik, Universitat GH Essen, 45117 Essen, Germany

Abstract

Membranes are of great technological and biological as well as theoretical inter-
est. Two main classes of membranes can be distinguished: Fluid membranes and
polymerized, tethered membranes. Here, we review progress in the theoretical un-
derstanding of polymerized membranes, i.e. membranes with a fixed internal connec-
tivity. We start by collecting basic physical properties, clarifying the role of bending
rigidity and disorder, theoretically and experimentally as well as numerically. We
then give a thorough introduction into the theory of self-avoiding membranes, or
more generally non-local field theories with d-like interactions. Based on a proof
of perturbative renormalizability for non-local field-theories, renormalization group
calculations can be performed up to 2-loop order, which in 3 dimensions predict a
crumpled phase with fractal dimension of about 2.4; this phase is however seem-
ingly unstable towards the inclusion of bending rigidity. The tricritical behavior
of membranes is discussed and shown to be quite different from that of polymers.
Dynamical properties are studied in the same frame-work. Exact scaling relations,
suggested but not demonstrated long time ago by De Gennes for polymers, are
established. Along the same lines, disorder can be included leading to interesting
applications. We also construct a generalization of the O(N)-model, which in the
limit N — 0 reduces to self-avoiding membranes in analogy with the O(V)-model,
which in the limit N — 0 reduces to self-avoiding polymers. Since perturbation
theory is at the basis of the above approach, one has to ensure that the pertur-
bation expansion is not divergent or at least Borel-summable. Using a suitable
reformulation of the problem, we obtain the instanton governing the large-order
behavior. This suggest that the perturbation expansion is indeed Borel-summable
and the presented approach meaningful. Some technical details are relegated to the
appendices. A final collection of various topics may also serve as exercises.
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1 Introduction and outline

One of the most challenging ideas in modern physics is the concept of universality: Certain
properties of physical systems do not depend on microscopic details and furthermore are
equivalent for seemingly unrelated problems. This is epitomized by systems undergoing
symmetry breaking continuous phase transitions. The most powerful tools to reveal these
relations are delivered by quantum field theory, which has celebrated an overwhelming
success in nearly all areas of physics. The study of the O(N)-model, which is a field theory
for the statistics of N-component spins with short-range interactions, has shown that their
critical behavior is described by a set of exponents which are completely characterized
by the dimension and the underlying symmetry (the number of components of the order
parameter). Universality is ensured since the microscopic details are averaged out, and
do not affect the large scale fluctuations. A variety of techniques have been developed
to examine the critical behavior of this model; possibly the most successful one is the
renormalization group procedure [2] which analytically justifies the concept of universality.
The technically most convenient implementations are field theoretical methods, e.g. the
g-expansion about the upper critical dimension of 4, an expansion about the lower critical
dimension of 2, and exact re-summations in the large N limit. (For an review of these
techniques, see Ref. [3].) The best studied method is the e-expansion about the upper
critical dimension of 4, where calculations have been performed up to fifth order. Together
with resummation techniques which take care of the large-order behavior known from
instanton calculus, this is a very powerful tool for extracting critical exponents.

On the other hand, field theories have strong connections to geometrical problems
involving fluctuating lines. For example, the motion of particles in space-time describes a
world-line. Summing over all world-lines, weighted by an appropriate action, is the Feyn-
man path integral approach to calculating transition probabilities, which can alternatively
be obtained from a quantum field theory. The latter can be extended to string theory, gen-
eralizing the sum over particle trajectories to the sum over trajectories of lines. Another
example is the high-temperature expansion of the Ising model. The energy-energy corre-
lation function can be expressed as a sum over all self-avoiding closed loops which pass
through two given points. Self-avoidance is necessary in order not to overcount configura-
tions. We face an important new theoretical concept, which is the subject of this review:
Parameterizing the loop by its length, different parts of the loop interact with each other
irrespective of their distance. Treating such phenomena in the framework of field-theory
demands an enlargement of the concept of local field-theories to multi-local ones. The

Figure 1.1: Budding of fluid membranes, from [1].
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Figure 1.2: Polymerized tethered membrane in the flat phase, from [16].

first direct such approach was developed in the context of self-avoiding polymers, which
are formally equivalent to the loops appearing in the high-temperature expansion of the
Ising model, by Edwards and Des Cloizeaux [4-6]. In this approach, hard self-avoidance
is replaced by a soft short range repulsive interaction upon contact of the monomers. This
interaction is then studied perturbatively by expanding about ideal random walks. Here
too, the perturbative expansion can be reorganized into an expansion about the upper
critical dimension of 4, which was shown [7] to be equivalent to the perturbation expan-
sion of ¢*-theory in the limit N — 0. This equivalence provides two apparently different
approaches for calculating the same exponents.

There is much work in the field theory community on generalizing results for fluctu-
ating lines to entities of other internal dimensions D. The most prominent example is
string theory, which describes D = 2 world sheets [8-11]. An earlier example is provided
by the correspondence between gauge theories and random surfaces [12,13]. The low tem-
perature expansion of the Ising model in d dimensions also results in a sum over surfaces
that are d — 1 dimensional. For d = 3, the surfaces are made out of plaquettes, the basic
objects of lattice gauge theories. All these objects share the common property that not
only fluctuations of shape but also topology changes occur and have to be summed over
in the partition function. The biologically relevant representatives of this class of mem-
branes are fluid membranes, which in general are formed by a lipid bi-layer. I contrast to
fluid membranes are “tethered”, polymerized surfaces [14,15], which have a fixed internal
connectivity, and are thus simpler than their fluid counterparts. Experimental realiza-
tions are e.g. the network formed by spectrin in red blood cells or graphite mono-layers.
These systems may be found in three quite different phases: a collapsed compact phase,
a flat phase and an intermediate crumpled swollen phase with fractal dimension of about
2.4. Experimentally, the situation is still under debate (cf. section 2.5). In numerical
simulations (cf. section 2.5), generically flat membranes are found (see figure 1). The rea-
son why eventually no crumpled swollen phase may be observable is that the rigidity of
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tethered membranes is — in sharp contrast to fluid membranes — strongly enhanced by the
effect of shear waves. Technically, integrating out these degrees of freedom renormalizes
the rigidity, and if the initial rigidity is beyond a certain threshold, the membrane will
become flat (see section 2.4). Intuitively this is analogous to a crumpled sheet of paper,
which is much more rigid than an uncrumpled one.

Numerically, it has been observed that tethered membranes seemingly are always flat,
even when starting with self-avoidance only. This can be traced back to the effective
(entropic) bending rigidity which is always present in these models. However, since the
largest membranes simulated so far consist of only 75 x 75 atoms in the simplest spring and
bead model, which has the inconvenience of being rather rigid, and of about 25 x 25 atoms
in the more sophisticated plaquette-models, simulations are far form being conclusive.
These general physical, including numerical and experimental considerations are presented
in more detail in section 2.

For theoretical analysis, it is convenient to further generalize to membranes of arbitrary
(inner) dimension D, interpolating between polymers for D = 1 and membranes for
D = 2. Simple power counting indicates that self-avoidance is relevant only for dimensions
d < d.=4D/(2— D), making possible an ¢ = 2D —d(2 — D) /2 ~ (d.(D) — d)-expansion,
which was first carried to 1-loop order about an arbitrary point on the line ¢ = 0 in
Refs. [17-21]. To obtain results for polymers or membranes, one then has the freedom to
expand about any internal dimension D, and the corresponding upper critical dimension
of the embedding space [22]. This freedom can be used to optimize the calculation of
critical exponents.

A major breakthrough in the understanding of these non-local field theories is the
proof by David, Duplantier and Guitter, that the field-theory of a D-dimensional self-
avoiding tethered membrane is renormalizable to all orders in perturbation theory. The
main technical tool is the multilocal operator product expansion (MOPE), generalizing
the concept of (local) operator product expansion (OPE), introduced into field theory
long time ago by Wilson [23] and Kadanoff [24], to the multilocal situation. We shall
present this technique in section 3. A collection of useful tools is given in section 4, and
a condensed version of the above-mentioned proof in section 5.

These general arguments have been checked by explicitly going to 2-loop order [25,26].
The calculation is technically difficult but it is valuable to understand the underlying prin-
ciples. We therefore review these calculations in section 6, suggesting to the reader more
concerned with applications to skip this section as well as section 5 with the discussion
of the proof of perturbative renormalizability. The most important physical prediction of
this calculation is that there exists a crumpled swollen phase with fractal dimension of
about 2.4.

Another important question is whether non-leading terms play a role for the critical
behavior of tethered membranes. This is certainly the case at the tricritical point, which
separates the crumpled swollen from the compact phase, and which is analyzed in section
9. In contrast to polymers, whose tricritical behavior is dominated by the 3-point self-
repulsion (which formally punishes triple intersection of the polymer with itself), in the
case of the membrane (D = 2), this role is played by a modified 2-point interaction, not
proportional to a d-interaction, but to its second derivative [27]. Subdominant operators
may also play a role at the self-avoiding fixed point, at finite €, i.e. well below the upper
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critical dimension [28].

It is well known that different dynamical models can lead to the same static behavior
[29]. In the case of polymers, people have paid most attention to purely diffusive dynamics
(Rouse model, model A) eventually including the effect of hydrodynamics (Zimm model).
For a long time, the question whether these dynamical models are renormalizable, stayed
open. As discussed in section 11, the methods mentioned above finally allowed to settle
this question [30,31].

Somehow surprisingly, the same kind of model also applies to the dynamics of an ex-
tended elastic object, be it a polymer or a membrane, in quenched disordered. Technically,
averaging over disorder generates non-local interactions on the polymer, with interactions
proportional to the disorder correlations. The latter may be taken to be d-distributions.
In this respect, it is worth recalling that self-avoidance can also be generated by averaging
over all realizations of an (imaginary) random potential, in which the polymer or mem-
brane is fluctuating. In section 12, we review the analysis of a D-dimensional membrane
(with D = 0 for a particle, D = 1 for a polymer and D = 2 for a membrane), in a
quenched random force field with both potential and non-potential parts. In contrast to
the pure potential case, this situation is accessible perturbatively [32,33].

