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Abstract. There is a plethora of one-dimensional advected systems with an
absorbing boundary: the Toom model of anchored interfaces, the directed exclu-
sion process where in addition to diffusion particles and holes can jump over
their right neighbour, simple diffusion with advection, and Oslo sandpiles. All
these models share a roughness exponent of ζ = 1/4, while the dynamic expo-
nent z varies, depending on the observable. We show that for the first three
models z =1, z =2, and z = 1/2 are realized, depending on the observable. The
Oslo model is apart with a conjectured dynamic exponent of z = 10/7. Since the
height in the latter is the gradient of the position of a disordered elastic string,
this shows that ζ = 5/4 for a driven elastic string at depinning.
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1. Introduction

Interfaces subject to quenched disorder describe a variety of physical phenomena [1,
2], such as domain walls in magnets [3–5], contact-line depinning [6], fracture [7, 8], or
earthquakes [9]. Two situations have to be distinguished: equilibrium and depinning.
Equilibrium designates evaluating the partition function in the limit of a vanishing
temperature. Depinning occurs when driving a system adiabatically at zero temperature.
While equilibrium is given by the ground state, at depinning the system stops at the
first stable configuration, which is distinct from the ground state.

Though many numerical studies exist [10–12], and a field theory was developed [2,
13, 14], only a few exact results are available. A notable exception in equilibrium is
the roughness exponent ζd=1

_" = 2/3 for a 1+1 dimensional directed polymer in random-
bond (RB) disorder, itself related to the KPZ universality class [1, 15] with roughness
1/2 and dynamic exponent z = 1/ζd=1

_" = 3/2 [16]. For random-field (RF) disorder of a
d -dimensional interface in d +1 dimensions in equilibrium, scaling arguments correctly
predict ζd_6 = (4− d)/3, which can experimentally be seen even in dimension d =0 [17],
where it reduces to the Sinai model [18]3.

At depinning, there is the single random-field universality class, and no analytic res-
ult is known, apart from d =0 for which ζd=0

/2T = 2− [19]. Based on numerical simulations,
it was recently conjectured [12] that a driven one-dimensional string has a roughness
exponent of ζd=1

/2T = 5/4. (Overhangs, which we exclude, would reduce ζ [20, 21].) Here we

aim at demonstrating ζd=1
/2T = 5/4. A key observation is that if the roughness of the string

at depinning is ζd=1
/2T = 5/4, the Oslo model [22, 23], of which the height can be viewed

as the gradient of the position of a driven string pulled at one end, has a roughness of
ζd=1

PbHQ = 1/4.
There are several one-dimensional systems where a scaling exponent of 1/4 appears,

but this is generally in the temporal domain. E.g. the position in space of a marked
monomer on a polymer has autocorrelation

〈
[h(0, t)−h(0, t ′)]2

〉
∼ |t− t ′|2H , with H =

1/4. This is obtained from standard scaling arguments as H = ζ/z, with ζ = 1/2 and
z =2. If these systems are advected, i.e. z =1, the roughness exponent becomes ζ =
Hz → 1/4 [24–28].

Here we consider a class of models which allow for a hydrodynamic description
equivalent to diffusion of a scalar field h(x,t) combined with advection (drift) away
from an absorbing boundary at x =0:

∂th(x,t) =D∇2h(x,t)−µ∇h(x,t)+σξ(x,t),

h(0, t) = 0, ⟨ξ(x,t)ξ(x ′, t ′)⟩= δ(x−x ′)δ(t− t ′).
(aaEW)

We call it the anchored advected Edwards–Wilkinson equation (aaEW), and −µ∇h(x,t)
the advection term. While in the bulk the stationary state h(x,∞) can be obtained
from a Brownian motion in the comoving frame, close to the boundary we establish in
section 3.5 that

〈
h(x,∞)2

〉
∼
√
x, thus ζ = 1/4.

3 The exponent ζ can be extracted from the scaling with distance, or with the confining potential; the latter remains valid in d =0.
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This system possesses three distinct dynamical scaling behaviours, characterized by
a dynamical exponent z =1 due to the advection term, z =2 for bulk properties in the
comoving frame, and z = 1/2 for the decay of the equal-point correlation function (in
the steady state),

⟨h(x,t)h(x,0)⟩=
√

x

2π
f(t/x1/2). (1)

The function f is obtained analytically in section 3.7.
The model (aaEW) is the proper thermodynamic description for a variety of systems.

We give two examples—the directed exclusion process (DEP) (section 2.1) and the
Toom interface model (section 2.2). For the Oslo model (section 5) a similar mapping
can be constructed, with a crucial difference: The local time which sets the clock for an
update is advanced by the toppling itself, leading to a different dynamical exponent,
conjectured to be z = 10/7 [12], thus larger than the corresponding exponent z =1 in
aaEW, but smaller than the one for diffusion (z =2). Still, the roughness exponent
equals ζ = 1/4, independent of whether one considers bulk or boundary driving. The
Oslo model (section 5) achieves this by propagating out from the seed in both directions;
the seed position effectively acts as an absorbing boundary.

In the derivation of a hydrodynamic description as in equation (aaEW), additional
terms may appear,

∂th(x,t) =D∇2h(x,t)−µ∇h(x,t)+
∑

n!2

λn [∇h(x,t)]n+σξ(x,t),

h(t,0) = 0, ⟨ξ(x,t)ξ(x ′, t ′)⟩= δ(x−x ′)δ(t− t ′). (2)

The perturbation with λ2 is the most relevant one, leading to the anchored advected
Kardar–Parisi–Zhang universality class (aaKPZ) discussed in section 4. If this term
is forbidden by symmetry, the next relevant one is λ3. It is marginally relevant, and
believed to modify the effective parameters in the symmetric case [27], but it cannot
change the stationary measure in the bulk (section 4.2).

