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Universal force correlations in an RNA-DNA unzipping experiment
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We study unzipping of a complementary RNA-DNA helix applied to an external force, focusing on the
force-force correlations. While at the microscopic level these are given by the sequence, the experiment measures
effective, macroscopic correlations. The latter are sequence independent, i.e., universal, and constitute the central
object of the underlying field theory of disordered systems. Comparing field-theory predictions and the exact
solution of a one-dimensional toy model with the experiment, we find an excellent agreement, confirming
fundamental theoretical concepts via biologically inspired experiments.
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I. INTRODUCTION

The amount of biological data is growing steadily, reaching
about 2.5 × 1016 Bytes in 2015 [1], on par with astronomy,
youtube, and Twitter. An important question is what can be
learned from these data, and what cannot? Depending on their
specialization, scientists usually ask different, and seemingly
unrelated questions. Here we study unzipping in the peeling
mode [2] of a complementary RNA-DNA double strand, us-
ing a sequence obtained from ribosomal RNA. As shown in
Fig. 1, at one end the double helix is attached with its both
strands to a bead, whereas on the other end only the DNA
strand is. Pulling on the beads with an optical tweezer [3] the
RNA strand peels off. What is measured is the force-extension
curve, of which an example is given in Fig. 2.

Rather complementary questions can now be asked:
(i) What can one learn about the specific biological

system?
(ii) Are there observables which are independent of the

chosen nucleotide sequence, thus universal?
(iii) How does understanding the universal signal help

to analyze the biological system? What limitations does it
impose?

The first question is at the origin and design of the exper-
iment [4,5,7], which aims at understanding assembly of the
large subunit of the ribosome, and where all experimental pa-
rameters can be found. Here we address the second question,
aiming at understanding its universal, sequence-independent
properties. This allows us to address the third question, help-
ing to better extract biologically relevant data.
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Consider the force-extension curve in Fig. 2. Applying no
force, the RNA-DNA double strand is in an equilibrated coiled
state, with its end-to-end distance being roughly 0.8 μm.
Since the beads are sitting in an optical trap, their distance,
or more specifically the distance w between the two minima
of the trap, is the control parameter. Increasing w, the RNA-
DNA double strand is stretched, reflected in an increase in the
measured force F . Finally part of the RNA sequence peels
off [8], leading to a first drop in the force-extension curve.
Increasing w further leads to more force drops resulting in an
almost constant force. This plateau regime is marked in red
in Fig. 2. Increasing w further, peeling can no longer reduce
the force, and the latter increases again, eventually leading to
the breakage of the DNA molecule (not shown). If instead of
w the applied force F were controlled, as in experiments with
magnetic tweezers [9,10], a phase transition at Fc could be
observed between a closed and an open state [11].

The aim of this article is to analyze the force fluctuations
on the plateau, i.e., the sawtooth shaped signal on top of the
critical force. This kind of signal is frequent in nature, and at
the heart of the so-called depinning transition: It arises in a
plethora of situations: Barkhausen noise in magnets [12,13]

FIG. 1. Peeling of an RNA-DNA double strand. The RNA se-
quence is from subunit 23S of the ribosome in E. Coli, prolonged to
attach the beads (with a much larger radius than drawn here). The
DNA sequence is its complement. Drawing not to scale.

2643-1564/2020/2(4)/043385(6) 043385-1 Published by the American Physical Society

https://orcid.org/0000-0002-9270-4990
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.043385&domain=pdf&date_stamp=2020-12-17
https://doi.org/10.1103/PhysRevResearch.2.043385
https://creativecommons.org/licenses/by/4.0/


WIESE, BERCY, MELKONYAN, AND BIZEBARD PHYSICAL REVIEW RESEARCH 2, 043385 (2020)

FIG. 2. A sample force-extension curve. For the data analysis
we only use the last part of the curve, the plateau (in red). On this
plateau, the force fluctuates around its critical value of about 60 pN.
The extension w starts at 3 μm, which is the sum of the unstretched
molecule plus twice the radius of the beads (2 × 1 μm). The effective
stiffness m2 in Eq. (1) is estimated from the slope of the green dashed
lines as m2 = 55 ± 5 pN/μm at the beginning of the plateau, which
remains at least approximately the same at the end of the plateau. The
driving velocity is about 7 nm/s, corresponding to 42 nucleotides/s
as in the cell [6].

