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We present a proof of principle for the validity of the functional renormalization group, by measuring the
force correlations in Barkhausen-noise experiments. Our samples are soft ferromagnets in two distinct
universality classes, differing in the range of spin interactions, and the effects of eddy currents. We show
that the force correlations have a universal form predicted by the functional renormalization group, distinct
for short-range and long-range elasticity, and mostly independent of eddy currents. In all cases correlations
grow linearly at small distances, as in mean-field models, but in contrast to the latter are bounded at large
distances. As a consequence, avalanches are anti-correlated. We derive bounds for these anticorrelations,
which are saturated in the experiments, showing that the multiple domain walls in our samples effectively
behave as a single wall.
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Each theory of disordered systems relies on specific
assumptions, and often their validity is checked only for
standard observables, such as the roughness exponent.
Measuring its central ingredients would be a much more
stringent test to discriminate between them. Two general
theories have been proposed: the Gaussian variational
ansatz invoking replica-symmetry breaking [1–3], which
is exact for fully connected models [4,5], and the functional
renormalization group (FRG) for short-ranged elastic
systems [6,7], where the central ingredient is the effective
force correlator. This correlator is the solution of a non-
linear partial differential equation [6–8], and can exper-
imentally be extracted from the center-of-mass fluctuations
of the interface.
To prove the validity of the FRG for disordered systems,

we analyze the domain-wall motion in soft magnets (the
Barkhausen noise) [9], the oldest example of depinning and
avalanche motion [8,10–12]. Standard observables as the
avalanche size, duration [13,14] and shape [15–18] show
the existence of two universality classes differing in the
kind and range of domain-wall interactions [12,14]: amor-
phous materials with short-range (SR) interactions and
polycrystals with long-range (LR) interactions, conse-
quence of strong dipolar effects. In 3D magnets, the latter
is described by mean-field models pioneered in 1990
by Alessandro, Beatrice, Bertotti and Montorsi (ABBM)
[19–21], where a domain wall is represented by a single
degree of freedom, its center of mass (c.m.), a.k.a. mean
field (MF). For the SR class, key observables as the
avalanche-size exponent τ ≃ 1.27 differ from their MF
prediction τMF ¼ 3=2, while they are accounted for by
field-theoretic models [22–24].

In view of the solid evidence for exponents, a central
question is whether experiments can contradict the ABBM
model in a key prediction for LR magnets. We show that
this is the case for the force correlator acting on the
domain wall, or, equivalently, the correlator of its c.m.
To understand this, consider the equation of motion of
a d-dimensional interface with SR interactions,

η∂tuðx; tÞ ¼ ∇2uðx; tÞ þm2½w − uðx; tÞ� þ Fðx; uðx; tÞÞ;
w ¼ vt: ð1Þ

Here w is proportional to the external applied field,
increased very slowly, and m2, usually denoted k, is the
demagnetization factor [12]. Averaging Eq. (1) over x,
given w, we get η _uw ¼ m2½w − uw� þ Fw. Most of the time
_uw ¼ 0, and the position and force correlations are

Δ̂vðw − w0Þ ≔ ½w − uw�½w0 − uw0 �c ≃ 1

m4
FwFw0c; ð2Þ

where the overbar designates a disorder average and c its
connected part. In practice it is taken both over w and runs.
Δ̂v depends on the driving velocity. Its zero-velocity limit,

Δ̂ðwÞ ¼ lim
v→0

Δ̂vðwÞ; ð3Þ

is the central object of the FRG field theory [7,8,25–27].
In an experiment, it is impossible to take v → 0. The

effect of v > 0 is to round the cusp jΔ̂0ð0þÞj ¼ σ
[see Eq. (6)] in a boundary layer of size δw ∼ vτ, where
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τ is the timescale set by the response function RðtÞ ≃
ð1=τÞe−t=τ [see Fig. 2(c) for an example]. Reference [28]
shows that