This paper is organized as follows: In section 2 we introduce models in the aaEW and
aaKPZ universality classes, first the DEP (section 2.1), then Toom’s interface model
(section 2.2); their hydrodynamic description is obtained in section 2.3. In section 3
we derive analytic results for the aaEW universality class, followed by results for the
aaKPZ class in section 4. The Oslo model is treated in section 5.

2. Models in the aaEW and aaKPZ universality classes

2.1. The DEP

Here we introduce a new model, the DEP. This is the simplest model we found that
breaks left-right symmetry, equivalent to advection. Depending on whether particle-hole
symmetry is unbroken or broken, it belongs to the Edwards–Wilkinson or KPZ class.

In this model, each site x= 1,2, . . . is either empty or occupied. Particles jump with
rate 1 to an empty neighbour as in the simple exclusion process, but an additional
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directed transition is introduced, which allows particles to jump over a particle to its
right (a jump of length 2) with rate 1, and holes over a hole to the right (a jump of
length 2) with rate r. The transitions are

1. 10 → 01 with rate 1,

2. 01 → 10 with rate 1,

3. 110 → 011 with rate 1,

4. 001 → 100 with rate r.

A rate r =1 preserves the particle-hole symmetry, while breaking the directional
(left-right) symmetry. We refer to this model as the symmetric DEP (sDEP). The case
r ̸=1 is referred to as the asymmetric DEP (aDEP), which breaks both directional and
particle-hole symmetry.

When using periodic boundary conditions, the product measure is stationary. This
can be derived from the (non-detailed) balance equation. Then the total particle current
j(ρ) is given by

j(ρ) = 2
[
ρ2(1− ρ)− r(1− ρ)2ρ

]
= 2ρ(1− ρ) [ρ− r(1− ρ)] . (3)

Therefore, ρ+ =
r

1+r is the critical density, where the overall current vanishes.
In contrast, we consider a large system with closed boundaries, where no particle

current is allowed. This leads to self-organized criticality, where particle (or hole) excess
will be pushed away to the right. Taking L→∞ results in a stationary density ρ= ρ+ =
r

1+r in the domain of observation.

2.2. Toom’s interface model

Toom’s model is the subject of many theoretical and numerical studies [24, 29–33]4. As
in the DEP, each site is either empty or occupied, but while in the DEP the jump range
is either 1 or 2, in Toom’s model it is unbounded. More precisely, one chooses a spin i,
and exchanges it with the next spin to its right which has the opposite sign. The rates,
for any k ∈ N, are

(1)k 1 . . .1︸ ︷︷ ︸
k

0→ 01 . . .1︸ ︷︷ ︸
k

with rate 1,

(2)k 0 . . .0︸ ︷︷ ︸
k

1→ 10 . . .0︸ ︷︷ ︸
k

with rate r.

When r =1, as in the DEP, the particle-hole symmetry is preserved, and we refer to the
model as the symmetric Toom model (sToom). When r ̸=1 this symmetry is broken,
and we refer to the model as the asymmetric Toom model (aToom).

In Toom’s model with periodic boundary conditions each stationary state is non-
interacting, i.e. occupations at different sites are independent. The total particle

4 We use the low-noise version of the Toom model [29] introduced in [24].
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current is

j(ρ) = ρ(1− ρ)+ 2ρ2(1− ρ)+ 3ρ3(1− ρ)+ · · ·− r
[
(1− ρ)ρ+2(1− ρ)2ρ+ . . .

]

=
ρ

1− ρ
− r(1− ρ)

ρ
. (4)

This current vanishes at the critical density ρ+ =
√
r

1+
√
r . As thoroughly discussed in [24],

the system with closed boundaries and for L→∞ reaches a stationary state with this
density at its left end.

2.3. Continuum theory

As suggested in [24, 32], these models can be described using a continuum theory. We
define the height function h(x,t) as the number of particles between the left boundary
(first spin at site 1) and x, minus its expectation. In the continuum limit we expect it
to solve a stochastic differential equation of the type

∂th(x,t) = c+D∇2h(x,t)−µ∇h(x,t)+λ2

[
∇h(x,t)

]2
+λ3

[
∇h(x,t)

]3
+ · · ·+σξ(x,t).

(5)

Discarding higher-order terms, we are left with two possible limits: for sDEP and sToom,
the particle-hole symmetry forces the equation to stay invariant under the transforma-
tion h +→ −h, hence the first and fourth terms are not allowed (c= λ2 = 0), and we are
left with the anchored advected Edwards–Wilkinson equation

∂th(x,t) =D∇2h(x,t)−µ∇h(x,t)+σξ(x,t),

h(t,0) = 0, ⟨ξ(x,t)ξ(x ′, t ′)⟩= δ(x−x ′)δ(t− t ′).
(aaEW)

In aDEP and aToom the constant and quadratic terms are allowed, leading to the
anchored advected KPZ equation

∂th(x,t) =D∇2h(x,t)−µ∇h(x,t)+λ2

[
∇h(x,t)

]2
+ c+σξ(x,t),

h(t,0) = 0, ⟨ξ(x,t)ξ(x ′, t ′)⟩= δ(x−x ′)δ(t− t ′).
(aaKPZ)

Since ⟨h(x,t)⟩= 0 by construction, the first two terms on the rhs vanish on average,
and hence

c=−λ2⟨[∇h]2⟩. (6)

An additional term with λ3 ̸= 0 may lead to logarithmic corrections [34].
A direct derivation of this limit for Toom’s model appears in [24, 32]. We describe

here the derivation for the DEP.