(audible as the rustle in old-style telephones), depinning of
a contactline [14] (the line where coffee and air meet in a
cup, or in drops on a windshield), earthquakes [15], vortices
in high-temperature superconductors [16], to name a few. The
largest such system on earth is the movement of tectonic plates
in the outer crust of the earth, where the resulting force drops
are earthquakes. The smallest system the authors are aware of
is the peeling experiment studied here. Yet, all these systems
have a very similar phenomenology: In each case, a control
parameter w is increased, leading to an increase in tension
of the elastic object, released via a succession of force drops.
Being omnipresent, many theoretical models and mechanisms
have been proposed for this depinning transition, starting from
the chaos induced in the Burridge-Knopoff model of 1967
[17], over toy models for magnets [18,19], to sophisticated
field theoretic work using functional RG [20–25]. Today it is
understood that the minimal ingredients are

(i) a random force (the disorder),
(ii) an elastic coupling to an external control parameter,
(iii) an overdamped dynamics.
In the experiment considered here, the random force comes

from the seemingly random RNA sequence of the ribosome
[26]. The elastic coupling to an external control parameter is
given by the beads attached to the ends of the strands sitting
in the harmonic traps with distance w. Finally, an overdamped
dynamics is typical for small systems immersed into a solvent,
where inertia plays a negligible role.

II. THEORY

The measured force can be expressed as [27]

F = m2(w − u), (1)

where w is the distance between the two traps, and u is the dis-
tance between the two beads, see Fig. 1. This corresponds to
an energy E = m2

2 (w − u)2 where m2 is the combined strength
of the traps, the elasticity of the partially unzipped double
strand, and the attached single strand. What is measured in
the experiment is the force given in Eq. (1). An example is
shown in Fig. 2. Upon increasing the trap distance w, the
force first increases until it reaches a plateau regime where
it is almost constant, 〈F 〉 ≈ Fc = 60 pN. We are interested in
the correlations of the force fluctuations in the plateau regime
(red in Fig. 2), i.e., the connected expectations

�(w,w′) := 〈F (w)F (w′)〉c

≡ 〈[F (w) − 〈F (w)〉][F (w′) − 〈F (w′)〉]〉. (2)

Here w and w′ are two distinct values of w in Fig. 2. Since
�(w,w′) only depends on the difference w − w′ we can
improve the disorder average (average over experiments) by
an additional translational average.

Let us start with an exact solution for a toy model [28],
namely a particle dragged through a disordered force land-
scape. To apply the results of Ref. [28] one needs to specify
the distribution of forces F . Since the microscopic forces
can be thought of as sums of random variables (neighboring
monomers act together to generate these random forces), and
assuming the central-limit theorem applies, forces are Gauss
distributed, which in the terminology of [28] leads to the
Gumbell universality class of extreme-value statistics, with
correlator

�(w) = m4ρ2
m�Gumbell(w/ρm), (3)

�Gumbell(x) := x2

2
+ Li2(1 − e|x|) + π2

6
, (4)

ρm = 1

m2
√

2 ln(m−2)
. (5)

As shown below in Sec. III and in Fig. 5, experimental data
and theory agree well.

While it is gratifying to have a theoretical prediction veri-
fied by an experiment, the implications here are much deeper,
as the function �(w) is the central object of the field theory of
disordered elastic manifolds of inner dimension d (here d =
0), e.g., a magnetic domain wall in a bulk magnet (d = 2),
or a contact line (d = 1). These systems are governed by an
equation of motion for the domain wall or line u, parametrized
by an internal coordinate x and time t ,

∂t u(x, t ) = ∇2u(x, t ) + m2[w − u(x, t )] + F (x, u(x, t )).