Δ̂vðwÞ ¼
Z

∞

0

dt
Z

∞

0

dt0 RðtÞRðt0ÞΔ̂ðw − vðt − t0ÞÞ ð4Þ

can be deconvoluted to reconstruct Δ̂ðwÞ from the
measured Δ̂vðwÞ (see Supplemental Material [29],
Appendix D). The result is

Δ̂ðwÞ ¼ Δ̂vðwÞ þ τ2Δ̂ _uðwÞ; ð5Þ

where Δ̂ _uðwÞ is the autocorrelation function of the mea-
sured _uw. This allows us to extract Δ̂ðwÞ by plotting the rhs
and finding τ that best eliminates the rounding close to
w ¼ 0. As shown below, Eq. (5) allows us to remove a
boundary layer of size δw ¼ vτ, but it creates a smaller
one of size δ0w ¼ vτ0, see Supplemental Material [29],
Appendix E.
The ABBM model assumes that forces Fw perform a

random walk, and as a consequence

1

m4

1

2
½Fw − Fw0 �2 ¼ Δ̂ð0Þ − Δ̂ðw − w0Þ ≃ σjw − w0j: ð6Þ

Field theory [8,30,31] predicts Δ̂ð0Þ − Δ̂ðwÞ to grow
linearly as Eq. (6) for small w, and to saturate for large
w, with distinct shapes in SR and LR systems (see
Supplemental Material [29], Appendix C). While this
framework was tested in simulations [28,32], and experi-
ments on wetting [33] and RNA/DNA peeling [34], only
with magnets we can consider two universality classes, and
with a large statistics.
We analyze our experimental data as follows. We start

from the Barkhausen-noise time series, proportional to the
c.m. velocity _uw [see Fig. 1(a)]. The signal is characterized
by bursts when the domain wall moves forward, and a
vanishing signal when it is pinned, i.e., at rest, combined

with background noise (without noise _uw ≥ 0 [35]). This
allows us to reconstruct the position of the c.m. uw [see
Eq. (2)], as depicted in Fig. 1(b). It is characterized by
linearly increasing parts with slope 1, corresponding to an
increasing magnetic field (i.e., w), followed by drops in
w − uw when the wall moves forward. This allows us to
reconstruct the unknown scale between _uw and the voltage
induced in the pickup coil, reducing the scales in the
experiment to a single one (see Supplemental Material [29],
Appendix B).
We analyze Δ̂ðwÞ in different materials, summarized in

Table I. We also consider data where eddy currents (EC)
play a noticeable effect [9,12,15,16], an aspect experimen-
tally tunable by varying the sample thickness [9,15,16].
Details on samples are given in Appendix A, and on the
data analysis in Appendix F [29], including conversion of
our units of w to physical space and time.
SR interactions without ECs. Our first sample is an

amorphous 200-nm-thick FeSiB film. Figure 2(a) shows
that the raw data for Δ̂ðwÞ are rounded in a boundary layer
of size δw ≈ 0.6, due to the finite driving velocity. To obtain
Δ̂ðwÞ, we use Eq. (5) with τ ¼ 0.17. This reduces the
boundary layer (nonstraight part) from δw ≈ 0.6 to
δw ≈ 0.1, allowing us to extrapolate to w ¼ 0 [gray in
Figs. 2(a) and 2(b)]. The measured values for Δ̂ð0Þ
and Δ̂0ð0þÞ are then used to fix all scales in the theory
predictions we wish to compare to on Fig. 2(b). These are

(a) (b)

FIG. 1. Barkhausen noise in an amorphous FeSiB film (Table I). (a) Voltage signal recorded in the experiment (left axis), and
corresponding domain-wall velocity _uw (right axis), as a function of time (bottom axis) and w (top axis). (b) The connected part of the
interface position, w − uw, obtained by integrating _uw. w ¼ 1 corresponds to 2.5 ms≈1.5 mm. Physical units are indicated by gray
arrows.