2.4. Continuum limit of the DEP

Let us consider the DEP at the critical density ρc =
r

1+r . Define η(x,t) to be 1 if there
is a particle at x at time t and 0 otherwise. Then the height function h is defined as
h(x,t) :=

∑x
y=1[η(y, t)− ρ].

https://doi.org/10.1088/1742-5468/acd2bb 6
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During a time period /t, the value of h at x changes when particles jump from the
left of x to its right or vice versa:

1. h(x,t+ /t) = h(x,t)− 1 with probability p1 = η(x,t)[1− η(t,x+1)]/t,
2. h(x,t+ /t) = h(x,t)+ 1 w.p. p2 = [1− η(x,t)]η(t,x+1)/t,
3. h(x,t+ /t) = h(x,t)− 1 w.p. p3 = η(x,t)η(x+1, t)[1− η(x+2, t)]/t,
4. h(x,t+ /t) = h(x,t)− 1 w.p. p4 = η(x− 1, t)η(x,t)[1− η(x+1, t)]/t,
5. h(x,t+ /t) = h(x,t)+ 1 w.p. p5 = r[1− η(x,t)][1− η(x+1, t)]η(x+2, t)/t,
6. h(x,t+ /t) = h(x,t)+ 1 w.p. p6 = r[1− η(x− 1, t)][1− η(x,t)]η(x+1, t)/t.

First, we calculate

⟨h(x,t+ /t)−h(x,t)⟩= (−p1 + p2− p3− p4 + p5 + p6)/t.

We separate η(x,t) into its average ρ plus fluctuations, η(x,t) = ρ+∇h(x,t). This
yields

⟨h(x,t+ /t)−h(x,t)⟩=
[
D∇2h(x,t)−µ∇h(x,t)+λ2

(
∇h(x,t)

)2
+ c
]
/t, (7)

D = 1+3r− 6rρ+3rρ2 + 3ρ2, (8)

µ=−6rρ2 + 8rρ− 2r− 6ρ2 + 4ρ (9)

λ2 = 6rρ− 4r+6ρ− 2. (10)

The noise term is obtained from

σ2/t=
〈
1

k

[
k∑

x=1

h(x,t+ /t)−h(x,t)

]2〉
. (11)

The reason we take a spatial average is to account for correlations: since each of the
transitions (1) and (2) contribute 1 to the sum and transition (3) which is equivalent
to (4), and transition (5) which is equivalent to (6), contribute 2, we obtain

〈
1

k

(
k∑

x=1

h(x,t+ /t)−h(x,t)

)2〉
= p1 + p2 + 4p3 + 4p5. (12)

Note that p4,p6 are spatial shifts of p3,p5 hence we must count them only once. This
yields

σ2 = 2ρ(1− ρ)(1+ 2r+2ρ− 2rρ). (13)
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Combining these two equations, we obtain for ρ= ρc =
r

1+r

D =
4r+1

r+1
, µ=

2r

r+1
, λ2 = 2(r− 1), σ2 =

2r(5r+1)

(r+1)3
. (14)

This is model (aaEW) when r =1 and (aaKPZ) when r ̸=1. For the symmetric case
this gives

D =
5

2
, µ= 1, λ2 = 0, σ2 =

3

2
. (15)

3. Particle-hole symmetric case—the aaEW universality class

3.1. Periodic BC versus anchored interface

As discussed for Toom’s model and the DEP, models in the advected Edwards–
Wilkinson universality class have a stationary measure which depends on the boundary
condition. A similar behaviour is observed in the continuum limit. If h is a solution of the
diffusion equation (aaEW) with periodic boundary conditions, then h̃(x,t) = h(x−µt, t)
solves the non-advected Edwards–Wilkinson equation,

∂th̃(x,t) = ∂th(x−µt, t)−µ∇h(x−µt, t) =D∇2h(x−µt, t)+σξ(x−µt, t)

=D∇2h̃(x,t)+σξ(x,t), ⟨ξ(x,t)ξ(x ′, t ′)⟩= δ(x−x ′)δ(t− t ′). (16)

(We used that ξ(x,t) and ξ(x−µt, t) have the same correlations.) In particular, the
stationary state for a periodic system of size L is a Brownian motion with periodic
boundary conditions (i.e. a Brownian bridge). For L→∞, this change of variables is
valid on the entire line x ∈ R. However, if we consider the half line x ∈ [0,∞) with Dirich-
let boundary condition h(0) = 0 as in equation (aaEW), we cannot define h̃ as above,
and the stationary state is not a Brownian. This choice of boundary, corresponding to
an anchored interface, is the subject of this article.

3.2. Bulk behaviour

When considering portions of the interface far away from the origin, the effect of the
boundary becomes negligible, and in particular the stationary state on an interval [x,x+
∆x] looks like a Brownian motion if ∆x≪ x. This is shown rigorously for Toom’s model
in [33, 35], and we expect a similar behaviour in all models of this universality class.

3.3. Edge behaviour

As mentioned above, unlike the bulk behaviour, the behaviour of the model near the
edge is drastically different from the standard Edwards–Wilkinson universality class [24,
28, 32]. The combination of the Dirichlet boundary and the advection term transfers
temporal correlations into special ones. In the following, we derive analytic results for
the edge behaviour in the anchored case.
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3.4. Basic formulas

We solve the advected diffusion equation with Dirichlet boundary conditions, see also
[28]5. By simple rescaling we write equation (aaEW) in the form:

∂th(x,t) =D∇2h(x,t)−µ∇h(x,t)+ ξ (x,t), h(x= 0, t) = 0.

