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Hyperuniformity is an emergent property, whereby the structure factor of the density n scales as
SðqÞ ∼ qα, with α > 0. We show that for the conserved directed percolation (CDP) class, to which the
Manna model belongs, there is an exact mapping between the density n in CDP, and the interface position u
at depinning, nðxÞ ¼ n0 þ ∇2uðxÞ, where n0 is the conserved particle density. As a consequence, the
hyperuniformity exponent equals α ¼ 4 − d − 2ζ, with ζ the roughness exponent at depinning, and d the
dimension. In d ¼ 1, α ¼ 1=2, while 0.6 > α ≥ 0 for other d. Our results fit well the simulations in
the literature, except in d ¼ 1, where we perform our own to confirm this result. Such an exact relation
between two seemingly different fields is surprising, and paves new paths to think about hyperuniformity
and depinning. As corollaries, we get results of unprecedented precision in all dimensions, exact in d ¼ 1.
This corrects earlier work on hyperuniformity in CDP.
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Context—Hyperuniform (HU) structures have vanishing
long-wavelength density fluctuations similar to crystals,
but no long-range order [1–3]. The structure factor of the
Fourier-transformed particle density, Sq ≔ hnqn−qi van-
ishes for small q, as Sq ∼ jqjα with α > 0. HU is observed
in numerous systems [2,3], ranging from sandpile models
[4–9], and sheared colloids [10], to densest packings [11].
All the above systems have a critical state recognized to be
in the conserved directed percolation (CDP) class. This
attribution usually relies on a comparison of numerically
measured critical exponents, especially the hyperuniform-
ity exponent α. In this situation it is highly desirable to have
an analytical understanding of the underlying mechanism
for hyperuniformity, and to know the relevant critical
exponents with precision. In this Letter, we provide an
exact mapping from CDP to depinning of an elastic
manifold [12]. This mapping allows us to express the
hyperuniformity exponent α in terms of the dimension d
and the roughness exponent ζ at depinning,

α ¼ 4 − d − 2ζ: ð1Þ

Using ζ from depinning gives α with higher precision than
in most sandpile simulations; see Fig. 1.
This Letter is organized as follows: We first review the

concept of hyperuniformity, before introducing the Manna
sandpile, the simplest and most prominent model in the
CDP class. We then discuss further models in this class, and
present the mapping. We finish with numerical evidence,
and a discussion of relevant work in the literature.
Hyperuniformity—Consider a particle system of size L,

where the total number Ntot of particles is conserved.

We ask how many particlesNR are in a part of the system of
radius R ≪ L. If the system is translationally invariant,
then

hNRi ¼
Ntot

Ld Rd: ð2Þ

How does NR fluctuate? We expect that

varðNRÞ ¼ hN2
Ri − hNRi2 ∼ Rκ: ð3Þ

FIG. 1. The exponent α of the structure factor SðqÞ ∼ jqjα as a
function of dimension d for the Manna model. The blue solid
line is from the ϵ-expansion of [13], the red dots (with error bars)
from simulations at depinning [14,15]. Simulations in green are
from [16]. The dark green data point is from Fig. 2. In gray are the
different ϵ-expansion results, α¼ ϵ=9 (dashed) [5], α ¼ 2ϵ=9
(dotted) [17], and α ¼ ϵ=3 (dot-dashed) [leading term of Eq. (25)].
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One can show [18] that (except for fine-tuned models [19])

d − 1 ≤ κ ≤ d: ð4Þ

A Poisson process has κ ¼ d, a regular lattice κ ¼ d − 1.
When κ < d the system is said to be hyperuniform. This
terminology was introduced in [1] for κ ¼ d − 1, and is
now used for any κ < d [8,20,21]. Alternatively, one can
consider the structure factor of the Fourier transform nq of
the density nðxÞ. Its small-q behavior is

SðqÞ ¼ hnqn−qi ∼ qα; κ þ α ¼ d: ð5Þ

We are interested in class-III HU systems [2], which
correspond to 0 < α ≤ 1. Larger values of α are possible
[2,22]; κ then freezes at its lower bound κ ¼ d − 1.
The Manna sandpile and conserved directed percolation