TABLE I. Short-range and long-range samples, with and with-
out eddy currents.

Sample
Interactions/eddy

currents Correlation length ρ

Amorphous FeSiB film SR=no 7.5 ms ≈ 495 μm
Amorphous FeCoB ribbon SR=yes 0.1 s ≈ 67.5 μm
Polycrystalline NiFe film LR=no 12.5 ms ≈ 500 μm
Polycrystalline FeSi ribbon LR=yes 35 ms ≈ 0.9695 μm
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from bottom to top (analytic expressions are in
Appendix C. in the Supplemental Material [29]): 1-loop
FRG (relevant for d ¼ dc, i.e., LR elasticity), 2-loop FRG
in d ¼ 2 (relevant for SR elasticity) [30,31], the d ¼ 0

solution [28,36] and an exponential, the latter, not realized
in magnets, given as reference. The data agree best,
and within error bars, with the 2-loop FRG prediction
for d ¼ 2. From Fig. 2(b) we extract a correlation length
ρ ≔ Δ̂ð0Þ=Δ̂0ð0Þ ≈ 3. This agrees with the scale on which
Δ̂ _uðwÞ decays to 0 [see Fig. 10(a) in Supplemental Material
[29], Appendix G].

SR interactions with ECs. Our second sample with SR
elasticity is an amorphous FeCoB ribbon where ECs are
non-negligible. A range of different driving velocities is at
our disposal. As ECs are more relevant as v increases, we
focus on v ¼ 1, 2, 3. There is additional (white) noise
contributing to _u. After integration this contributes a linear
function to Δ̂ðwÞ, s.t.

Δ̂raw
v ð0Þ − Δ̂raw

v ðwÞ ¼ Δ̂vð0Þ − Δ̂vðwÞ þ σnoisejwj; ð7Þ
necessitating to subtract a linear term σnoisejwj (see Fig. 8 in
Supplemental Material [29], Appendix F2). Figure 2(c)

(a) (b)

(c) (d)

FIG. 2. (a) Construction of Δ̂ðwÞ for the FeSiB film (SR, no ECs). In red the raw data. In blue dashed, the result from Eq. (5) using
τ ¼ 0.17. In dotted gray the extrapolation to w ¼ 0. (b) Comparison of Δ̂ðwÞ using the dotted gray curve of (a), to theory candidates,
fixing scales by Δ̂ð0Þ and Δ̂0ð0þÞ. The latter are from top to bottom: exponential (red, dotted), solution in d ¼ 0 [28,36] (blue, dashed),
2-loop FRG via Padé for d ¼ 2 (orange, dotted), 1-loop FRG (black, dot-dashed). Error bars in green for 1σ confidence intervals. The
inset shows theory minus data in the same color code, favoring d ¼ 2 FRG at two loops (with error bars for this curve only). (c) Check of
deconvolution Eq. (5), for the FeCoB ribbon (SR, noticeable ECs), at different driving velocities v, using the same timescale τ ¼ 0.025;
magnified in the inset. Apart from a small deviation for v ¼ 3 they extrapolate to the same function. (d) Comparison of Δ̂ðwÞ from (c) to
the theory, using the color code of (b). The data is consistent with 2-loop FRG in d ¼ 2. w ¼ 1 corresponds to 2.5 ms≈1.5 mm for (a)–
(b), and to 0.2 s ≈ 135 μm for (c)–(d), see gray arrows.
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shows Δ̂vðwÞ after this subtraction. The inset zooms into
the boundary layer with deconvolution by Eq. (5) in the
same color code. Having data at different v allows us to test
that (i) the boundary layer scales linearly in v, i.e., δw ∼ vτ.
(ii) Δ̂vðwÞ for v ¼ 1, 2, 3 unfold to the same Δ̂ðwÞ. Both
conditions are satisfied using τ ¼ 0.025. Comparison to the
theory proceeds as before, and is shown in Fig. 2(d),
combining v ¼ 1 and v ¼ 2 to improve the statistics.
Although error bars are non-negligible, the data is in
agreement with the predicted 2-loop result in d ¼ 2, as
for FeSiB with SR elasticity without ECs in Fig. 2(b). For
w > 0.7 the data slightly deviate from the 2-loop result,
albeit well within error bars. Either this is a statistical
fluctuation, or due to ECs.
LR interactions without ECs. LR elasticity arises in