As is well-known, string theory is defined as the sum over all closed manifolds with ar-
bitrary topology. Excluding from this sum self-intersecting configurations is a formidable
task beyond current technical capabilities. For polymerized membranes, i.e. with non-
fluctuating metric, this sum can indeed be taken, generalizing the high temperature ex-
pansion of the O(N)-model mentioned above from a gas of self-avoiding loops of fugacity
N, to a similar gas of closed fluctuating manifolds of internal dimension D [34,35]. As will
be discussed in section 13, this generalization is not unique, leaving space for adaptation
of the model to the situation in question. Among others, the model contains a novel
mechanism not present in standard field theory, which turns first order transitions into
second order ones (“reverse Coleman-Weinberg mechanism”). The model further contains
a 1-loop fixed point for the random bond Ising model and finally allows for an intriguing
conjecture regarding the nature of droplets dominating Ising criticality.

So far, these models have only been treated via perturbative techniques. An important
question is, whether the theory is meaningful beyond perturbation expansion. This is a
difficult issue, which so far is only partially answered for the case of self-avoiding polymers.
A little bit easier to answer is the question, whether the perturbative series is well defined.
For the case of the O(N)-model, it has been shown by Lipatov [36,37], that the series is
divergent, but can be resummed using a Borel-transform. For tethered membranes, the
situation is difficult, since the usual instanton methods do not apply. In section 14 we
show, what the analog of the instanton for the ¢*-theory is, and why this implies that the
perturbation series is also Borel-summable [38].

Finally let us point out that even though the primary aim of this review is to present
from a unified viewpoint the theoretical concepts of multilocal field-theories, an effort is
made to motivate the physical models and experimental relevance. On the other hand,
the real progress which goes beyond today’s interest, lies in the fundamental technical
achievements, and the author feels that skipping technically important details, would
render this review much less useful. In order to keep the text readable, the central ideas
are given before embarking on technical calculations, and wherever this is possible, we
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Figure 2.1: Fluid membranes with higher topology. From left to right: a 1-torus [39] and a 2- and 4-torus
[40].

try to sketch how the techniques developed will be useful later.

The general structure of this review is therefore organized so that relevant material,
which is necessary to place the following more technical parts in the physical context, is
collected in section 2. The next section is devoted to the necessary elementary technical
tools. The following sections are more specialized and can mostly be read independently,
only necessitating section 3, and eventually 4.

2 Basic properties of membranes

2.1 Fluid membranes

Let us start by characterizing the different possible types of membranes. One very popular
class of membranes are fluid membranes. We all know of soap-bubbles from childhood
days. Biologically more relevant are bilayers of lipid molecules that are composed of
a hydrophilic head and two hydrophobic chains. As shown in figure 2.2, in water the
hydrophobic chains group together and form a lipid bilayer. This is the basis of most of
the biologically relevant membranes.

For an analytical description, one needs the coordinate 7(z) of the membrane as a
function of an internal parameter x, characterized by the mapping

7o e R — flr) € RY (2.1)

and by the induced metric
Jap = OaTOBT . (2.2)

RIARIIINIIINN
$48488484888844

Figure 2.2: Model of a fluid membrane: Bilayer of lipid molecules that are composed of a hydrophilic
head and two hydrophobic hydrocarbon chains.
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We are now looking for the statistical weight of a membrane configuration. Since the lipid
molecules in the membrane are free to move around, the energy, i.e. “Hamiltonian” of the
membrane has to be invariant under coordinate transformations. This is achieved by the
Canham-Helfrich Hamiltonian [41,42]

i = [ & fy(x) [T + 2 (H () - HO)Q} . (2.3)

d?z /g is the invariant volume-element of the membrane, 7 its surface tension, and & the
bending-rigidity, which is coupled to the square of the mean curvature

1/1 1
H=-[—+— 2.4
2<R1+R2>’ (24)

where R, and R, are the two curvature radii. Hj, is a spontaneous curvature, present
in the case of symmetry breaking between the two sides of the membrane. Physically,
rigidity is explained by the finite thickness of the membrane. RG-calculations indicate
that bending-rigidity should be irrelevant at large distances [43,44]; this however has
recently been criticized in [45].

Experimentally, fluid membranes offer a wide range of interesting and complex phe-
nomena. Let us only mention the budding of a fluid membrane, as given in figure 1.1 and
the appearance of higher genus objects (figure 2.1).

For a general review about fluid membranes, see [44,46-48].

Interestingly, the Hamiltonian (2.3) with £ = 0 also plays a central role in string

theory. Here, one of the inner coordinates & = (**

is identified as ¢ x time, and the
other one as length on the string. Eq. (2.3) is then the action generating the motion of
the string. Further generalizations use a metric g,3 independent of the imbedding space
[8,49,9-11]. Strings are considered as one of the most promising candidates for unifying

all fundamental interactions.

2.2 Tethered (polymerized) membranes

In this review, we shall concentrate on another class of membranes, which have a fixed
and constant internal metric:

gaﬂ = (Saﬂ . (25)

These membranes have not yet found applications in high-energy physics, but are realized
in experiments (see section 2.5). They are either called solid, tethered or polymerized
membranes.

A microscopic model is given by the so-called “spring and bead model” (see figure
2.3), which consists of balls (beads) which are connected by springs and form a regular
lattice. The model membrane is called “self-avoiding” since the beads cannot intersect
each other. We will discuss Monte-Carlo simulations of this model in section 2.6.

A simpler situation occurs when self-intersections are allowed (“phantom-membrane”).
Simulations as well as renormalization group calculations [50,51] indicate that such a
membrane is crumpled for weak bending rigidity, x < k. and flat for kK > k.. At the
phase-transition point £ = k., the membrane is in another critical (or more precisely
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Figure 2.3: A tethered membrane (spring and bead model), from [15].

tricritical) state with a fractal dimension d; in between the dimensions of the crumpled
and flat phases. A mean-field treatment of this so-called “crumpling transition” is given in
section 2.3. Contrary to intuition, the flat phase is not destroyed by fluctuations. This is
demonstrated in section 2.4, where also the tricritical state at Kk = k. is discussed. On the
other hand, in the small-rigidity phase, phantom-membranes will have a fractal dimension
of infinity. For physical (self-avoiding) membranes which can not intersect themselves,
this is clearly impossible, and one expects the physical bound

di < d (2.6)

induced by self-avoidance.
A continuous model to describe a self-avoiding membrane is

H[F = / dP %(Vf(x))2+g / 2 / APy §4(7(x) — 7(y)) . (2.7)

It has first been proposed by Edwards [4] to describe polymers (D = 1). In that case, it
is equivalent to scalar ¢?-field theory in the limit of N = 0 components [7]. In 1986 the
model has been generalized to membranes (D = 2), independently by Kardar and Nelson
[17,18] and by Aronovitz and Lubensky [19]. They observed that a direct calculation at
D = 2 is impossible, but that one can make an analytic continuation from D < 2.

In contrast to polymers, with their equivalence to scalar field-theory, renormalization
is not evident. At leading order, renormalizability has been verified by Duplantier, Hwa
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and Kardar in 1990 [52]. For the general case, an important step was achieved by David,
Duplantier and Guitter [53,54] who showed renormalizability of the theory

Ml = [ a” %(Vf(x))2+g/de6d(F(x)) , (2.8)

which describes a phantom (non self-avoiding) membrane in interaction with a single point
(an impurity). The proof is based on a generalization of the forest algorithm introduced by
Zimmermann [55] to J-like interactions. Their last step was to prove the renormalizability
of the full model [56,57], which we shall describe in section 5.

To extract numerical predictions from the e-expansion is a tedious task. One of the
problems is that since one cannot start from D = 2, an analytic continuation has to be
performed starting at any point (D, d) on the critical curve, which will be defined in section
3.1. The first calculations which tried to fix the expansion-point via a minimal sensitivity
scheme at 1-loop order were performed in [22]. The result of d; ~ 3.5 for membranes in 3
dimensions even violated the geometric bound of 3 discussed above. It became therefore
necessary to perform 2-loop calculations, not only to test the renormalization proof, but
also to obtain more reliable values for the fractal dimension. This task was accomplished
in [25,26], and we review the main steps in section 6. For membranes in 3 dimensions these
calculations predict a fractal dimension of about 2.4, eventually seen in some experiments
and numerical simulations, see sections 2.5 and 2.6.

It is interesting to note that the model (2.7) can also be used to study self-avoiding
fractal objects like Sierpinsky gaskets [58]. (But attention: One has to be careful in
distinguishing the fractal and the spectral dimensions of the membrane.)

Let us mention still another class of membranes, namely hexatic membranes. They
play an intermediate role between tethered and fluid membranes. For a review see [46]
and [59-61].

In the rest of this section, we review some simple arguments for tethered membranes,
as well as experiments.

2.3 Crumpling transition, the role of bending rigidity, and some approximations

Let us start by studying the different terms appearing in a mean-field description of
membranes. Let

FixeRP — #z) e R (2.9)
be the coordinates of a D-dimensional manifold embedded into a d-dimensional space. For
D =1, this represents a polymer, for D = 2 a membrane. Suppose that the underlying
lattice is regular and that after integration over the fast degrees of freedom the effective
model becomes translationally invariant. An expansion a la Landau then leads to an
effective free energy or “Hamiltonian” [62]

H[()) = [ 4% (0000 + 5 (0u)? + 1 (0u70s)" + 0 (700’

+o [ a2 [ a%st(ite) — 7)) (2.10)

The last term, a self-repulsion upon contact, is a non-local interaction in the internal
coordinates x, but local in the membrane position 7(z). The local terms are the different
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Rg

O

Figure 2.4: Free energy for ¢t < 0 (left) and ¢ > 0 (right) in the limit of large membranes.

contributions to the elastic energy. The coefficients ¢, u and v weight the elastic and
inelastic harmonic energies, whereas x measures the bending-rigidity.

The analogy to the usual ¢?-theory becomes apparent upon identifying the tangents
tn, := 0,7 as order-parameter. However, this analogy is only valid at the mean-field level,
and will be destroyed by fluctuations. Mean-field theory suggests a phase-transition at
t = 0, where the parameter ¢ is equal to T"— T,, the difference in temperature 7" to the
critical temperature 7.

At high temperature, t is positive due to entropy and the correlation between the
tangential vectors decays exponentially fast. The membrane is in a crumpled phase.