⟨ξ (x,t)ξ(x ′, t ′)⟩= δ(x−x ′)δ(t− t ′).
(17)

Equation (17) for x > 0 is solved by

h(x,t) =

ˆ
y>0

ˆ
t ′<t

Pµ(x,t|y, t ′)ξ(y, t ′). (18)

Here

P0(x,t) =
e−

x2

4Dt

√
4Dπ t

,

P µ
0 (x,t) = P0(x,t)2 µx

2D− µ2t
4D ,

P µ(x,t|y, t ′) =
[
P0(|x− y|, t− t ′)−P0(x+ y, t− t ′)

]
2

µ(x−y)
2D − µ2(t−t ′)

4D . (19)

3.5. Analytic result for the variance of the height

In this section we calculate
〈
h(x,t)2

〉
analytically. The reader only interested in the

large-scale behaviour may skip to the next section.
The roughness exponent ζ is given by the behaviour of

〈
h(x,t)2

〉
in the steady state,

〈
h(x,t)2

〉
=

ˆ
y1>0

ˆ
t1<t

Pµ(x,t|y1, t1)
ˆ
y2>0

ˆ
t2<t

Pµ(x,t|y2, t2)⟨ξ(y1, t1)ξ(y2, t2)⟩

=

ˆ
y>0

ˆ
t ′<t

Pµ(x,t|y, t ′)2. (20)

This is independent of t, and we will drop t from now on. To proceed, we use the
Fourier-transform of the propagator (19),

Pµ(x,t|y,0) = 2− µ2t
4D + µ(x−y)

2D

√
4Dπ t

[
2−

(x−y)2

4Dt − 2−
(x+y)2

4Dt

]

=

ˆ /F
2π

[
2ik(x−y)− 2ik(x+y)

]
2−k2Dt− µ2t

4D + µ
2D (x−y). (21)

5 In [28] µ has opposite sign, which is equivalent to studying the equation on the negative half line (−∞,0].
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From now on, we set µ=D = 1. We can recover the full µ, D and σ-dependence by
remarking that

〈
h(x)2

〉
µ
=

σ2

µ

〈
h

(
µx

D
,
µ2t

D

)2
〉

µ=D=σ=1

. (22)

Then
ˆ
y>0

ˆ
t>0

Pµ=1(x,t|y,0)2 =
ˆ
k,p

−16kp2x[1+i(k+p)]

[2(k2 + p2)+ 1][(k− p)2 + 1][(k+ p)2 + 1]
. (23)

Integrating equation (23) over k yields

〈
h(x)2

〉
µ=1

=

ˆ ∞

−∞

/p
2π i

16p2−
√

p2+ 1
2x+ipx+x

(4p2 + 1)2
. (24)

Equation (24) can be simplified, using for the denominator
ˆ ∞

0
/t t2−at =

1

a2
, (25)

and for 2−
√

p2+ 1
2x

ˆ
s>0

2−as− 1
4s

2
√
π s3/2

= 2−
√
a. (26)

Then the integral over p can be done, leading to

〈
h(x)2

〉
µ=1

=

ˆ
s>0

ˆ
t>0

2tx2−
x2

4sx2+16t
− sx2

2 − 1
4s−t+x

π s3/2(sx2 + 4t)3/2
. (27)

Setting s→ 4st/x2, and integrating over t yields

〈
h(x)2

〉
µ=1

=

ˆ
s>0

2xx2K0

(
(2s+1)x
2
√
s
√
s+1

)

4π s3/2(s+1)3/2
. (28)

K 0 is the Bessel K 0-function. This can further be simplified, by first setting
y =

√
s/(1+ s), and second 2u= y+ y−1. The final result is

〈
h(x)2

〉
µ=1

=
x22x
π

ˆ ∞

1
K0(xu)/u=

x2x
π

ˆ ∞

x
K0(u)/u. (29)

The integral is known analytically,

〈
h(x)2

〉
µ=1

=
x2x
2

[
1−x(LLL−1(x)K0(x)+LLL0(x)K1(x))

]
. (30)
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The function LLLn(x) is the modified Struve-function. For µ ̸=1 this reads according to
equation (22)

〈
h(x)2

〉
=

x2µx
π

ˆ ∞

µx
K0(u)/u. (31)

One can approximate the Bessel function for large argument as

K0(x) = 2−x

[√
π

2x
+O(x− 3

2 )

]
. (32)

Then the integration can be done analytically,

〈
h(x)2

〉
≃

eµxxerfc
(√

µx
)

√
2

=

√
x√

2πµ
+O(x− 1

2 ). (33)

This gives a roughness exponent

ζ =
1

4
. (34)

3.6. Approximate calculation for large x

From figure 1 we see that, for large x, we can approximate equation (18) as

h(x,t= 0) =

ˆ ∞

0
/y
ˆ 0

−∞
/t ′Pµ(x,t|y, t ′)ξ(y, t ′)

≈
ˆ ∞

−∞
/y
ˆ 0

− x
µ

/t ′Pµ
0 (x− y,−t ′)ξ(y, t ′)

=

ˆ ∞

−∞
/y
ˆ x

µ

0
/t ′Pµ

0 (x− y, t ′)ξ(y, t ′). (35)

Then

〈
h(x)2

〉
≈
ˆ ∞

−∞
/y
ˆ x

µ

0
/t ′Pµ

0 (x− y, t ′)2

=
1√
8π

ˆ x
µ

0

/t ′√
t ′
=

√
x

2πµ
. (36)

This reproduces the result of equation (33).

3.7. Decay of the auto-correlation function

We wish to calculate (with µ=D = 1)

⟨h(x,t)h(x,0)⟩=
ˆ
y>0

ˆ
t ′<0

Pµ(x,0|y, t ′)Pµ(x,t|y, t ′). (37)
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Figure 1. Sketch of the domain contributing to the integral (35). Support in space
at given time t ′ is restricted to the diffusion parabola as indicated. This implies that
for 0< t ′ < t the Dirichlet propagator can be approximated by the free propagator,
and the space integral extended to ∞. By the same argument, times t ′ > t do not
contribute.