(6)

The force F (w) is the force acting on the center of mass. Then
the renormalized force-force correlator [29–31]

�(w − w′) := 1

Ld
〈F (w)F (w′)〉c

, (7)

where L is the linear size of the system, and Ld its volume,
can be obtained from field theory [20,21,24,31], based on the
equation of motion (6). Field theory is a central tool in theoret-
ical physics [32], with applications ranging from elementary
particle physics [33] to the fluctuations observed around the
critical point in liquid-gas transitions [34]. In all these cases, a
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FIG. 3. Force-extension curves restricted to the plateau region
for one of our batches with 47 data sets. Curves are randomly dis-
placed for better visualization.

set of flow equations for a finite number of coupling constants
is derived. These methods fail for disordered systems as those
given by Eq. (6). A way out was found by realizing that the
flow for the coupling constants has to be generalized to flow
for a function. This is known as the functional renormalization
group (FRG). The flow equations take the form

∂��(w) = − d2

dw2

1

2
[�(w) − �(0)]2 + · · · , (8)

where the omitted terms are higher-order corrections (tech-
nically higher-loop terms [23–25,32]), equivalent to an
expansion in ε = 4 − d (with d the dimension of the object).
What came as a surprise was the realization that �(w) ap-
pearing in Eq. (8), when integrated from a microscopic scale
to the length scale � ≡ 1/m, is the disorder-force correlator
measured via Eq. (7) [29–31]. Measuring �(w) is thus a key
test [14,35,36] for the field theory of disordered systems. The
solution to Eq. (8) (leading order in the expansion parameter
ε) reads

�(w) = A�FT(w/ρ), (9)

�FT(x) = −W

[
− exp

(
−x2

2
− 1

)]
, (10)

where A and ρ are nonuniversal constants, and the product-
log W (z) is the principal solution for w in z = wew. Field
theory also applies to the experiment described above, which
has (internal) dimension d = 0 (the single degree of freedom
is the number of the last unpeeled monomer). As ε = 4 is
large, we expect Eqs. (9) and (10) to give a decent approxi-
mation for the experiment, but also to show differences. This
is confirmed below, see Sec. III and Fig. 5.

III. DATA ANALYSIS AND UNIVERSAL SIGNAL

We measure the force-extension curve in an RNA-DNA-
unzipping experiment [4,5,7], retaining from the force-
extension curve shown in Fig. 2 only the plateau part (in red).
This experiment was repeated 163 times. From one of the
batches with 47 data sets, we show the retained plateaux in
Fig. 3. In order to minimize statistical errors, we measure the

FIG. 4. Estimation of �(0) − �(w) from one of our batches with
47 data sets, compared to three theoretical curves: pure exponential
decay (red), 1-loop FRG (black dot-dashed), and toy model (blue
dashed).

combination �(0) − �(w) = 1
2 〈[F (u + w) − F (u)]2〉c. This

average is more stable experimentally, since there seems to
be a small drift in the data (visible in Fig. 3); the latter may be
induced by a slightly diminishing effective stiffness m2 upon
opening the strands, even though this is invisible in Fig. 2.

In Fig. 4 we show the combination �(0) − �(w) as de-
fined by Eq. (7), for each of the force-extension curves of
Fig. 3, with the shaded colors identical to those of Fig. 3.
Strong statistical fluctuations are visible. Their mean, in solid
gray, is compared to three theoretical curves: The leading-
order field theory result (10) (black dot-dashed line), the
Gumbell result (3) (blue, dashed line), and an exponentially
decaying function (red, dotted line). There are two unknown
scales, equivalent to a rescaling of w and �. Since the slope
at the origin can be measured precisely, we rescale all theo-
retical functions to have the same slope [37]. The remaining
parameter is the behavior of �(0) − �(w) for large w, which
is adjusted visually. In dotted gray we show our estimates of
the absolute error bars, obtained by resampling, as explained
in Appendix A.

The result (of these partial data) favors the theoretical
prediction (3), while the estimated error bars are seemingly
rather large. The reason for the latter is that the main statisti-
cal fluctuations come from the amplitude multiplying �(w).
Measuring the statistical error of �(w)/�(0) estimates the
error of the shape only. It is further reduced by using all
our data, and is indicated by the green shaded region on our
final curve in Fig. 5. The agreement of the theory and the
experimental data is excellent, better than expected from the
single measurements of Fig. 4. This strongly indicates that the
universal physics behind the depinning transition is robust.