For negative ¢, the terms proportional to (9r)* restore positivity of the action, provided
that u+1v > 0 and u+ Do > 0. The symmetry is spontaneously broken, and the order-
parameter t, has a non-zero expectation value, of the form 7, = (&,, where &, is a set
of orthonormal base vectors. At zero temperature, the membrane is in a flat (ordered)

phase, with
1/
“=3\ur oy 211)

This resembles the XY-model in 2 dimensions. There, long-range order is destroyed by
spin-waves. We shall see in the next section, that fluctuations renormalize the rigidity
of the membrane and render it stiffer. This renormalization is sufficient to make the
membrane flat. For further discussion of the thermodynamic behavior see [63].

To incorporate self-avoidance, let us use the Flory-approximation. This consists in
replacing 7(x) by the radius of gyration Rg and derivatives with respect to z by 1/L, as
well as the integration over z by L, where L is the size of the flat membrane. This leads
(up to numerical factors) to

H ~ kLP 'RE +tLP 2R + (u+ Do) LP *Ri, + bL*P R . (2.12)

First of all, the bending-rigidity x can always be neglected with respect to ¢ and u.
For ¢ < 0 and in the physical region (D < d), the terms proportional to ¢ and u+ Dv
dominate and minimizing the free energy leads to

Rg~ L. (2.13)
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Self-avoidance can be neglected at large scale.
For t > 0, self-avoidance prevents the membrane from collapsing, and balancing the
terms of order ¢ and b gives

RG ~ [ VFlory (2.14)
with the Flory-exponent
2+ D
oy = ———— . 2.15
Velory = 5 (2.15)

We will show in section 7.5 that Eq. (2.15) is a reasonable approximation in the crumpled
phase. In general we will find
Rg ~ L” (2.16)

with some non-trivial exponent v*.

Let us still mention the results for v* in the crumpled phase, obtained by a Gaussian
variational approximation. We shall show in section 7.4 that this approximation becomes
exact in the limit of d — oo with probably exponentially small corrections. The work by
Goulian [64], Le Doussal [65] and Guitter and Palmeri [66] predicts:

2D
= — . 2.17
Z g (2.17)

For 2-dimensional membranes (D = 2), this differs from the Flory approximation by terms
of order 1/d?.

2.4 Stability of the flat phase

In the last section, we saw that a simple scaling analysis suggests the existence of a flat
phase. This phase could of course be destroyed by fluctuations. We shall show here that
this is indeed the case for fluid membranes, but that a non-zero shear-modulus, i.e. a fixed
connectivity, stabilizes the membrane in the flat phase [59].

Our presentation is largely inspired by the lecture of Nelson [67], but we will use an
e-expansion here instead of a self-consistent approximation.

To describe fluctuations of a membrane with inner coordinates x = (1, x2) around a
flat configuration, it is advantageous to use the representation

z1 + up (2, T2)
M@y, 22) = | 22+ uz(z1,22) | - (2.18)
h(l‘l,l'g)

The line-element d7 is

(1 + 81161) diUl + 82'&1 dl‘g
dr = C 81U2 d.Z'l + (]_ + 8211,2) d.Z'Q . (219)
Glhdxl + aghd.’L‘Q

The deformation of this line-element is described by the deformation-matrix u,s [68]

dr? = ¢? (dzx + 2Uqp da:adxﬂ) : (2.20)
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With the help of Eq. (2.19) we find:
1 1 1
Uag = 3 (8aUg + 85ua) + 5(8ah) (Bﬂh) + E(aauv)(aguv) . (2.21)

The last term is of higher order in u and can be neglected in the following. (It has to be
included at order £2.) We shall thus use

1 1
Uqp N 5 (aaUﬂ + 8ﬂua) + E(aah)(agh) . (222)

The energy of a nearly flat membrane is the sum of bending-rigidity and deformation
energy

K 1
H[u,h] = /d23; g (AR)* + 5 [Qﬂuiﬂ + )\U?W] : (2.23)

fiand A are the Lamé-coefficients [68]. (We use fi instead of the usual notation of y [68] to
reserve j for the renormalization scale.) %, i and X are related to x, u and v by &k = (2,
ji = 4u¢* and \ = 8o(*.

In this expression, the displacement vector u, appears only quadratic and can thus be
eliminated by calculating its path-integral

Her [h] = —kpT In [/D [u] e_H[u’h]/kBT] : (2.24)

We separate in uqg(x) the (¢ = 0)-mode and use for the other modes the Fourier decom-
position

uop(x) = uaﬁ + AY op Tt Z < [qatp(q) + qptia(q)] + fiag(q)> ela® (2.25)
q#0

where

= /d% e "y () (2.26)

and A,g(q) is the Fourier transform of A,g(x) = 19,h(z)0sh(x):
- 1 .
Aasla) = 5 / 2z e 9, h(2)Dsh(z) . (2.27)

For ¢ # 0, flag(q) is now decomposed into its longitudinal and transversal parts. (That
this is indeed possible is shown in appendix A.3.)

Aupla) = 5 [0a85(0) + as50(0)] + Po(@)B(a) (2.28)
where
Plsta) = bas = 5 (2.29)

is the transversal projector and

®(q) = Pas(q)Aas(9) - (2.30)
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We can now absorb the longitudinal part ¢s(g) of As(g) by shifting the variable @4(q):
Ua(q) — ta(q) = Palq) - (2.31)
[t remains to integrate over i,(q). To this aim expand
T := 20 10ap(q)Uas(—q) + A liaa(q)Uss(—q) (2.32)
in the basis of rotational invariants ¢, |qi(q)[* and @(q)u(—q):
T = fig[a(q)?| + (i + Mlqi(g)* + 2+ N)|@(g)]* + A (iqii(q)®(—q) +c.c.) . (2.33)
By a second variable-transformation

)\ iQa .
— @ 2.34
g 2 (2:34)

ialg) — talg) +
terms proportional to ® and @ are decoupled and we obtain
®(q)®(—q) + quadratic terms in . (2.35)
Up to a constant, the effective Hamiltonian (2.24) thus becomes

Harlt] = 5 [ (A0 +§ [ (PL uh(@)ash () (2.36)

The “prime” indicates that the 0-mode is excluded from the integral. The coupling
constant K is
_ (g4 A
Ko MeEA (2.37)
20+ A
We see that the shear-modulus f is responsible for the interaction. For fluid membranes,
fi = 0 and no correction appears, even if A # 0.
We shall now study Eq. (2.36) in perturbation theory, by using an € = 4— D expansion.
A similar technique was employed by Aronovitz and Lubensky in [20], where they study
the RG-flow for all fields. A self-consistent method was utilized in [59,67].

To carry out an e-expansion, we rewrite the effective Hamiltonian (2.36) as
Z K !
Heall] = = / A% (AR)? + 5 Zicp / d% (P2 [0ah()9sh(2)]) . (2.38)

where & has been absorbed into the field-normalizations (h — h/v/k) and

ho(x) = VZ h(z) . (2.39)
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The renormalization factors Z and Zj, absorb the divergences and are fixed by the minimal
subtraction scheme. g is the renormalization scale, ¢ = 4 — D the dimension of the bare
coupling. Bare quantities are indexed as ¢. The vertex is

N, 0
K T Petmrate) g 0P - 026

- (2m)P i=1,2 (' +4q')° (2.40)

A
P2 N @
We shall now calculate perturbative corrections. As the 0-mode is excluded from the
integration, the contribution to £ coming from the “tadpole” is 0:

Q =0. (2.41)

I
—_——

The second contribution to the renormalization of k is:

Il /< (p+k)? 25%' (2.42)

A divergence for k£ — oo is mamfest as a pole in 1/e with positive residue C (which needs

not be specified): L
C —€
() = (2.43)
PP

The divergence of this diagram is subtracted at scale p by choosing

Z=1- §K (2.44)

The sign is such that the interaction re-enforces the bending-rigidity. To analyze the
renormalization of the vertex, we remark that due to the transversal projector, all three
possible diagrams are convergent:

5, OO .45

This is not evident from power-counting. Hence at 1-loop order
Zx =1, (2.46)

and renormalization becomes particularly simple. The function $(K) and the full scaling
dimension ((K) of the field h, the roughness-exponent, are obtained from Eq. (2.39) as

—ck (2.47)
“au T I+ KL InZg—2K2nZ '
(E)y=2=L_1,9 1nZ—Q——ﬂ( )z (2.48)

2 2" 0y 2 0K
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Figure 2.5: Estimates of the roughness-exponent ( as a function of time. Courtesy of P. Le Doussal, with
kind permission; figure by P. Le Doussal and L. Radzihovsky.

Since C is positive, the [-function possesses a positive, IR-stable fixed point at 1-loop
order, which we denote K*. Then

" =((K*) = % +O(€?) . (2.49)

(This result could have faster been obtained by using the method of exact exponent
identities explained in section 3.9.) In D = 2

("= % +O(€?) . (2.50)

This can be interpreted as an effective k-dependent bending-rigidity
ke (k) & Fo% . (2.51)

We can now analyze the stability of the flat phase. Following De Gennes and Taupin [69],
we estimate the fluctuations of the normal to the surface projected on x3 (the component

parallel to h(z)):
nz(r) = ! (2.52)

J1+ (Vh(z)?

The first term of the expansion is the mean of (Vh(z))?. Without interaction (K = 0) it
is:

d?q ¢* kgT
Vh(x))? :kT/——w—l L/a) | 2.53
(Vh)?), = o [ G55 ~ 52 (Lo (2:53)
where L and a are IR and UV-cutoffs. As for many two-dimensional systems, the loga-
rithmic divergence at large distances indicates that order is destroyed by fluctuations.
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For membranes with non-zero shear-modulus, the estimate (2.53) is incorrect. One
has to take care of the renormalization of , hence replace x in Eq. (2.53) by ke (k), given
by Eq. (2.51). This yields:

d2 2
((Vh@)?),.,. . =ksT [ (2—732@ — IR-convergent . (2.54)
The normals keep their preferred direction parallel to x3, even for systems with infinite
size. The symmetry is broken and the membrane flat. This seems to be a violation
of the Mermin-Wagner theorem: In fact, the fluctuations in the membrane give rise to
long-range interactions, for which the Mermin-Wagner theorem is not valid.

To conclude: As soon as the membrane is in the phase of high bending-rigidity, i.e.
the flat phase, the in-membrane fluctuations reinforce the bending-rigidity and stabilize
the membrane. Stated differently: The fixed point of the flat phase is attractive.

Nevertheless, the fluctuations in the height h are large and described by a non-trivial

roughness exponent ¢
((h(w) = h(@))?) ~ |z = yI% . (2.55)

This exponent was estimated above to be % It can also be calculated by an expansion in
1/d [70], e = 4 — D [50] or within a self-consistent screening approximation [71] and can
be compared with experiments [72], and numerics [16,73-77]. This should rule out the
value of ¢ = %, proposed in [78-80]. This is summarized in figure 2.5.