With the help of equation (35), this can be approximated as

⟨h(x,t)h(x,0)⟩ ≈
ˆ
y

ˆ
0"t ′"x

Pµ
0 (y, t

′)Pµ
0 (y+ t, t+ t ′). (38)

Therefore

⟨h(x,t)h(x,0)⟩ ≃
ˆ ∞

−∞

/k
2π

ˆ ∞

−∞

/p
2π

ˆ
y

ˆ
0"t ′"x

2ik(x−y+t ′)−k2t ′2ip(x−y+t+t ′)−p2(t+t ′)

=

ˆ
0"t ′"x

ˆ ∞

−∞

/k
2π

2−k2(t+2t ′)−ikt =

ˆ
0"t ′"x

2−
t2

4(t+2t ′)

2
√
π
√
t+2t ′

=
1

4

√
t

π

ˆ 2x
t

0
/y 2−

t
4(1+y)

√
1+ y

=
t

8
√
π

[
Γ

(
−1

2
,

t2

4(t+2x)

)
−Γ

(
−1

2
,
t

4

)]
. (39)

The Γ-function decays as a power-law corrected Gaussian for large second argument.
As we are interested in both large x and large t, the second term vanishes; the first one
implies that the proper scaling variable is t/

√
x, reducing the denominator of the first

term from t+2x→ 2x. As a result,

⟨h(x,t)h(x,0)⟩ ≃
√

x

2π
f

(
t√
x

)
, f(0) = 1, f(y)

y→∞−→ 0,
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f (y) =
y

4
√
2
Γ

(
−1

2
,
y2

8

)
. (40)

We tested this against a numerical integration of the exact expression. This worked,
but only for large x and t ; for small times our approximation converges from the wrong
side. f (y) has series expansions for small and large y

f(y) = 1− 1

2

√
π

2
y+

y2

8
− y4

384
+

y6

15360
+ · · ·

f(y) = 2− y2

8

[
4

y2
− 48

y4
+

960

y6
+ · · ·

]
. (41)

Putting back the dependence on µ, D and σ yields with equation (22)

⟨h(x,t)h(x,0)⟩ ≃ σ2

√
x

2πµD
f

(
µ2t√
Dxµ

)
. (42)

3.8. Dynamic exponents z = 2, z = 1 and z = 1/2

Our calculations above teach us that

z =

⎧
⎪⎨

⎪⎩

2 for bulk observables in the comoving (advected) frame

1 for bulk observables in the fixed frame
1
2 for ⟨h(x,t)h(x,0)⟩

(43)

In particular, we stress that at a time scale t∼ L we reach stationarity on the interval
[0,L] (see also [33, 35]).

3.9. Numerical verification

In the symmetric case, we expect the (centred) height function h in both Toom’s model
and the DEP to converge to the solution of the aaEW equation (aaEW) (up to possible
logarithmic corrections). In order to test this, we compare the correlation ⟨h(x,t)h(x,0)⟩
to equation (42).

In figure 2 we show this comparison for Toom’s model. It is worth noting, as already
mentioned in [24], that there are no finite-size effects in this simulation. We see that the
analytic prediction (42) is well verified. (We did not check the dependence on parameters
µ, D, and σ). For more thorough numerical studies of this model we refer the reader to
[24, 32, 36].)

In figure 3 we show the same plot for the sDEP. There are noticeable finite-size
effects, but for large systems the rescaled correlator ⟨h(x,t)h(0,0⟩x−1/2 plotted against
t/x2 seemingly converges. Remarkably, we obtain not only the correct exponent ζ = 1

4,
but also the correct coefficient: after rescaling equation (17) to account for the coeffi-
cients D and σ in equation (aaEW), and plugging in D,µ and σ found in section 2.4,
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Figure 2. Simulation of the height correlations in the symmetric Toom model of
size L= 210, after N = 5.5 · 107 iterations. (Top left) Height-correlation function
for x =2 (small, red), x =4, x= 8, . . . to x= 210 (largest, violet). (Top right) Con-
vergence (same colour code) of the scaling function f (t) against the function of
equation (40) (black dashed), with two arbitrary scales. (Bottom left) The ratio of
measured f (t) to analytic prediction. (Bottom right) f (t) on a log-scale.

we obtain

⟨h(x)2⟩ ≈ σ2

√
2πµD

√
x=

√
9

20π

√
x≈ 0.378

√
x.

This relation, including the coefficient of 0.378 is verified numerically, as can be seen on
figure 3. On the other hand, the rescaling factor for the argument of f is off by a factor
of about 1.66,

⟨h(x,t)h(0,0)⟩x−1/2 ≈
√

9

20π
f

(
1.66

√
2

5

t√
x

)
. (44)

This factor, which seemingly affects time scales only, may be due to the presence
of sub-sub-leading corrections ∼ (∇h)3 in the equation of motion. The presence of
this type of corrections has been discussed in [34, 36]. As a marginal perturba-
tion (∇h)3 gives logarithmic corrections, which may be of the form HML or HM t. Our
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Figure 3. Simulation of sDEP for L= 213, after N = 5 · 1012 iterations. (Top left)
Height-correlation function for x =2 (small, red), x =4, x= 8, . . . to x= 213 (largest,
violet). (Top right) Convergence (same colour code) of the scaling function f (t)
against the function of equation (40) (black dashed), with two fitted scales, and
dropping the first data point. The amplitude is as predicted in equation (44).
(Bottom left) The ratio of measured f (t) to analytic prediction. (Bottom right)
f (t) on a log-scale.

simulation suggests that the combination σ2√
µD

does not renormalize, while each coef-

ficient by itself may renormalize. In particular the combination µ3/D renormalizes by
a factor of 2.8 at L= 213. We show in section 4.2 that σ2/D does not renormalize
in the bulk. In summary, static observables seem not to renormalize, while temporal
correlations do.

The code used to simulate the DEP is available with this paper.