IV. SCALES AND INTERPRETATION

Our final result for �(w), given by the gray solid line in
Fig. 5, is in remarkable agreement with the analytical result
(3). What does this mean? Consider Fig. 2, where the force
grows linearly, interrupted by sudden drops of size δF . One
can show [38] that the derivative of the function �(w) at the

043385-3



WIESE, BERCY, MELKONYAN, AND BIZEBARD PHYSICAL REVIEW RESEARCH 2, 043385 (2020)

FIG. 5. Measurements of �(w) (in gray), with 1 − σ error bars
(green shaded), compared to three theoretical curves: pure exponen-
tial decay (dotted red line), 1-loop FRG (black dot-dashed line), and
toy model (blue dashed line). Inset: Theoretical curves with the data
subtracted (same color code). The blue curve is the closest to the
data.

origin is related to a moment ratio of force drops [39]

|�′(0+)| = m2δFm, δFm = 〈δF 2〉
2〈δF 〉 . (11)

Our experiments yield m2 = 55 ± 5 pN/μm (see Fig. 1) lead-
ing to δFm = 0.43 ± 0.05 pN, and to a correlation length
ξ = 0.055 ± 0.005 μm � 186 base pairs. This is roughly
consistent with the nine force drops identifiable in Fig. 2.
The driving velocity was varied from 5 to 7 nm/s, where no
statistically significant difference was observed for �(w).

These measurements indicate a serious challenge for
peeling experiments using optical tweezers: As force-force
correlations decay on a scale of about 200 bases, which is
about 1/15 of the length of the ribosomal RNA, events can be
resolved with that resolution. As Eq. (5) shows, this resolution
increases with the stiffness m2. The key to a high resolution is
thus a stiff construction and a well-aligned trap: If the trap is
not optimally aligned, showing the critical force at a say 20%
smaller value, the resolution suffers according to Eqs. (3)–(5)
by an even larger amount. Another possibility to increase the
stiffness is to use shorter constructions.

Our system maximizes force differences, and thus the
measured signal �(w), as the two possible parings CG and
AT/AU with different binding energies appear almost in the
same proportion [4]. The binding enthalpy δH per hydrogen
bond is about 2 kcal/mol [40], which gives 5 kcal/mol on
average for the two possible pairings. This is augmented by
stacking energies between the DNA and RNA strand to 9.1
kcal/mol [41]. The mean free energies δG are 1.5 kcal/mol
[41]. The difference in the number of hydrogen bonds gives
binding energy fluctuations of 1 kcal/mol, which is 11% of
the total binding energy. The measured force Fc on the plateau
is 60 pN, which leads to a microscopic force fluctuation of

dF = 6.6 pN. In the experiment we observe dF = 1.14 pN.
Why is this value so low? If we use the correlation length of
186 base pairs, equate it with ρ in Eqs. (3)–(5), this predicts
m2 = 1.5 × 10−3, and ln(m−2) = 6.5. This reduces dF from
6.6 to 2.6 pN, about 2 times larger than in the experiment.
Several factors may contribute to a further reduction: ther-
mal fluctuations, and the appearance of base pairs in the
free-energy estimates [41]. Finally, we did not discard “bad”
samples, i.e., samples with vanishing signal, since any filter-
ing risks introducing a systematic bias. While this does not
change the shape of �(w), it underestimates its amplitude.
Thus our measurements agree qualitatively with this crude
estimate, and more should not be expected.

The function �(w) was also measured in contact-line de-
pinning [14], and studied numerically for magnetic domain
walls [35,36]. For all these systems thermal fluctuations play
no role. In our experiment, thermal fluctuations are clearly
visible, both in an additional white noise for each data point,
as in a reduction of δH ≈ 9.1 kcal/mol to δG ≈ 1.5 kcal/mol.
Expectations in the literature are that thermal fluctuations may
round the cusp [31,42], a feature not visible here. How can
this be reconciled? There are several distinct entropic contri-
butions: Conformational entropy of unbound strands, a higher
entropy for the salt ions for unbound strands, and binding
entropy, as a bond can either be open or closed. The first two
ones are large and reduce δH quite substantially to δG; the
last one is small: as kBT ≈ 0.6 kcal/mol, the probability that a
bond is broken by thermal fluctuations is pT = e−δG/kBT , with
values ranging from 8 × 10−3 to 0.7 using the binding free
energies δG of [41]. Thus at most a few bonds can be opened
by thermal fluctuations, and using Eqs. (3) and (10) based on
zero-temperature depinning is justified.