—The Manna sandpile [23] is defined as follows: Consider
a d-dimensional lattice, e.g., the checker board in d ¼ 2.
Each site x has nðxÞ grains. If nðxÞ ≥ 2, with rate 1 move
two of the grains, each to a randomly chosen neighbor. This
dynamics conserves the total number N ≔

P
x nðxÞ of

particles. Denote the fraction of i times occupied sites as
ai. Then (for each site x and time t)

P∞
i¼0 ai ¼ 1, the

number of particles is
P∞

i¼1 iai ¼ n, and the activityP∞
i¼2ði − 1Þai ¼ ρ. The last definition, introduced in

[24], gives a higher toppling rate to triple and higher
occupied sites than the standard definition. Since we are
interested in densities close to the transition, this
does not matter [24]. The benefit of this definition is the
existence of the exact sum rule,

n − ρþ e ¼ 1; ð6Þ

where e ≔ a0 is the fraction of empty sites.
The next step is to write effective stochastic equations of

motion for n, ρ, and e. Owing to the constraint (6) there are
two independent equations, usually written in terms of
particle density nðx; tÞ, and activity ρðx; tÞ (for a derivation
see [24]),

∂tρðx; tÞ ¼ ∇2ρðx; tÞ þ ½2nðx; tÞ − 1�ρðx; tÞ − 2ρðx; tÞ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðx; tÞ

p
ηðx; tÞ; ð7Þ

∂tnðx; tÞ ¼ ∇2ρðx; tÞ: ð8Þ

Here ξðx; tÞ is a standard white noise:

hηðx; tÞηðx0; t0Þi ¼ δdðx − x0Þδðt − t0Þ: ð9Þ

Sheared colloids—The same effective model works for
periodically sheared colloids close to the reversible-irre-
versible transition. The connection can be understood via
the random organization (RO) model [10]: Track the
particle displacements after a full shear cycle of given

amplitude. These displacements are replaced by random
ones of observed amplitude, for the active particles, i.e.,
those which collided during the cycle. This results again in
the set of Eqs. (7) and (8). The biased random organization
(BRO) model [11] is a variant, where colliding particles
receive an additional displacement moving them apart. In
[10,11] the authors claim that RO and BRO both belong to
the CDP class. Furthermore, BRO is claimed to account for
the statistics of random close packings (RCP) [11], where
other authors claim RCP to be mean field in all dimen-
sions [25].
Mapping CDP to depinning—We now map the CDP

equations (7) and (8) onto depinning. Instead of writing
coupled equations for nðx; tÞ and ρðx; tÞ, use the sum rule
(6) to write coupled equations for ρðx; tÞ and eðx; tÞ,

∂teðx; tÞ ¼ ½1 − 2eðx; tÞ�ρðx; tÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðx; tÞ

p
ηðx; tÞ; ð10Þ

∂tρðx; tÞ ¼ ∇2ρðx; tÞ þ ∂teðx; tÞ: ð11Þ

To show the equivalence to disordered elastic manifolds
[26,27], define

ρðx;tÞ¼ ∂tuðx;tÞ ðthe velocity of the interfaceÞ; ð12Þ

eðx; tÞ ¼ F ðx; tÞ ðthe force acting on itÞ: ð13Þ

Equation (11) is the time derivative of the equation of
motion of an interface, subject to a random force F ðx; tÞ,

∂tuðx; tÞ ¼ ∇2uðx; tÞ þ F ðx; tÞ: ð14Þ

It remains to characterize the statistics of F . Since ρðx; tÞ is
positive for each x, uðx; tÞ is monotonously increasing.
Instead of parametrizing F ðx; tÞ by space x and time t, it
can be written as a function of space x and interface
position uðx; tÞ. Setting F ðx; tÞ → Fðx; uðx; tÞÞ, Eq. (10)
becomes

∂tF ðx; tÞ → ∂tFðx; uðx; tÞÞ
¼ ∂uFðx; uðu; tÞÞ∂tuðx; tÞ
¼ ½1 − 2Fðx; uðx; tÞÞ�∂tuðx; tÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∂tuðx; tÞ

p
ηðx; tÞ: ð15Þ

For each x, this is equivalent to an Ornstein-Uhlenbeck [28]
process Fðx; uÞ, defined by