3.10. Discrete argument

The exponent z = 1
2 in the aaEW universality class can also be derived directly in the

discrete model, without passing to the continuum limit.
Consider the height function h(L) of the sDEP at fixed position L. This function

only changes when a particle or a hole at L or L+1 jumps to the right of L. Since the
density is approximately 1/2, at any such jump h(L) increases by 1 with probability
close to 1/2 and decreases by 1 with probability close to 1/2. However, due to density
fluctuations, this probability is not exactly 1/2. When the density is slightly above 1/2
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there are more particles, and h is more likely to decrease. Conversely, when the density
fluctuates below 1/2, it is more likely to increase. The exact correction is complicated,
depending on non-trivial correlations, but to first order we may assume that it induces
a drift −αh(L) with α> 0, possibly L-dependent. We conclude that h(L) behaves as a
random walk with a drift term −αh(L), equivalent to diffusion in a confining potential
α
2h(L)

2. For this process, we know that h(L) fluctuates on a scale α−1/2 and that its
relaxation time is of order 1/α. Finally, since ζ = 1

4, the fluctuations of h are of order
L1/4. Comparing this scaling with α−1/2 suggests that α scales as L−1/2, and hence z = 1

2.

4. Asymmetric case—the aaKPZ universality class

4.1. Introduction

The aaKPZ universality class can be analysed in a similar manner. As in the symmetric
case, the stationary state in the periodic or infinite system is that of Brownian motion,
and the bulk behaviour is determined by the KPZ equation in the comoving frame. The
edge behaviour in the aaKPZ universality class can then be studied using methods close
to those described above [24–27], yielding a roughness exponent ζ = 1

3, and dynamical
exponents z = 3

2 for bulk observables in the comoving frame, z =1 for bulk observables
in the fixed frame, and z = 2

3 for ⟨h(x,t)h(x,0)⟩.

4.2. Protection of the stationary measure

Consider the equation of motion (17), with a subleading KPZ-term, and a subsubleading
term ∼ (∇h)3,6

η∂th(x,t) =D∇2h(x,t)−µ∇h(x,t)+λ2[∇h(x,t)]2 +λ3[∇h(x,t)]3 + · · ·+ ξ (x,t). (45)

In the absence of boundaries, the measure Pt[h] satisfies the Fokker–Planck equation

η∂tPt[h] = σ2

ˆ
x

δ2

δh(x)2
Pt[h]−

ˆ
x

δ

δh(x)

⎧
⎨

⎩

⎛

⎝D∇2h(x)−µ∇h(x,t)+
∑

n!2

λn [∇h(x)]n

⎞

⎠Pt[h]

⎫
⎬

⎭ .

(46)

Similar to what happens for KPZ, (see e.g. [2], section 7.12), for µ= λi = 0, a steady-
state solution ∂tPbb[h] = 0 can be found by asking that

σ2 δ

δh(x)
Pbb[h] =D∇2h(x)Pbb[h]. (47)

6 Here we extend an argument initially given for the KPZ equation. While it may be well known in this more general form, we
could not find a reference in the literature. J Krug mentions it in his Diplomarbeit of 1985 at Munich university.
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This is solved by

Pbb[h] =N 2tT
(
− σ2

2D

ˆ
x
[∇h(x)]2

)
. (48)

What is the effect of the additional terms? Inserting the steady state into equation (46)
yields

η∂tPbb[h] =−
ˆ
x

δ

δh(x)

{(
−µ∇h(x,t)+

∑

n!2

λn [∇h(x)]n
)
Pbb[h]

}

=
σ2

D

ˆ
x
∇2h(x)

(
−µ∇h(x,t)+

∑

n!2

λn [∇h(x)]n
)
Pbb[h]

=
σ2

D

ˆ
x
∇
(
−µ

2
[∇h(x,t)]2 +

∑

n!2

λn

n+1
[∇h(x)]n

)
Pbb[h] = 0. (49)

Note that by going from the first to the second line, we have dropped the derivative of
the terms inside the big round brackets, since they are a total derivative. The last line
vanishes, again due to the fact that this is a total derivative.

This calculation shows that as long as we consider a system without boundaries,
the steady state is independent of µ and λn . When we consider the system from an
RG perspective, this means that σ2/D is not renormalized. There is nothing, however,
to protect η/D. In the presence of a boundary, we do not expect bulk properties to
renormalize differently, thus the effective η, D, µ, and λi to be unchanged if a boundary
is introduced.

Let us mention, that from an RG perspective there may appear additional renor-
malizations on the boundary, and since ⟨h(x,t)h(x,0)⟩ depends on the distance x to the
boundary, they could appear there. Since the static 2-point function

〈
h(x,t)2

〉
shows no

corrections, and temporal-derivative terms are marginal in the bulk, we do not expect
this to be the case. It would be interesting to render this intuitive argument more
rigorously.

5. Oslo model

5.1. Definition

The Oslo model describes the evolution of a sand pile, given by its height h (number of
grains) at each horizontal position (see figure 4). In a real sandpile, whether a grain at
site i slides downhill depends on the local slope z (i), the friction with its neighbours of
contact, and its orientation. The Oslo model is a simple one-dimensional model for this
phenomenon, which depends only on the local slope z (i), and a random variable z+(i).
It was introduced in [22, 23], and is defined as follows: Consider the height function
h(i) in the left of figure 4. To each height profile h(i) associate a stress field (slope) z (i)
defined by

z(i) := h(i)−h(i+1). (50)
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Figure 4. (Left) A stable configuration of the Oslo model. The latter is a cellular
automaton version of the right half of the rice pile at the top. (Middle bottom) The
variable z defined in equation (50). (Right) The critical value of z for the stable
configuration in the middle.