We have also mentioned above that the crumpling transition occurs at a critical value
of the bending rigidity. This transition point is a different tri-critical state, accessible
to renormalization-group treatments and numerics. The fractal exponent v* is then 0 in
the crumpled phase, 1 in the flat phase, and at the crumpling transition given by the
1/d-estimate [70,51]

12 (2.56)
C d ? "
which agrees with numerical values in d = 3 [81,82]. See also [46,50,63,83-87].

Also see [88] for a study of the membrane elasticity at low temperatures and [89] for
a stack of membranes.

2.5 Experiments on tethered membranes

Few experiments have been realized up to now. The most promising are:

e The spectrin-network of red blood cells forms a natural membrane, easily accessi-
ble experimentally [94,72]. The inconvenience of this system is the large intrinsic
bending-rigidity which first has to be reduced. No experiment showing a crumpled
phase has been done. In the flat phase, one finds an anomalous roughness exponent
¢ of about (gar &~ 0.6 [72], as discussed at the end of the preceding subsection.

e 2-dimensional networks of polymers [95] seem to be promising. However, experi-
mental measurements are missing. Recently, Rehage and coworkers have succeeded
in producing sufficiently highly polymerized membranes [96] and experiments to find
the fractal phase are planned [97].
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Figure 2.6:

Figure 2.7: Image of a graphite membrane taken by a transmission electron microscope [93]. The linear
dimension is about 1 micrometer.

e Molybdene disulfide (MoS3) can be produced in extremely pure form. The experi-
ments which we know of [98] find it in a strongly folded phase.

e Graphite oxide: For this material, experiments have been realized: Graphite is a
layered material, and only very weak (van der Waals) forces exist between different
layers. One therefore may cut out a piece of such a layer. By an exothermic reaction
of graphite with some oxidant (the principle of black powder), one obtains a sample
which consists of pieces of a single layer of graphite, decorated with oxygen-atoms
at its border. One expects that these membranes have a very small bending-rigidity.
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Figure 2.8: Static structure factor of graphite oxide membranes membranes in alkalic solution as function
of the wave-vector ¢ obtained from light-scattering in the visible domain. Taken from [93] (left) and [99]
(right).

The first experiments undertaken by Hwa et al. [93] have shown such a crumpled
phase with a fractal dimension near to the Flory results (df = 2.5) besides a col-
lapsed and a flat phase. This was achieved by varying the concentration of H' of
the dispersion. In later experiments by Spector et al. [99] this intermediate phase
was no longer observed. The interpretation of these experiments is however not
unambiguous. Extrapolating the light-scattering data of [93] reproduced on figure
2.8 predicts a fractal dimension of df = 2.4 whereas the very similar data of [99] lead
to d¢ = 2.3. However, based on a technique, where the sample is frozen ultra-fast,
then cut into thin samples and analyzed via transmission electron microscopy, the
authors of [99] were unable to see fractal objects and therefore concluded on the
absence of a fractal phase. This debate certainly deserves further clarification. For
more details see [100].

In summary: The experimental situation is not very transparent.

Let us still mention another very amusing class of experiments. Crunching a thin
aluminum foil in the attempt to form a ball [101,102], also allows to measure a fractal
dimension, which turns out to be very close to the Flory-result of Eq. (2.15). This result
is easily reproduced on a table-top experiment with paper, see figure 2.9. However, since
crunching aluminum foil is certainly a non-equilibrium process, this may be a coincidence.

2.6 Numerical simulations of self-avoiding membranes

In this section we review existing numerical simulations of tethered membranes. If not
stated otherwise, these are membranes (D = 2) embedded into 3 dimensions.

The first simulations for self-avoiding membranes were performed for very small sys-
tems (121 beads) by Kantor, Kardar and Nelson [14,15] in 1986. They obtained v* =
0.80 £ 0.05 in agreement with the Flory-approximation. Here, as in most of the simula-
tions, self-avoidance is effective between the beads (of finite size) of the network. There
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Figure 2.9: Result of crunching a sheet of paper of linear size L to a ball of diameter R. This leads to a
fractal dimension of dy = 2.4, equivalent to v* = 0.82.

exists thus a maximal angle smaller than 7, by which the membranes can be folded. (For
a visualization, see figure 2.3.)

As we discussed in section 2.4, phantom membranes show a crumpling transition
induced by bending-rigidity. Shortly after this had been established numerically [81,82],
an attempt was made to study this transition in the presence of self-avoidance [103-107].
The transition has completely disappeared and the membranes were always found flat for
any (positive) value of the bending-rigidity. A simple explanation due to Abraham and
Nelson [16] goes as follows: the simulated model consists out of beads (of finite size) and
tethers linking the beads together. The tether-length is chosen such that the beads cannot
penetrate through the holes left in-between. Then, the range of possible configurations is
restricted and is re-interpreted as an effective bending-rigidity. This bending-rigidity was
claimed responsible for the flat phase, following the scenario of the crumpling transition
of a phantom membrane, induced by bending-rigidity.

The question therefore arises, whether the flat phase is an artifact of the simulations,
or whether it is generic. Let us mention two simulations in this context: The first is due to
Kantor and Kremer [108]. They studied the usual bead-and-tether model, but restricted
self-avoidance on the membrane to a finite distance [. Since now the interaction is local,
one can study the crumpling transition induced by the bending-rigidity . For o > o,
a flat phase is found, whereas for 0 < 0. the membrane is found in a crumpled state.
Taking now the limit of large [, the value of the critical bending-rigidity o. scales to 0.
They then concluded that this indicates that the flat phase persists down to o. = 0. It
would be nice to have more extensive simulations available than the 169 to 331 beads
studied there.

In another simulation, Liu and Plischke [109] have found an intermediate fractal phase
by adding long-range attraction, and then adjusting the temperature. This intermediate
phase was found for some range of temperature and membranes of up to 817 particles.
In a similar simulation, Grest and Petsche [110] were also able to find this intermediate
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phase, but only for a specific value of the temperature. This is not surprising from the
renormalization-group point of view: Long-range forces are in general relevant operators,
such that a fine-tuning is necessary to reach the critical point. Let us also mention another
trick used in [110]: They rendered the membrane much more flexible by adding additional
beads between the nodes of the lattice, forming the membrane.

A similar idea is to dilute the membrane by randomly cutting off links [111,112]. This
attempt was not very fruitful: The flat phase persisted up to the percolation threshold.

The best numerical realization of tethered membranes is obtained by imposing self-
avoidance not between beads but between the plaquettes forming the membrane. The
first such simulation was carried out by Baumgértner et al. [113,114], who indeed found
the fractal phase. Within a very similar simulation, Kroll and Gompper [115] were not
able to confirm these conclusions. A repetition of these simulations with larger systems
as those studied there (up to 496 plaquettes) would be very much welcome to clarify the
situation.

Other interesting simulations are for membranes in a 4-, 5-, 6- and 8-dimensional
space. Grest found in [116] that membranes are flat in dimensions d = 4, but crumpled
swollen in larger dimensions. Complementary simulations by Barsky and Plischke [117]
confirm this conclusion. These simulations are in agreement with the value of v* predicted
by the Gaussian variational ansatz, vy, = 2D/d (see section 7.4), and larger than the
2-loop results (see figure 7.5 of page 86).

Remains to mention simulations on a Sierpinsky gasket with fractal dimension of about
1.585 and spectral dimension of about 1.356 [58]. As in the case of polymers, the results
for d = 3 are in agreement with the Flory-approximation Eq. (2.15).

Also the folding transition of a membrane has been studied numerically [118].

Let us also mention studies of tethered membranes in confined geometries [119-121],
of boundary effects [122], with negative bending-rigidity [123], of dynamics [124], and a
couple of short reviews about the simulational aspects of tethered membranes [125,126].

2.7 Membranes with intrinsic disorder

A lot of publications have been devoted to the treatment of tethered (phantom) mem-
branes with intrinsic disorder, including two-dimensional gels [71,111,127-144]. Let us
give a brief summary of the main ideas, following the first publications [127-131]. Two
kinds of disorder can be added. Since we are interested in the stability of the flat phase
to such disorder, we study the Hamiltonian of a membrane in an expansion about a flat
configuration, generalizing Eq. (2.23). We consider the general case of a D-dimensional
membrane embedded in a d-dimensional space, such that

Ty + Ug(T)

f@):g( Wia) ) , (2.57)

where u(z) € R” describes the D in-membrane (stretching) modes and h(z) € RéP
the fluctuations in the d — D transverse directions. The full Hamiltonian then reads in
generalization of Eq. (2.23)

H [u, h] = / d” g (Aii)2 + % 272 5+ M2, | + 0ap(@)ttag(x) + E(2)AR(z) ,  (2.58)
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where we recall the definition of the deformation-matrix
1 1 - - 1
Uag = 5 (8aug + 8gua) + 5(8ah) (Qgh) + 5(8au7)(85u7) . (259)

0ap(7) is a quenched random stress field, or variation of the metric. Microscopically it
is due to different tether-lengths in the spring and bead model of figure 2.3. &(z) is a
quenched random curvature field, favoring the mean curvature Aﬁ(x), and breaking the
reflection symmetry between the two sides of the membrane. It may be caused by a
local difference in the chemical composition between the two sides of the membrane. The
correlations are short ranged, of the form

a5 (1)0y5(2") = [Axdasdys + 284(0arIp5 + daslpy)] 07 (x — ')
ci(z)cd (2') = Agbi0" (v — ') . (2.60)

To study the renormalization group flow, the model is replicated, and the disorder aver-
ages are taken. This leads to an effective Hamiltonian similar to the pure model, but now
with couplings between different replicas. One can then parallel the calculations of the
pure model. The outcome is that at finite temperature, the long-wavelength properties of
the membrane are unchanged. New physics emerges at or very near to zero temperature,
characterized by a new non-trivial fixed point. Membranes with non-zero random spon-
taneous curvature are found in a flat phase with non-trivial critical exponents, analogous
to the flat phase of the pure model at non-zero temperature [129-131]. This fixed point
is accessible within an e-expansion. Membranes with disorder in the metric are more
difficult to access, since the fixed point lies outside the perturbatively accessible domain
[127,128].