∂uFðx; uÞ ¼ 1 − 2Fðx; uÞ þ
ffiffiffi
2

p
ξðx; uÞ; ð16Þ

hξðx; uÞξðx0; u0Þi ¼ δdðx − x0Þδðu − u0Þ: ð17Þ

While the noise ηðx; tÞ is uncorrelated in time, ξðx; uÞ is
uncorrelated in the interface position u. Given x, Fðx; uÞ is
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a Gaussian Markovian process with mean hFðx; uÞi ¼ 1=2,
and variance in the steady state of

��
Fðx; uÞ − 1

2

��
Fðx0; u0Þ − 1

2

��
¼ 1

2
δdðx − x0Þe−2ju−u0j:

ð18Þ

Writing the equation of motion (14) as

∂tuðx; tÞ ¼ ∇2uðx; tÞ þ Fðx; uðx; tÞÞ; ð19Þ

it is the equation of motion of an interface with position
uðx; tÞ, subject to a quenched disorder force Fðx; uðx; tÞÞ.
The latter is δ correlated in the x direction, and short ranged
correlated in the u direction: it is a disordered elastic
manifold subject to random-field disorder. As a conse-
quence, the results for disordered elastic manifolds can be
used for CDP and the Manna model.
Hyperuniformity in the Manna model—The roughness

exponent ζ for the random manifold is defined via

h½uðx; tÞ − uðy; tÞ�2i ∼ jx − yj2ζ: ð20Þ

Equation (12) implies that ρ is not HU,

hρðx; tÞρðy; tÞic ∼ jx − yj2ðζ−zÞ; ð21Þ

where z is the dynamical critical exponent [12]. As a new
result, let us calculate the particle-density correlation
function. We have to identify nðx; tÞ with the appropriate
random-manifold field. Using Eqs. (8) and (12), we find
∂tnðx; tÞ ¼ ∇2

∂tuðx; tÞ, or after integration over time

nðx; tÞ ¼ ∇2uðx; tÞ þ n0: ð22Þ

Here n0 is the conserved mean density of particles, i.e., the
conserved total number of particles divided by the volume.
Taking the derivatives implied by Eq. (22) yields

hnðx; tÞnðy; tÞic ∼ jx − yj2ζ−4: ð23Þ

In Fourier space this implies our result (1),

Sq ≔ hnqn−qi ∼ jqjα; α ¼ 4 − d − 2ζ: ð24Þ

Denoting ϵ ¼ 4 − d, and using for ζ its ϵ expansion
ζ ¼ ðϵ=3Þ þ ζ2ϵ

2 þ ζ3ϵ
3, see [29,30] (two loop) and [13]

(three loop), α becomes

α ¼ ϵ − 2ζ ¼ ϵ

3
− 2ζ2ϵ

2 − 2ζ3ϵ
3 þOðϵ4Þ ð25Þ

ζ2 ¼ 0.0477709715468230578… ð26Þ

ζ3 ¼ −0.0683544ð2Þ: ð27Þ

To obtain predictions for α in the CDP class, we can use
Eq. (25) via Padé-Borel resummation supplemented by the
knowledge of ζd¼0 ¼ 2 [12], and ζd¼1 ¼ 5=4 [8,15]. This
leads to

αFTd¼1¼ 1=2; αFTd¼2 ¼ 0.4964; αFTd¼3¼ 0.2868: ð28Þ
Alternatively, use the best simulation results ζd¼2 ¼
0.753� 0.002 [14] and ζd¼3 ¼ 0.355� 0.01 [14], to find

αnumd¼2 ¼ 0.494ð4Þ; αnumd¼3 ¼ 0.29ð2Þ: ð29Þ
As Fig. 1 shows, 0 ≤ α < 1 in all dimensions, the signature
given in Eqs. (4) and (5) for a class-III hyperuniform
system. The figure compares ϵ-expansion, numerical sim-
ulations for α [16] in the Manna model (see below), and
predictions using Eq. (24) with ζ from simulations at
depinning.
Active state—When disordered elastic manifolds are

driven at a finite velocity v, the force correlations become
δ correlated in time [12], and act like a thermal noise,
leading to a roughness exponent ζmoving ¼ ð2 − dÞ=2. This
gives the hyperuniformity exponent in the active phase,