In addition, at each position there is a threshold z+(i). A toppling is invoked if z(i)>
z+(i), i > 1. The toppling rules are

z(i)→ z(i)− 2, z(i± 1)→ z(i± 1)+ 1. (51)

They can be interpreted as moving a grain from the top of the column at site i to the
top of the column at site i +1,

h(i)→ h(i)− 1, h(i+1)→ h(i+1)+1. (52)

After such a move, the threshold z+(i) for site i is updated,

z+(i)→ new random number. (53)

In its original version, the random number is 1 or 2 with probability 1/2. To obtain
figure 4 we used a random number drawn uniformly from the interval [0,2]. This reduces
the critical slope.

In this article we consider a sysmtem of size L with absorbing (Dirichlet) bound-
ary conditions on the left boundary (site 1) and free (Neumann) boundary conditions
on the right boundary (site L). That is, in the h variable, a toppling at 1 happens
when z(1)> z+(1), and it moves a grain from site 1 to site 2. On the right bound-
ary, a toppling at L happens when h(L)> z+(L), and it removes one grain from h. We
can formulate this in the language of the z variables: when a toppling at 1 occurs,
z (1) decreases by 2 and z (2) increases by 1 (i.e. the particle that should have gone
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to the left exits the system). When a toppling at L occurs, z (L) decreases by 1 and
z(L− 1) increases by 1 (i.e. the particle that should have gone to the right stays
at L).

For further reading on the Oslo model, we refer to [12, 37–41].

5.2. Phenomenology of the Oslo model

Assume that we start with a system containing many grains. Thanks to the Dirichlet
boundary condition for h to the right, the system looses grains (h-particles) there until it
reaches a critical slope. This critical slope is equivalent to a critical density of z -particles,
which leave the system at the left7. We note here that sites with no z -particles or a single
z -particle are always stable, sites with two z -particles could be stable or unstable, and
particles with three or more z -particles are always unstable. This means that the critical
slope must be between 1 and 2 (in fact, it equals approximately 1.8).

An important feature of the Oslo model is that it is Abelian (commutative). In
our definition we explained which topplings are invoked, but we did not mention the
order in which they occur. It is not difficult to see that the final configuration, after
all topplings, does not depend on this order: z (i) is given by the number of incoming
particles (the topplings at i − 1 and i +1) and the number of outgoing particles (twice
the topplings at i). Since a toppling at one site cannot render another site inactive, the
total number of topplings at each site does not depend on the order, hence the final
configuration also does not depend on the order.

Thanks to the Abelianity of the model, we are allowed to choose freely the order of
topplings. To compare the Oslo model with the models presented above, we choose the
same type of dynamics, making each site topple with rate 1 if z(i)> z+(i).

The Oslo model has been studied extensively, and impressively accurate simulations
of its critical exponents are known [12]. For the sake of this paper we wish to mention two
of these exponents. First, the roughness exponent is conjectured [12] to be ζ = 1

4, that

is,
〈
[h(i)−h(j)]2

〉
∼ |i− j|2ζ . In the language of the z -particles, this is a hyperuniform

state [42], i.e. the number of particles between i and j fluctuates as |i− j|ζ ≪ |i− j|1/2.
The second relevant exponent is the dynamic exponent zOslo, conjectured [12] to be
zOslo =

10
7 .

5.3. Why is ζ = 1
4 in the Oslo model?

5.3.1. Local time and global time. The quenched noise of the Oslo model may be
thought of as a local time shift: z c is only updated after a toppling, while an annealed
version would update z c at a fixed rate. We therefore define the local time at a site x
as the number of toppling events at x. This delays the topplings as compared to the
models discussed in section 3, but when the topplings occur, their dynamics is faster, so
as to ‘catch up’. As a result, we expect the dynamical critical exponent z to be smaller
than 2, and indeed zOslo ≈ 10

7 < 2.

7 Note that since due to equation (50) z is the derivative of h. Thus Neumann boundary conditions for h are Dirichlet boundary
conditions for z, and vice versa.
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5.3.2. Hydrodynamic behaviour during the lifetime of an avalanche. A key observation
for the Oslo model is that, during an avalanche, the local time and the global time
propagate approximately at the same rate. Therefore, as long as we are interested in
the evolution of an avalanche at times which are much shorter than its survival time,
we may replace the quenched noise with an annealed one.

5.3.3. Comparing the Oslo model with aaEW. As discussed in the previous section,
we consider time scales much shorter than the lifetime of an avalanche. We can there-
fore assume that the system evolves according to a hydrodynamic limit of the type in
equation (5), with an anchored boundary (at the left). In this model, the analogue of
the particles in the DEP or the Toom model are the stress variables z.

Unlike the DEP or Toom’s model, in the Oslo model not only the number of
z -particles is conserved but also their center of mass, i.e.

∂t

ˆ y

w
h(x,t)/x= topplings at w− topplings at y. (54)

Let us consider each of the terms in equation (5): The diffusion term D∇2h and the
advection term µ∇h integrate to

ˆ y

w
/xD∇2h(x,t) =D[∇h(y, t)−∇h(w,t)], (55)

ˆ y

w
/xµ∇h(x,t) = µ[h(y, t)−h(w,t)], (56)

both bounded uniformly in the interval length y −w (i.e. they remain bounded even if
y −w becomes large). The quadratic and constant terms are given by

ˆ y

w
/x
[
λ2∇(h(x,t))2 + c

]
(57)

The zero-current condition (6) implies that this term vanishes on average. However
its fluctuations grow with y −w, so it cannot be bounded uniformly. This means that
λ2 = 0. The cubic term

ˆ y

w
/xλ3[∇h(x,t)]3 (58)

is also a fluctuating term which cannot be bounded uniformly, unless λ3 = 0. In sum-
mary, the conservation of the center of mass forces ∂th(x,t) to be a total derivatives,
which is a stronger constraint than the particle-hole symmetry in Toom or the DEP8.