3 Field theoretic treatment of tethered membranes

3.1 Definition of the model, observables, and perturbation expansion

We start from the continuous model for a D-dimensional flexible polymerized membrane
introduced in [19,17]. This model is a simple extension of the well known Edwards’ model
for continuous chains. The membrane fluctuates in d-dimensional space. Points in the
membrane are labeled by coordinates € RP and the configuration of the membrane in
physical space is described by the field r : # € R — r(z) € R?, i.e. from now on we
note r instead of 7. In section 2.3 we had discussed that at high temperatures the free
energy for a configuration is given by the (properly rescaled) Hamiltonian

Hlr] = 52 [ (V@) + bz [ [ 5(r(w) —(0) (3.1)

The so-called renormalization-factors Z and Z, have the form Z = 1 + O(b) and Z, =
140(b); they will be explained later. The reader may safely set both to 1 for the moment.
The integral [, runs over D-dimensional space and V is the usual gradient operator. The

normalizations are
D/2

x/ = %/d% . Sp= 2F7(TD/2) (3.2)




Field theoretic treatment of tethered membranes 25

2
self-avoidance relevant
1.5+
D 1
self-avoidance irrelevant
0.5+
0 t t t
0 5 10 15 20

d

Figure 3.1: The critical curve e(D,d) = 0. The dashed line corresponds to the standard polymer pertur-
bation theory, critical in d = 4.

and
0(r(x) = r(y)) = (4m)?6%(r () = r(y)) . (3.3)

The latter term is normally used in Fourier-representation
5(r(z) - r(y)) = / (Pr@—r)] (3.4)

where the normalization of [, is given by

/ = g2 / dp (3.5)

/ e P'a = q=d2 (3.6)

p

to have

All normalizations are chosen in order to simplify the calculations, but are unimportant
for the general understanding. (They are collected in appendix A.1). g is an internal
momentum scale, such that pz is dimensionless. It is introduced to render the coupling
b dimensionless. The first term in the Hamiltonian is a Gaussian elastic energy which
is known to describe the free “phantom” surface. The interaction term corresponds (for
b > 0) to a weak repulsive interaction upon contact. The expectation values of physical
observables are obtained by performing the average over all field-configurations r(z) with
the Boltzmann weight e=*I"l. This average can not be calculated exactly, but one can
expand about the configurations of a phantom, i.e. non-interacting surface.
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Such a perturbation theory is constructed by performing the series expansion in powers
of the coupling constant b. This expansion suffers from ultraviolet (UV) divergences
which have to be removed by renormalization and which are treated by dimensional
regularization, i.e. analytical continuation in D and d. A physical UV-cutoff could be
introduced instead, but would render the calculations more complicated. Long-range
infrared (IR) divergences also appear. They can be eliminated by using a finite membrane,
or by studying translationally invariant observables, whose perturbative expansion is also
IR-finite in the thermodynamic limit (infinite membrane). Such observables are “neutral”
products of vertex operators

N
O=][e* ) Sk =0. (3.7)
a=1 a=1
An example is given at the end of subsection 3.3.

Let us now analyze the theory by power-counting. We use internal units p ~ 1/x,
and note [z], = 1, and [u], = —[py], = —1 . The dimension of the field and of the
coupling-constant are:

2—-D
vi= M’”ZT , e=[bpf],=2D—vd. (3.8)
In the sense of Wilson [2] the interaction is relevant for £ > 0, see figure 3.1. Perturbation
theory is then expected to be UV-finite except for subtractions associated to relevant
operators. We shall come back to this point later.

For clarity, we represent graphically the different interaction terms which have to be

considered. The local operators are

1=1 (3.9)
%(Vr(a:))z _ 4. (3.10)

The bi-local operator, the dipole, is
5(r () = r(y) = +— . (3.11)

The expectation-value of an observable is

/ Dlr HIr]
. (3.12)
/ Dlr
Perturbatively, all expectation-values are taken with respect to the free theory:
/ D[] O[] e =7 J. (V@)

/D o725 [, 3(Vr@)?

A typical term in the expansion of (3.12) is

(—bZyi?) // // (Oo—o .. o—e) | (3.14)

where the integral runs over the positions of all dipole-endpoints.

(3.13)
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3.2 Locality of divergences

In this section, we show that all divergences are short distance divergences. Note that even
for massless theories and in the absence of IR-divergences, this is not trivial. Divergences
could as well appear, when some of the distances involved become equal, or multiple of

each other. A simple counter-example is the integral of ‘|a| , where a and b are
two of the distances involved.

That divergences only occur at short distances (i.e. when at least one of the distances
involved tends to 0), is a consequence of Schoenbergs theorem [145]. Here, we present an
proof, based on the equivalence with electrostatics.

We first state that with our choice of normalizations (see appendix A.1), the free

correlation-function C'(z1, x9)
C(z1,m9) = = ( = [r(z1) — r(x9)] = |z1 — 9
d \2 0
dPp 1 N
=(2— D)SD/ )P 7 (1= ePm=m)) (3.15)
is the Coulomb potential in D dimensions. Furthermore, the interaction part of the
Hamiltonian # is reminiscent of a dipole, and can be written as

Hiw = b2gs” [ [ 8°(r (1) = r(a2))

T1 T2

= be;f///eik[T(Il)*T(Iz)] : (3.16)

T1 T2 k

where £ may be seen as a d-component (vector-) charge.

The next step is to analyze the divergences appearing in the perturbative calculation of
expectation values of observables. To simplify the calculations, we focus on the normalized
partition function

2ol s e pm

all configurations

To exhibit the similarity to Coulomb systems, consider the second order term

<Hmt be,u ////// tk[r(zy) T:L‘z}elp[ r(y1)—r (yz)]>0

r1 T2 Y1 Y2

S]]

T1 T2 Y1 Y2
E.=KC(z; —x3) +p C(@/l —y2)
+kp [C(x1 — y2) + C(az —y1) — C(ar —y1) — Claa — y2)] (3.18)

where E, is the Coulomb-energy of a configuration of dipoles with charges £k, and £p, re-
spectively. More generally, for any number of dipoles (and even for any Gaussian measure)
we have

(DAY = Ee= 0 (hr() hyr(e)), (3.19)

0 —
Z’J
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Since >, k; = 0, the latter can be rewritten with the help of the usual correlation function

Clz—y) =5 <[7“(33) - 7“(@/)]2>0 as
E. = —4—1d S ki (i) — r(ay)P), - (3.20)

As for any configuration of dipoles, specified by their coordinates and charges, the total
charge is zero, the Coulomb-energy is bounded from below, i.e.

E.>0. (3.21)

Formally, this is proven by the following line of equalities (remember that D < 2)
1
Ec = 5 Z (kz’l“(.l‘l) kj’l“(.l‘j)>0
i\j

(2_D)SD ip(zi—x;
- 2 / 27rD Zkk_e g
B 2 /

ipT;

2 . (3.22)

The last inequality is again due to the global charge neutrality, which ensures convergence
of the integral for small p. Hence, E, vanishes, if and only if the charge density vanishes
everywhere. This implies that

e e <1, (3.23)

and the equality is obtained for vanishing charge density. Noting E. = 3=, ; kik;Qi;, Eq.
(3.22) even states that as long as x; # z; for all i # j, @Q;; is a non-degenerate form on the
space of k; with 3, k; = 0. This implies that integrating e ¢ as in Eq. (3.18) over all k;
with Y, k; = 0 gives a finite result, as long as not some of the x; coalesce. Consequently,
divergences in the integration over x; can only appear when at least some of the distances
vanish, as stated above.

This does of course not rule out IR-divergences. We will see later that they are absent
in translationally invariant observables. An explicit example is given at the end of the
next section; for a proof see [57].

3.3 More about perturbation theory

Let us apply the above observation to evaluating the integrals in Eq. (3.18); this will give
an intuitive idea of the kind of counter-terms needed to cancel the UV-divergences, as
will be made formal later. The basic idea is to look for classes of configurations which are
similar. The integral over the parameter which indexes such configurations is the product
of a divergent factor, and a “representative” operator. For the case of two dipoles, one
with charge &k and the other with charge p—k, and approaching its endpoints (as indicated
by the dashed lines below), one only sees a single dipole with charge p from far away, i.e.

k ‘,'.)\/.\ﬁ.\ —k —k2(|s‘2_D+‘t|2_D)

MU I A (3:24)
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The second factor on the r.h.s. contains the dominant part of the Coulomb energy E. =
E2(|s]>P + |t|>P) of the interaction between the two dipoles; s and ¢ are the distances
between the contracted (approached) ends. The integral over k is now factorized, and we
obtain
/esz(\s|2_D+|t\2_D) _ (|8|27D + |t|27D)7d/2 ‘ (325)
k
Finally integrating over p in Eq. (3.24) gives back the d-interaction «—— multiplied with
(is7 73i|=——), where we define the coefficient as

’/"\ ’,~\\ _ _ _d/2
(& Tzfe—) = (IsP=" +1eP") " . (3.26)
The notation, which will be explained later, reminds of a scalar product or projection

of a singular configuration of two dipoles onto a single dipole. Eq. (3.26) contains the
dominant UV-divergence upon approaching the endpoints; this will be made formal later.

As an example of an expectation value, use in Eq. (3.7) the observable O = e®*[r(s)=r(®)],
which is the generating function for the moments of [r(s) — r(t)]; the series up to first
order in b reads (remind Z, =1+ O(b))

<O>b _ ekaC(sft) %

{1+bug//~P_*mp<1k2KXs—xy+cxvﬂn—(xs—yr4?u—xn2)lC%x_yyﬂp

4 Clz—y)
+O(b2)} : (3.27)

Note that the integral over x and y is IR-convergent, but UV-divergent at ¢ < 0: There
is a singularity for |z — y| — 0. This is a general feature of such expectation values.
The purpose of the rest of this section is to introduce the basic tools to handle these
divergences. On the example of Eq. (3.27), this is verified in exercise 6, see page 178.