αactive ¼ 4 − d − 2ζmoving ¼ 2: ð30Þ
This was observed in the active phase of the RO and Manna
models with center of mass conservation [31], as well as in
nonequilibrium hyperuniform fluids [22].
Stability of CDP, and relation to DP—There was a long

debate whether the Manna model, or the corresponding
CDP theory, are in the same universality class as disordered
elastic manifolds or whether they belong to a different
universality class, the directed-percolation (DP) class. This
question was finally settled in [26] by the arguments
presented above. To understand how robust CDP is, replace
in Eq. (7) the term ½2n − 1�ρ → λ½2n − 1�ρ, while keeping n
as a (possibly unobservable) variable. The limit of λ → 0
corresponds to DP. This changes Eq. (16) for Fðx; uÞ to

∂uFðx;uÞ¼ λ½1−2Fðx;uÞ�−2ð1−λÞρþ
ffiffiffi
2

p
ξðx;uÞ: ð31Þ

Compared to Eq. (16), it has an additional noise propor-
tional to ρ, with both a mean and a variance. We expect that
for given x, as long as λ > 0, the process Fðx; uÞ remains
short range correlated with a correlation length ξF ≈ 1=λ.
(This conclusion was reached via a different argument in
[26].) While the correlation length ξF diverges for λ → ∞,
we expect the CDP class to be robust as long as λ > 0, i.e.,
as long as there is a conserved density n, and it appears via a
term proportional to nρ in the equation for ∂tρ. It would be
interesting to repeat simulations on sheared colloids [32],
for which opposite conclusions were reached.
Improved numerical checks—There is some tension

between simulation results αManna
d¼1 ¼ 0.41ð4Þ [16], the

seemingly accepted value αROd¼1 ≈ 0.45 [3,10,11], and our
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exact result αexactd¼1 ¼ 1=2. For this reason we performed
numerical simulations for Manna with systems of size up to
L ¼ 104. The results of the latter compensated for the
predicted behavior are shown on the left of Fig. 2. There are
strong finite-size corrections which make understandable
the relatively small value given in [16]. However, in the
relevant limit of small q, the data are consistent with
α ¼ 0.5 (red dashed line), while the cyan (bright) lines for
α ¼ 0.45 and α ¼ 0.55 are the confidence interval reported
on Fig. 1. To reduce the statistical noise, we also show the
results for a generalized Laplace transform,

Lβ∘SðtÞ ≔
X
q

e−jqjβtSq ∼ t−
1þα
β : ð32Þ

The value β ¼ 1 is the standard Laplace transform, and was
used, e.g., in [33]. β ¼ 2 is now popular under the name
“diffusion spreadability” [34]. Our data analysis shows
β ¼ 1, 2 or 4 to be equivalent for all practical purposes. As
Fig. 2 for β ¼ 2 reveals, the noise is indeed reduced, but it
is more difficult to choose the proper domain to fit to. All
fits give α ¼ 0.5� 0.05.
The reader may wonder where this problem in such a

large system comes from, and whether there might be
systematic corrections. While there is no proper theoretical
motivation, on a phenomenological level the deviations
from a pure power law are well fitted with a logarithm, as
Fig. 3 attests. To proceed, it is instructive to plot the density
correlations as a function of distance. For short even
distances, we find positive correlations, due to events
where one grain is moved to the right, and one to the left.
These positive correlations become negative for x ≥ 8, but
one has to wait to x ≈ 30 until even and odd correlations are
comparable. This indicates that l ¼ 30 is the minimal
coarse graining size, taking out 1.5 decades from the fitting
range for Sq, certainly one reason for its slow convergence.
One may also wonder whether this is related to the
saturation of the apparent roughness exponent at depinning
ζdepappðd ¼ 1Þ ≈ 1 [12,35].