The argument above tells us that, for times shorter than LzOslo , the Oslo model has
an aaEW behaviour. Since zOslo > zaaEW = 1, we are allowed to consider the model up

8 We already point out that this is related to the fact that h(x, t) can be thought of as the gradient of a field u(x, t), see equation (62).
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Figure 5. (Top line) The Oslo model at driving rate r =0, L=256, x =1, 2,
4, . . . ,256 (from red over yellow, green, cyan, blue to violet). The last point is at
x =L, drawn in dashed. It behaves differently from bulk points. The dashed gray
line has power 2ζ/z with best-fit values as indicated; the dotted line corresponds to
the theoretical prediction 2ζ/z = 7/20 (ζ = 1/4, z = 10/7). (Bottom line) ibid with
driving rate r = 1/5, and L=1024. See the discussion in section 5.4.

to times LzaaEW. By then the surface reaches a roughness of ζaaEW = 1
4, which remains

the roughness of the Oslo surface.

5.4. Adiabatic versus finite advection in the Oslo model

In figure 5 we show the auto-correlation function in the Oslo model, as a function of
‘grain-time’ t : the protocol is to add one grain, and then to let the full system relax
during n= 1/r iterations, or until all sites are stable. As a result, the time t in this
simulation is the number of added grains, and r the driving rate. What we measure is
the auto-correlation function in the steady state,

〈
[h(x,t)−h(x,0)]2

〉
≡
〈
[h(x,t+ t ′)−h(x,t ′)]2

〉
. (59)

One observes on figure 5 that for adiabatic driving (r → 0)

(i) For each x, it reaches a plateau after some time τ x . The larger x, the larger τ x .
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(ii) A scaling collapse can be achieved by the ansatz
〈
[h(x,t)−h(x,0)]2

〉
≃ x2ζfx (t/x

z) ⇐⇒ fx(t) =
〈
[h(x,txz)−h(x,0)]2

〉
, (60)

where fx(t)→ f(t) for x= 1,2,4, . . . ,L/2.

(iii) The best scaling collapse is achieved by ζ =0.258 (close to the predicted ζ = 1/4),
and z =1.24, definitely smaller than z = 10/7 = 1.42857.

(iv) The last point x =L behaves differently, and its scaling function fL(t) does not
collapse together with the others onto a master curve. While fx(t)∼ t2ζ/z with
a power given by ζ =0.258, and z =1.24, the last point has a slope approaching
2ζ/z = 7/20.

Let us now turn to a finite driving rate r = 1/5, i.e. after adding one grain on the
left, we try to topple each site 5 times. Having a finite injection rate, t can both be
interpreted as the number of injected grains, or time (divided by 5). We now observe
that

(i) Using the theoretically predicted values of ζ = 1/4 and z = 10/7 results in a decent
scaling collapse, which improves for larger x.

(ii) The slope of f (t) in a logarithmic scale does not seem to approach 2ζ/z, except
for the last point.

(iii) Things improve for larger system sizes.

(iv) Remarkably, while we studied smaller driving rates r = 1/20 and r = 1/10 (not
shown) even at the large driving rate of r = 1/5 the plots are almost unchanged as
compared to r =0, indicating that we are still in a critical state.

(v) This critical state at large driving can be described by the anchored advected
Edwards Wilkinson equation (17).

This confirms our findings that the roughness ζ = 1/4 in the Oslo model has the same
origin as in the anchored Edwards–Wilkinson equation (aaEW).

5.5. Oslo and quenched Edwards–Wilkinson

Here we give the relation to depinning in the Edwards–Wilkinson model, of a string of
size L [2, 12, 22, 23]. The latter has an equation of motion,

∂tu(i, t) =∇2u(i, t)+F (i,u(i, t)), (61)

which we read discretized in time t and space i (∇2 is the discrete Laplacian w.r.t. the
variable i). The random forces F (i,u) are uncorrelated Gaussian random variables with
unit variance. To connect this to the Oslo sandpile, define

u(i) :=
L∑

j=i+1

h(i)+O{grains fallen off at the right end}. (62)
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As a consequence, the discrete Laplacian

∇2u(i) = z(i), (63)

and the random force F (i,u) stems from the fact that if u(i)→ u(i)+ 1, F (i,u)→
F (i,u+1) is a new random variable, which identifies with z+(i) in the Oslo model.
The interpretation is that of a string pulled at site i =0 (its left end), with Neumann
boundary conditions (no force) at the right end. Its average profile is parabolic,

⟨u(i)⟩ ≈ ⟨z⟩
2
(L− i)2 +O{grains fallen off at the right}. (64)

As the disorder is renewed after each displacement, it falls into the random-field uni-
versality class of depinning [2]. Since ∇u∼ h, a roughness exponent ζ = 1

4 for h is the
same as a roughness exponent

ζ[1q
d=1 =

5

4
(65)

for u. This is what we wanted to show.

6. Conclusion

As we have shown, there is a large class of models which have a roughness exponent
of ζ = 1/4. This encompasses the Toom model, advected diffusion with an absorbing
boundary, the sDEP, and the Oslo model. Observing that the height in the Oslo model
corresponds to the slope of the height in the quenched Edwards–Wilkinson model, we
showed that the roughness exponent of the latter is ζ[1q = 5/4. This puts onto a firm

basis the recent conjecture [12] that the numerically observed exponent of ζ[1q
d=1 = 1.25

[11] is exactly ζ[1q
d=1 = 5/4.

While these models have the same roughness exponent, their dynamical exponent
z can be quite different, and depend on the observable. We identified z for the first
three models, the anchored advected universality class, where we observed a dynamical
exponent of z =2, z =1 and even z = 1/2, depending on the obversable. Our corres-
pondence to the Oslo model cannot (yet) provide its dynamic exponent z, conjectured
to be z = 10/7, since the arguments use both a global and a local time, which are dis-
tinct in this case. Given that z = 10/7 is again a simple fraction, we hope that an exact
argument may be found as well.
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