3.4 Operator product expansion (OPE), a pedagogical example

Throughout this review, we will use the techniques of normal-ordering and operator prod-
uct expansion to analyze the short distance behavior of the theory. Since their technical
simplicity is as little recognized as their 1 to 1 correspondence to standard Feynman-
graphs, we shall give here a pedagogical derivation of the 2-loop result for the exponent n
in standard scalar ¢* theory, before discussing the case of a membrane in the next section.
Complementary material can be found in [146]. Readers familiar with the procedure can
continue with section 3.5.
Define the renormalized ¢*-Hamiltonian as

H = % / (Vo())? + b / () . (3.28)

The integration measure is normalized as

d/2

ZZi/““ S0 =2 57y 3:29)
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where Sy is the surface of the d-dimensional unit sphere. This is done in order to obtain
for the free expectation values (denoted by subscript g)

Clz —y) = (d(2)d(y))y = lv —y[*. (3.30)

Note the similarity and difference between the definitions in Eq. (3.15) and Eq. (3.30); the
difference results from the 0-mode, which has to be subtracted in the case of polymers
and membranes (D < 2), but not of the ¢*-model (d > 2).

The dimensional regularization parameter e is

e=4—-d, (3.31)

and p is the renormalization (subtraction) scale. Note the difference to Eq. (3.8), where
we use ¢ instead of e. The renormalization Z-factors, introduced to render the theory
finite, start with 1, and higher order terms in b will be added to cancel the divergences.

The dots “:” indicate the normal-order procedure. We define the normal order of an
operator O as

:0: = O — all tadpole-like diagrams constructed from O . (3.32)

In other words: By normal-ordering an operator, we just subtract all self-contractions.
Let us give some examples

1p*(x): = ¢*(x) — C(0) 1
:9z): = ¢*x) — 6C(0) :¢*(x): —3C2(0) 1 (3.33)

Note that on the right-hand side all subtracted terms are normal-ordered. One can of
course recursively replace them, which for :¢*(x): e.g. leads to

¢ (x): = ¢*(x) — 6C(0)p*(x) +3C%*(0) 1 . (3.34)

In the dimensional regularization scheme, these relations are much simplified through the
rule that C'(0) = 0. Note also that the normal-order prescription is associative.

Normal ordering is a powerful tool to organize the perturbation expansion. Let us show
this by proceeding to the real calculation. We want to study the short-distance behavior
of two operators : ¢*(z): and : ¢*(y): in an OPE. To this aim we first normal-order the
product of the two interactions:

1M (2):: 00 (y): = 10" ()" (1)
+16 :¢°(2)9°(y): Ca — y)
+72:¢%(2) 9" (y): C*(a — y)
+96 :6(2)p(y): C*(z — y)
+24 1 CHz —y) . (3.35)

It is now essential that the normal-ordered product of two operators is free of divergences
when these operators are approached; the divergences are contained in the factors of
powers of C'(z —y). E.g. at leading order, the first term in Eq. (3.35) becomes

M)t (y): = 0¥ (2): + .., (3.36)
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where z = a:T—I—y Let us now consider the perturbation expansion of the expectation value
of an observable O

0), = % [Dlgle 0= (e [ o)™ (3.37)

where (...), denotes the free expectation value, and we retain only diagrams that are
connected to points in the observable O. The term quadratic in b contains (setting all
Z-factors equal to 1 for the moment)

bZ;L%w// . (2): 61 (y): O (3.38)
[ [ 6 @6t w): (3.39)

possesses short-distance divergences according to Eq. (3.35). More explicitly, the first two
terms, :¢* (z)d*(y): and 16 :¢*(2)p3(y): C(x —y) are free of divergences when |z —y| — 0.
The third one is upon integration over x and y

Observe now that

72// 62 ()62 (y): C*z — ) _72A/ 4(2): + finite | (3.40)
where
hae 1
A= /02(15) - / S D = Sy (3.41)
€
t 0

It is very important to note that the integral over C?(x — y) is localized at x —y = 0.
This means that for any smooth function f(z,y)

[ [ -niwn =" [ 12+ 0, (3.42)

or more formally that C?(z — y) becomes in the limit of e — 0 a distribution

C*(x —y) =

64z —y) + O(%) . (3.43)

This explains why in Eq. (3.40) we could simply replace :¢?(x)¢?(y): by :¢*(2):. It is now
easy to see that after introduction of a renormalization factor

b
Zy =1+ 36- (3.44)
€

a second term of order b* will appear in the perturbation expansion, namely

b2 €
—36%/ $1(2): O, (3.45)
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which will cancel the divergence. This is the only renormalization necessary at 1-loop
order. Especially, no counter-term for [, 1 :(V(z))?: is necessary at leading order in b.
However, it demands a renormalization at second order, arising form the term

:p(2)(y): C(a —y) - (3.46)
As above, we now have to analyze the integral (t =z — y)
[ ) :0()0ly): (3.47)
t
Noting that
/ C3(t) = %td 320 = %ﬂ” (3.48)

t

the leading term is a relevant (quadratic) divergence. We therefore have to expand ¢(z)
and ¢(y) up to second order

o) = 02) + TV + 1 (L5E9) 6@ 10 (e —wf)  (3a9)
to obtain
ol)s = 3|0 + T3 00 + 5 (F509) 00 +0 (10 - )
600+ 5 w0l + 5 (15 09) 0+ 0 (10— )|

=020 — [l — VORI +5 0() [0 — )V 6(): +0 (2~ ))
(3.50)
With the help of Eq. (3.48), Eq. (3.47) becomes

pt

0/ %mez [;qﬁ(z)?; —i—d :(V¢(z))2; +i_d :9(2)Ad(2): +O ((t)?’)]
- _‘;:26 :9(2)*: _u2—€f4_1d [(Vo(2)*: — :6(2)Ag(2):] + finite . (3.51)

The first term does not come with a pole in 1/e and in addition scales to 0 in the large
L = 1/p limit. It will thus be neglected. The remaining two terms are equivalent up to
a total derivative, and thus Eq. (3.38) yields another divergent term

240% 11

o J 5 (Vo(2))*: O (3.52)

This is renormalized (canceled) by setting

24(d — 2) b b?
24(d - 2) b° =1 — 12> + finite . (3.53)

Z=1-
d € €
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The last step is as usual to calculate the renormalization group functions (b) and n(b),
quantifying the flow of the coupling b and the field ¢ upon changing p [147]'. The result
is

B(b) = o b= —eb+ 366> + O(b°) (3.54)

InZ = 24b* + O(b°) . (3.55)

Note that the f-function has a non-trivial IR-stable fixed point (3(b*) = 0) at b* = ¢/36
and that this is sufficient to get the exponent n up to order €*:

62

n=mn(b") = 1 (3.56)

Finally, let us still note the equivalence of the OPE with standard Feynman-diagrams.
The first integral was

:&um%w:/c%x—w=:>x::::xi. (3.57)

Usually, this is written in momentum space as

P 1 1

The other diagram was

:mmww:/cﬂx—wz{:::}. (3.59)

Note that if we parameterize the latter by the momentum p which is running through,

then
11 1 1
- % ://_2_2( toAp)? A (860
P 4142 \q1 742 TP €

The factor of p? is the equivalent of the derivatives appearing in Eq. (3.51).

3.5 Multilocal operator product expansion (MOPE)

In section 3.2, we showed that for self-avoiding membranes divergences only occur at short
distances. The situation is thus similar to local field-theories for which we discussed in the
last section how the techniques of operator product expansion can be used to analyze the
divergences. Our aim is now, to generalize these techniques to the multilocal case [56,57].
Intuitively, in the context of multilocal theories — by which we mean that the interaction

!For membranes, a derivation of the renormalization group functions is given in appendix A.4
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depends on more than one point — we also expect multilocal operators to appear in such an
operator product expansion, which therefore will be called “multi-local operator product
expansion” (MOPE). Its precise definition is the aim of this section, whereas we shall
calculate some examples in the following one.

We start our analysis by recalling the general form of a (local) operator product
expansion of two scaling-operators ®4(z + Az) and ®p(z + Ay) in a massless theory in
the limit of A — 0:

Dy(z 4+ \x)Pp(z+ Ay) = Z Ci(z, Az, \y) ®;(2) , (3.61)

where Cj(z, Az, A\y) are homogeneous functions of A
Ci(z, Az, Ay) = NPalA®sl~®d. 0y (5 2 ) (3.62)

Here [®]_ is the canonical dimension of the operator ® in space-units such that [z] =1, as
obtained by naive power-counting. If the theory is translationally invariant, C;(z, z,y) is
also independent of z, and we will suppose that this is the case, if not stated otherwise?.
Also recall that this relation is to be understood as an operator identity, i.e. it holds
inserted into any expectation value, as long as none of the other operators sits at the
point z, to which the contraction is performed.

An example for the multilocal theory is

(3.63)
Let us explain the formula. We consider n dipoles (here n = 5) and we separate the
2n end-points into m subsets (here m = 3) delimited by the dashed lines. The MOPE
describes how the product of these n dipoles behaves when the points inside each of the
m subsets are contracted towards a single point z;. The result is a sum over multilocal
operators ®;(z1,...,2,), depending on the m points z1,. .., 2, of the form

ZC’i(xl—zl,...) q)l (Zl,ZQ,...,Zm) , (364)

where the MOPE-coefficients C;(z1 — z1, ...) depend only on the distances z; — z; inside
each subset. This expansion is again valid as an operator-identity, i.e. inserted into any
expectation value and in the limit of small distances between contracted points. Again,
no other operator should appear at the points 2y, ..., 2,,, towards which the operators
are contracted. As the Hamiltonian (3.1) does not contain a mass-scale, the MOPE-
coefficients are as in Eq. (3.62) homogeneous functions of the relative positions between the

2Translation invariance is e.g. broken when regarding systems with boundaries or initial time problems,

see section 8.4 and [148] for a review. It is also broken when the underlying metric is not constant, see
[57,149].



Field theoretic treatment of tethered membranes 35

contracted points, with the degree of homogeneity given by simple dimensional analysis.
In the case considered here, where n dipoles are contracted to an operator ®;, this degree
is simply —nvd — [®;],. This means that

CiA\(x1 — 21),...) = AT kO (1 — 2, .. ) (3.65)

where [®;], is the canonical dimension of the operator ®; and —d(2 — D)/2 is simply the
canonical dimension of the dipole.

In order to evaluate the associated singularity, one finally has to integrate over all
relative distances inside each subset. This gives an additional scale factor with degree
D(2n —m). A singular configuration, such as in Eq. (3.63), will be UV-divergent if this

degree of divergence
2—-D

D(2n—m)—n d— [P, , (3.66)

is negative. It is superficially divergent if the degree is zero and convergent otherwise.
The idea of renormalization, formalized in section 3.8 and proven to work in section 5, is
to remove exactly these superficially divergent contributions recursively.