Relation to the literature—Our results contradict two
works from the literature: the phenomenological observation
α ¼ ϵ=9 [5] [we supplemented [5] with ½ρ�L ¼ ζ − z as
implied by Eq. (21)] and α ¼ 2ϵ=9 [17] obtained from RG
within the Doi-Peliti approach. None of these works uses
functional RG, which is crucial to account for the nontrivial
structure present at two-loop [29,30] and three-loop [13]
order at depinning. Reference [17] does this calculation in
terms of active and passive particles in a two-species model.
The density of the latter is a linear combination of fields used
here, np ¼ a1 ≈ n − 2ρ. Since n − n0 ¼ ∇2u and ρ ¼ ∂tu,
the scaling dimensions of the two terms differ by
z − 2 ¼ OðϵÞ. As a result, np is not a proper scaling field
of the RG, a problem known in other contexts [36]. As the
two fields are degenerate at ϵ ¼ 0, their respective OðϵÞ
corrections are easily attributed to theOðϵÞ correctionof their
linear combination nP.

FIG. 2. Left: the compensated structure factor Sqq−1=2 in a ln-ln plot for a periodic system of size L ¼ 105, with 8 × 107 samples.
The red dashed line with slope 0 indicates the behavior Sq ∼

ffiffiffi
q

p
, and the cyan curves power laws with an exponent deviating by �0.05,

indicating our interval of confidence. The middle plot shows the Laplace-transform Lβ¼1 ∘ SðtÞ defined in Eq. (32). The fit by the
red dashed line has slope −ð1þ αÞ ¼ −3=2. Subtracting this fit gives the plot shown to the right.

FIG. 3. Left: fit (red dashed) of S2q (solid blue used for fit, green
not used) for L ¼ 105 with S2q ≃ 5.31 × 10−6q lnð16111=qÞ.
Right: The compensated correlation function CðxÞx3=2 for even
(blue squares) and odd (red discs) distances x. In dashed weakly
filtered data as guide for the eye. One sees strong even-odd lattice
effects, which start to disappear at x ≈ 30.
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A new feature of [17] is the introduction of a current
noise in their Eqs. (4) and (5). As additional terms have to
vanish in the absorbing state ρ ¼ 0, we may add to
Eq. (10) the divergence of a current; the most relevant is
∇J⃗ðx; tÞ≡∇∂tΓ⃗ðx; tÞ, with ∂tΓ⃗ðx; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx; tÞp

η⃗ðx; tÞ,
hηiðx;tÞηjðx0;t0Þi¼δdðx−x0Þδðt−t0Þδij. Comparing ∇2ρ∼
Lζ−z−2 to ∇ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðx; tÞp
η⃗ðx; tÞ ∼ L½ðζ−zÞ=2�−1−½ðdþzÞ=2� we con-

clude that the latter is perturbatively irrelevant as long as
dþ ζ > 2, which is satisfied for all d > 0. It may become
relevant nonperturbatively: using the same techniques as in
the derivation of Eq. (18), Γiðx; tÞ has the statistics of a
random walk, h½Γiðx; tÞ − Γiðx; 0Þ�2i ∼ juðx; tÞ − uðx; 0Þj.
Using results of the Brownian-force model [12] one gets
ζ ¼ ζBFM − 1 ¼ 3 − d. This would destroy HU in dimen-
sion d ¼ 1, in contradiction to simulations. As the current
in theMannamodel should not keep an infinite-timememory
as a random walk does, we propose to modify the equation
for Γ⃗ to an Ornstein-Uhlenbeck process in u, as in Eqs. (10)
and (16): ∂tΓ⃗ðx; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx; tÞp

η⃗ðx; tÞ − κρðx; tÞΓ⃗ðx; tÞ,
κ > 0. This takes into account that if two particles jump
onto the same neighbor, contributing to the current J, a
toppling will take place there, resulting (possibly after
iteration) in a countercurrent. Γiðx; tÞ then has correlations
as Eq. (18), and ∇∂tΓ⃗ðx; tÞ is irrelevant. While the mapping
from the CDP equations (7)–(9) to depinning is exact, the
additional irrelevant current in Manna makes interfaces
constructed as uðx; tÞ ≔ P

t
τ¼0 ρðx; τÞ microscopically

rough. This can be seen in simulations.
Conclusions—In this Letter, we have shown how hyper-

uniformity in CDP is related to depinning. This equivalence
yields precise theoretical predictions for the hyperuniform-
ity exponent in all dimensions, both close to the transition,
and in the active state. It would be interesting to extend these
results to other universality classes, as qKPZ [14,37–39],
and to see whether the fascinating phenomenology in plastic
depinning [40] has an equivalence in sandpile models.
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