One should be able to extract �(w) also from the unzip-
ping [2] of a hairpin. Interestingly, experiments report that the
scaling of Eq. (5) is replaced by ρm ∼ m−4/3 [43], a clear sig-
nature of a different universality class, namely “random-field”
disorder in equilibrium [44]. This scenario is possible through
the much stronger effective stiffness m2 there. Equilibrium is
observed experimentally through a vanishing hysteresis curve.

While the sequence used in the experiments is extracted
from ribosomal RNA, thus is not random, the measured func-
tion �(w) agrees to a good precision with that obtained
for a random sequence. In conclusion, universal physics can
emerge even in a specific biological system, and for a rela-
tively short sequence.

APPENDIX A: DATA ANALYSIS AND ERROR ESTIMATES

Protocol and error estimates: Define for a data-set Di, with
i = 1, . . . , n and n the total number of force-extension curves,
the set average

Ni(w) :=
∑
u∈Di

, (A1)

Qi(w) := 1

Ni(w)

∑
u∈Di

[F (u + w) − F (u)]2, (A2)

Mi(w) := 1

Ni(w)

∑
u∈Di

[F (u + w) − F (u)], (A3)
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Qc
i (w) := Qi(w) − Mi(w)2. (A4)

The above sums run over all values u, for which exists a pair
F (u + w) and F (u); Ni(w) is the number of such pairs. Our
best estimate for the force-force correlator then is

〈[F (u + w) − F (u)]2〉c =
∑

i Qc
i (w)Ni(w)∑
i Ni(w)

. (A5)

The fluctuations of the data shown in Fig. 4 are very large,
making error estimates difficult. We used a statistical resam-
pling technique: Randomly divide all data-sets Di into two
parts, P1 and P2. Define

NP1 (w) :=
∑
i∈P1

Ni(w), (A6)

Qc
P1

(w) := 1

NP1 (w)

∑
i∈P1

Qc
i (w)Ni(w). (A7)

A similar definition holds for P2. Then for each w measure the
variance of the partial means Qc

P1
(w) and Qc

P2
(w). Finally, av-

erage over all partitions �i, {1, . . . , n} → P1,P2. In practice,
it is enough to take Np = 100 random partitions. The error
estimate then is

σ 2(w) := 1

Np

∑
�i

〈
1

2

2∑
k=1

[
Qc

Pk (�i )(w) − Qc(w)
]2

〉
, (A8)

Np :=
∑
�i

. (A9)

We can also define the set of all 2Np partial means,

A(w) :=
⋃
�i

⋃
k=1,2

Qc
Pk (�i )(w). (A10)

We find that our analysis is consistent with

var(A(w)) ≈ σ 2(w). (A11)

These error estimates are absolute errors, presented in Fig. 4.
To obtain the error estimate given in Fig. 5, the partial means
(A10) where rescaled such that their w integrals equal the w

integral over all samples. This takes out amplitude fluctua-
tions, reducing the errors to errors of the shape.

APPENDIX B: CHECK ON TEST DATA

We generated test data according to the following protocol:
For each real data set, sample an Ornstein-Uhlenbeck process
of the same length, with mean Fm = Fc, variance �(0), and
correlation length ξ as measured. This is achieved by the
stochastic process

F (w + δw) = F (w) + ζ (w)

√
�(0)

ξ
+ Fm − F (w)

ξ
, (B1)

〈ζ (w)ζ (w′)〉 = δw,w′ . (B2)

This gives a first set of test data. For a second set we add an
additional white noise in the x direction, with δx ∈ {−1, 0, 1},
in units of the resolution of the measuring machine. For a
third set we added a Gauss distribution of mean zero and
width 1 to the force signal. By construction, these test data
are exponentially correlated:

〈F (w)F (w′)〉c = �(0)e−|w−w′|/ξ , (B3)

with additional noise for sets 2 and 3. They should thus ap-
proach the red dotted curve of Fig. 5. This is indeed observed,
with an appropriate estimate for the error bars.
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