3.6 Evaluation of the MOPE-coefficients

The MOPE therefore gives a convenient and powerful tool to calculate the dominant and
all subdominant contributions from singular configurations. In this section, we explain
how to calculate the MOPE-coefficients on some explicit examples. These examples will
turn out to be the necessary diagrams at 1-loop order.

In the following we shall use the notion of normal-ordering introduced in section 3.4.
The first thing, which we use, is that

celkr(@), = gtkr(@) (3.67)

Explicitly, tadpole-like contributions which are powers of
/ aPp L (3.68)
e

are omitted. This is done via a finite part prescription (analytic continuation, dimensional
regularization), valid for infinite membranes, for which the normal-order prescription is
defined. Let us stress that this is a pure technical trick, which is not really necessary.
However, adopting this notation, the derivation of the MOPE-coefficients is much simpli-
fied, and we will henceforth stick to this convention. The suspicious reader may always
check that the same results are obtained without this procedure. This is clear from the
uniqueness of the finite-part prescription.
The key-formula for all further manipulations is

elhr(@) o) = ekPC(a=y) gihr(@)eirr(y) . (3.69)

This can be proven as follows: Consider the (free) expectation value of any observable O
times the operators of Eq. (3.69). Then the the left- and right-hand sides of the above
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equation read
ikr (@) . . oipr(y) .
L= (0" ),
R = ek;pC:I: y) <O ezkr:z: ipr(y )> )
0

First of all, for O = 1, the desired equality of £ = R holds, because <:eikr($)ei’”(y) 2>0 =1

and < thr(z) . . gipr(y) :> = e"C(@=Y)  Now consider a non-trivial observable @, and contract

0
all its fields r with e*7(®) or e?"®) before contracting any of the fields r(x) with r(y).
The result is a product of correlation-functions between the points in O and x or y, and
these are equivalent for both £ and R. However, contracting an arbitrary number of
times e*7(®) leaves the exponential e*"(*) invariant. Completing the contractions for £
therefore yields a factor of e*?¢(*=%) and the latter one also appears in R. Thus, the
equality of £ and R holds for all O and this proves Eq. (3.69).

Now proceed to the first explicit example, the contraction of a single dipole with

endpoints z and y.
Q / ikr(@). . q=ikr(w), (3.70)

This configuration may have dlvergences when z and y come close together. Let us stress
that in contrast to ¢?-theory, these divergences are not obtained as a finite sum of products
of correlators: Since C(x —y) = |z — y|?> P, the latter is always well-behaved at z = y.
The singularity only appears when summing an infinite series of diagrams as we will do
now. To this purpose, we first normal-order the two exponentials using Eq. (3.69)

/ ikl (@)-r(y)]. ok lo-yl? (3.71)
K
Note that the operators e**"(*) and e ") are free of divergences upon approaching each

other, since no more contractions can be made. The divergence is captured in the factor
e **lz=u* " Therefore, we can expand the exponential : e*l" @)W for small  — y and
consequently in powers of [r(z) — r(y)]. This expansion is

/:{1 ik [r(x) — r(y)] - % (k[r(z) - r(y)])? +...}; oK le=yl (3.72)

We truncated the expansion after the third term. It will turn out later that this is
sufficient, since subsequent terms in the expansion are proportional to irrelevant operators
for which the integral over the MOPE-coefficient is UV-convergent.

Due to the symmetry of the integration over k the term linear in k£ vanishes. Also due
to symmetry, the next term can be simplified with the result

/[1 _’2“_; [r(z) — r(y)] +] e Wleyl™ (3.73)

k

Finally, the integration over £ can be performed. Recall that normalizations were chosen
such that [, e™**" = §7%2 to obtain

v 1 T +y\1? y
=yt [ ()] ey T
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The second operator has a tensorial structure, which has to be taken into account in order
to construct the subtraction operator. Using the short-hand notation 445 = 3(9a7)(9sr),
we can write this symbolically as

W= (o) (6

with the MOPE-coefficients (reminding Feynman’s bra-ket notation)

(QM = o —y|™ (3.76)
(Q a*ﬂ) — 2 (5= y)a (v = y)y 7 — gD (3.77)

2
As long as the angular average is taken (and this will be the case when integrating
the MOPE-coefficient to obtain the divergence), we can replace in Eq. (3.75) .43 by
+ := 3(Vr)? and Eq. (3.77) by

(GJ#) = e . (3.78)

Next consider a real multi-local example of an operator-product expansion, namely
the contraction of two dipoles towards a single dipole:

aﬁ) ats Foo, (3.75)

rtu/2 (IA]./\((.\\\J y+uv/2 _ /eik[r(m+u/2)fr(y+'u/2)] /eip[r(wfu/2)fr(y7v/2)] (3 79)
z—u/2 O y—v/2 ’ '
k p
This has to be analyzed for small « and v, in order to control the divergences in the latter
distances. As above, we normal-order operators which are approached, yielding

ikr(m+u/2)eipr($7u/2) _ :eikr(az+u/2) . :ez’pr(wfu/Z) - :eikr(m+u/2)eipr(zfu/2)

e - kPO (3.80)

A similar formula holds when approaching e *#7(¥+v/2) and e~ #7(y—v/2)

o kT v/2) iy —v/2) _ L ikryto/2) . g ipr(y0/2) . o ikr(yu/2) g ipr(y—v/2) . (kpC)
(3.81)
Eq. (3.79) then becomes
// - pikr(a+u/2)+ipr(e—u/2) . . o—ikr(y+v/2)=ipr(y—v/2) . kp[C(u)+C(v)] (3.82)
k P

In order to keep things as simple as possible, let us first extract the leading contribu-
tion before analyzing subleading corrections. This leading contribution is obtained when
expanding the exponential operators (here exemplified for the second one) as

:efikr(y+’u/2)efipr(y7v/2): _ :efi(k+p)r(y) (1 + O(VT)) (383)
and dropping terms of order Vr. This simplifies Eq. (3.82) to

/ / k)N (@) . o =ilktp)r(y). kPIC(w)+C(0)] (3.84)
k P
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In the next step, first k£ and second p are shifted

k
k— k—p, then p—>p+§. (3.85)

The result is (dropping the normal-ordering according to Eq. (3.67))

/eik[r(x)—r(y)} / (3K =p?)[C(w)+C(v)] (3.86)

k p

The factor of [, e*I'@="Wl is again a d-distribution, and the leading term of the short
distance expansion of Eq. (3.86). Derivatives of the §-distribution appear when expanding
(ah—P)CWHCO)] k?; these are less relevant and only the first sub-leading term will be

displayed for illustration:

2

e fevewsen (1 e + o)+

= (7 o) oo+ (T M) e . (387)
where in analogy to Eqs. (3.75) and (3.77)
(5 ) =[Cw) +C)]
(33 = { [C) + ) (3.88)
and
e =0"r(w) = r(y) ,  e——e = (=A,)(r(z) = r(y)) - (3.89)

Let us already mention that the leading contribution proportional to the d-distribution
will renormalize the coupling-constant, and that the next-to-leading term is irrelevant and
can be neglected. The same holds true for the additional term proportional to (Vr) which
was dropped in Eq. (3.83).

There is one more possible divergent contribution at the 1-loop level, namely ._,Q
We now show that the leading term of its expansion, which is expected to be proportidﬁal
to e, is trivial. To this aim consider

Q :/ ptkr(u) . . g=ikr(z). . oipr(y) . . o—ipr(2).
——9ov ¢ ks

:/ ikr(u). . o—ikr(z) ipr(y) o—ipr(z). efPQC(y*z) ekplC(z—2)=Clz—y)] (3_90)
k,p

We want to study the contraction of z, y, and z, and look for all contributions which are
proportional to
— / :eikr(u): :efikr((m+y+z)/3): ) (391)
k
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The key-observation is that in Eq. (3.90) the leading term is obtained by approximating
ekplClr=2)=Cle=w)l &~ 1. All subsequent terms yield factors of k, which after integration over
k give derivatives of the §%-distribution. The result is that

(HQ"—'> - (Q‘1> =0. (3.92)

This means that divergences of Q are already taken into account by a proper treat-

ment of the divergences in Q, analj}zed in Eq. (3.75).

3.7 Strategy of renormalization

In the last two sections, we discussed how divergences occur, how their general structure is
obtained by the MOPE, and how the MOPE-coefficients are calculated. In the next step,
the theory shall be renormalized. The basic idea is to identify the divergences through
the MOPE, and then to introduce counter-terms which subtract these divergences. These
counter-terms are nothing else than integrals over the MOPE-coefficients, properly regu-
larized, i.e. cut off.

In order to properly understand this point, let us recall the two main strategies em-
ployed in renormalization: The first one subtracts divergences in correlation-functions or
equivalently vertex-functions. This amounts to adding counter-terms to the Hamiltonian
which can be interpreted as a change of the parameters in this Hamiltonian. Calculating
observables with this modified Hamiltonian leads to finite physical expectation values,
but it is not evident that the integrals appearing in these calculations are convergent.

The other procedure is inspired by ideas employed in a formal proof of renormalizabil-
ity, or more precisely when applying the R-operation to the perturbation expansion, as
will be discussed in the next section 5. It consists in adding to the Hamiltonian counter-
terms which are integrals, such that each integrand which appears in the perturbative
expansion becomes an integrable function, and as a consequence the integrals and thus
the perturbation expansion are finite. Of course, to finally obtain the critical exponents,
the integral counter-terms have to be reduced to numbers. However, we really want to
think of them as integrals in the intermediate steps. The reason is the following: It is
extremely difficult to calculate observables. However, this is not really necessary as long
as one is only interested in renormalization. The above-mentioned procedure is then suf-
ficient to ensure finiteness of any observable as long as there is no additional divergence
when the dipole is contracted towards this observable. The latter situation would require
a new counter-term, which is a proper renormalization of the observable itself. The proce-
dure of considering whole integrals as counter-terms is in the heart of our renormalization
procedure, and the reader should bear this idea in mind throughout this review.

3.8 Renormalization at 1-loop order

Let us continue on the concrete example of the 1-loop divergences, from which are ob-
tained the scaling exponents to first order in the dimensional regularization parameter ¢.
Explicitly, the model shall be renormalized through two renormalization group factors Z
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(renormalizing the field r) and Z, (renormalizing the coupling b). Recalling Eq. (3.1), this

Hlr] = 52 [ S(Tr() + bz [ [5r() —riw) (3.99)

where r and b are the renormalized field and renormalized dimensionless coupling constant,
and p = L~! is the renormalization momentum scale.

Let us start to eliminate the divergences in the case, where the end-points (x,y)
of a single dipole are contracted towards a point (taken here to be the center-of-mass

z = (v +y)/2). The MOPE is
N+ (G,

The MOPE-coefficients were obtained in the last section as

<ny aﬁ) — 2 (@ y)a (e =y e -y D (3.96)

2

aﬁ) U (3.94)

1) = o~y (3.95)

We now have to distinguish between counter-terms for relevant operators and those
for marginal operators. The former can be defined by analytic continuation, while the
latter require a subtraction scale. Indeed, the divergence proportional to 1 is given by

the integral
[ (&,

A< |z—y|<L

L

dz 1
1) = - Dfudzi ADfs_LefD )
)- g oo

where A is a high-momentum UV-regulator and L a large distance regulator. For ¢ ~ 0
this is UV-divergent but IR-convergent. The simplest way to subtract this divergence is
therefore to replace the dipole operator by

¢ % e — eee (3.98)

where e = |z — y| 7% This amounts to adding to the bare Hamiltonian (3.1) the
UV-divergent counter-term

AHy = —bZyif //|x—y|*yd, (3.99)
.y

which is a pure number and thus does not change the expectation-value of any physical
observable.

We next consider marginal operators: In the MOPE of Eq. (3.94), the integral over the
relative distance of [,_, (ny ‘aﬁ;) ot is logarithmically divergent at € = 0. In order to
find the appropriate counter-term, we use dimensional regularization, i.e. set € > 0. An
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IR-cutoff L, or equivalently a subtraction momentum scale ;» = L', has to be introduced
in order to define the subtraction operation. As a general rule, let us integrate over all
distances appearing in the MOPE-coefficient, bounded by the subtraction scale L = pu~t.

Defining
<Q a+ﬁ> = / < Q a+5> (3.100)
96 L r.e ey
lz—y|<L
we need the following counter-term in the Hamiltonian
AH, = b <Q a+5> /aﬁx , (3.101)
e L .

subtracting explicitly the divergence in the integrals, as discussed in the last section. The
reader is invited to verify this explicitly in exercise 6 (see page 178) on the example of
the expectation value of O = e*[Ir(®)=r(l a5 given in Eq. (3.27).

Since the angular integration in Eq. (3.100) reduces ,4-3 to 4, we can replace Eq.
(3.101) by the equivalent expression

AH, = —byif <Q‘+>L / 4+, (3.102)

for which the numerical value of the diagram is calculated as

|z—y|<L

> 1 fde o,y 1 I°
= —— —x = -
2D ) T 2D ¢

(3.103)

We can now subtract this term in a minimal subtraction scheme (MS). The internal
dimension of the membrane D is kept fixed and (3.103) is expanded as a Laurent series

in &, which here starts at ¢ *. Denoting by ( | )_, the term of order ¢” of the Laurent

expansion of ( | ); for L = 1, the residue of the pole in Eq. (3.103) is found to be

<Q‘*> - _%é : (3.104)

We shall also frequently employ the notation for the residue

<Q‘*> = —$ : (3.105)

It is this pole that is subtracted in the MS-scheme by adding to the Hamiltonian a

counter-term
AH, = —b<Q‘+> [+ (3.106)

Note that by going from Eq. (3.101) to Eq. (3.106), we have reduced the integral counter-
term to a number. We recall our initial remark that if one wants to check that this
counter-term renders the theory finite, one should think of it as its defining integral
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(3.101), and verify that in the resulting perturbation theory, the first-order divergence is
absent.

Similarly, the divergence arising from the contraction of two dipoles to a single dipole
is subtracted by a counter-term

A = (37 T, / / sy (3.107)
with
(& T2 = / / (= (3.108)
fol<L /<L

Reducing this integral counter-term to a number, we subtract the residue of the single
pole of

<°/\° "—’ / / /\\-—-):/ /(|a:|2”+|y|2”)7d/2. (3.109)
lo|<L |y|<L lz|<L |y|<L

Note that the regulator L cuts off both integrations. One can now either utilize some
simple algebra or show by the methods of conformal mapping (see section 4.3) that the
residue is obtained by fixing one distance to equal 1 and by freely integrating over the
remaining one

) /dx e (3.110)

(Recall that d/2 =2D/(2 — D)+ O(¢e).) The above is easily related to Euler’s B-function
and reads
2
RN E=)

DT ()

(b -

3 (3.111)

As a result, the model is UV-finite at 1-loop order, if we use in the renormalized Hamil-
tonian (3.93) the renormalization factors Z and Z,

Z=1-(2-D <Q‘+> ) (3.112)

Zy=1+( /\'\-—-> + O . (3.113)

Note that due to Eq. (3.92) no counter-term for Q is necessary.

The renormalized field and coupling are re-expressed in terms of their bare counter-
parts through

ro(z) = ZY%r(x) , bo = b7y Z9% i° (3.114)

Finally, the renormalization group functions are obtained from the variation of the cou-
pling constant and the field with respect to the renormalization scale i, keeping the bare
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coupling fixed. (For a derivation, see appendix A.4). The flow of the coupling is written
in terms of Z and Z; as

—¢b

_“au‘ T 14bZnZ,+ B2z

= b () () ) # o

1 () e,
5b+(2Dr(;%)+ D )b +O) . (3.115)

Similarly, the full dimension of the field (the exponent entering into the correlation func-
tion) is obtained as

2—D[

| +b—} +0(?) . (3.116)

2D

Note that minimal subtraction is used on the level of counter-terms or equivalently Z-
factors. Since Z enters as Z¢ into the B-function, the latter also contains a factor of d
in the 1-loop approximation, i.e. Z¢ is not minimally renormalized. In order to calculate
the leading order in e, the factor of d can be replaced by d,. = %.

The [-function has a non-trivial fixed-point with 5(b*) = 0, which has positive slope
and thus describes the behavior of the model at large distances:

b = O TEN (3.117)
1 (%)
2-DrT (_D)

2—-D

+1

The anomalous dimension v* := v(b*) becomes to first order in ¢

., 2—-D . € 1
V= ——— — .
2 2D (%) 1
F(2D)+

2—D

+0(e?) . (3.118)

l\D

For polymers, this result reduces to the well-known formula

V(D = 1) :%+41—6d+0((4—d)2). (3.119)
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3.9 Non-renormalization of long-range interactions

Long-range interactions are in general not renormalized [56]. This is very useful, as it im-
mediately enforces scaling relations among the critical exponents, which in some cases are
already sufficient to determine these exponents. Let us explain the non-renormalization
by analyzing the long-range interaction (o > 0)

.- e — / || ereiklr(@) ()]
k

~ |r(@) = r(y)|*™ (3.120)

Then the most simple singular configurations which give rise to a renormalization of the
interaction are those for which two interactions are contracted to a single one, as we have
discussed in 3.5. We claim that their multilocal operator product expansion (MOPE),

(%L1, does not contain a contribution proportional to =, but that the leading term
is proportional to the short-range interaction «———. This is a consequence of the analytic
structure of the long-range interaction: The contraction @ is in complete analogy to

Eq. (3.87) and with the same notations as there

o e / / —a|, [~ pi(k+p)[r () =7 (y)] LkP[C(w)+C(v)]
p

+ subdominant terms . (3.121)

In order to obtain a long-range term, a singularity at k£ 4+ p = 0 is necessary. However,
expression (3.121) is analytic at k£ + p = 0, and no long-range term is generated. This is
easily generalized to any contraction towards «—— and hence to any order in perturbation
theory.

Let us now analyze the consequences. We want to study tethered membranes with
long-range interactions, generalizing Eq. (3.1) or Eq. (3.93) to

HLR:%/+ +b/4,‘5//HH : (3.122)
% vy

Note that since in contrast to Eq. (3.1) the interaction is not renormalized, there is only
one Z-factor in Eq. (3.122), namely for elasticity. This does, however, not mean that the
[-function is trivial. In analogy to Eq. (3.114), the relation between bare and renormalized
coupling is

by = b7\ 20 (3.123)

where Z is as in Eq. (3.114) the renormalization of the field, and
0 =2D —v(d—a). (3.124)
The (-function now reads

a—d 0
—1InZ|b. 3.125
o (3.125)

0
bo
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Using the fact that ,ua% In Z is nothing but (—2) times the anomalous dimension of the
field, see Eq. (3.116), we make the replacement

0
Mﬁ_/JJ InZ =2(v—v(b)) (3.126)
in Eq. (3.125). The result is
B(b) =—[2D — (d — a)v(b)] b . (3.127)

This f-function has to zeros: For ¢ < 0, the fixed point at b* = 0 is attractive. For 6 > 0
the non-trivial zero and fixed point of 3(b) is at b* > 0, implying the exponent-identity

2D
d—ao

Non-renormalization of the coupling thus allows to obtain v* without calculating any
diagram. Since this observation is quite generally useful, let us give a heuristic derivation
of Eq. (3.128). We may then consider the formal derivation given above as a proof of the
heuristic argument, and employ the latter confidently throughout this review.

“Power counting” for the dimension D of the interaction at a fixed point yields

vt =v(b") = (3.128)

D=2D—-v'(d—a), (3.129)

and this power-counting gives the correct dimension of the operator, since the latter has
no proper renormalization. Three different scenarios are now possible: If D < 0, then the
associated coupling scales to 0, and the operator plays no role in the large scale limit. If
D > 0, then the associated coupling grows under renormalization and we are not at an
[R-fixed point; by definition this is not the situation considered here. The last possibility
is that we are at an IR-fixed point, and this is (at least for one coupling) equivalent to
D = 0. It again follows the exponent identity

2D
d—a

Also the crossover from short-range to long-range self-avoidance in a model with both
couplings can be discussed in this framework. Following the line of arguments given above,
long-range self-avoidance will scale to 0 and the short-range fixed point is completely
attractive as long as D, Eq. (3.129), evaluated with v* as obtained from short-range self-
avoidance only, is negative. As a consequence always that interaction wins, which yields
the larger value for v*.

Physically, long-range forces play an important role for charged membranes, as dis-
cussed in [150].

v =u(b") = (3.130)

4 Some useful tools and relation to polymer theory

4.1 Equation of motion and redundant operators

The equation of motion reflects the invariance of the functional integral under a global
rescaling of the field r. This has important consequences. Consider the expectation value