materials, here a polycrystalline 200-nm-thick NiFe film,
due to strong dipolar interactions between parts of the
domain wall. For long-range elasticity the upper critical
dimension dc ¼ 2 coincides with the dimension of the wall.
The common belief is that then MF theory, i.e., the ABBM
model, is sufficient to describe the system. A glance at
Fig. 3(a) shows that the experimental result is in contra-
diction to the prediction (6) of ABBM. While the latter
holds at small w, at larger w the correlator Δ̂ðwÞ decays to
zero. Field theory predicts [30,31,37,38] that fluctuations
are relevant at the upper critical dimension, and that Δ̂ðwÞ is
given by 1-loop FRG. Figure 3(a) shows that this is indeed
the case.
LR interactions with ECs. Our fourth sample is a

polycrystalline FeSi ribbon where the elasticity is LR
and ECs are non-negligible. Figure 3(b) shows a compari-
son of Δ̂ðwÞ to the four theory candidates. As for the
NiFe film with LR elasticity and no ECs, the agreement is

excellent with 1-loop FRG, and inconsistent with ABBM.
We refer to Supplemental Material [29], Appendix F4 and
Fig. 9 for details on the data analysis for this sample.
In experiments, force correlations are bounded, and

do not grow indefinitely as in MF models such as
ABBM [19–21], see Eq. (6). As a consequence [Ref. [8]
Sec. 4.20, or [39], Eq. (8)], avalanches are anticorrelated,

hSw1
Sw2

i
hSi2 − 1 ¼ −Δ̂00ðw1 − w2Þ: ð8Þ

Here Sw is the size of an avalanche at w, and hSwi ¼ hSi.
The numerator hSw1

Sw2
i is the expectation of the product of

avalanche sizes, given that one is triggered at w ¼ w1, and a
second at w ¼ w2; it depends on jw1 − w2j, and is averaged
over the remaining variable. The experimental verification
of this relation is shown on Fig. 4. Despite large statistical
fluctuations, both the functional form as the amplitude
agree. Since Δ̂ðwÞ is convex, Δ̂00ðwÞ ≥ 0. On the other
hand, hSw1

Sw2
i ≥ 0, thus Δ̂00ðwÞ ≤ 1. This bound is impos-

sible to reach, as the toy-model [Supplemental Material
[29], Eq. (C6)] in d ¼ 0 has Δ̂00ð0þÞ ¼ 0.5. The field theory
[8] gives

Δ̂00ð0þÞ ≤ 2

9
þ 0.107 533εþOðε2Þ; ð9Þ

which evaluates to 0.437 for SR (ε ¼ 2), and 0.222 (ε ¼ 0)
for LR correlations. Figure 4 shows that this bound is
saturated, both for the SR and LR sample. This is surprising
as both systems have multiple domain walls [40], estimated
to be around five for the samples on Fig. 4. So either all
but one domain wall are pinned, or these multiple walls are

(a) (b)

FIG. 3. The measured function Δ̂ðwÞ for our two LR samples: (a) a polycrystalline 200-nm-thick NiFe film (negligible ECs), and (b) a
polycrystalline FeSi ribbon (with ECs). They agree with 1-loop FRG relevant here. w ¼ 1 corresponds to 2.5 ms ≈ 100 μm for (a), and
50 ms ≈ 1.385 μm for (b), see gray arrows.
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so highly correlated that they effectively behave as a
single wall.
In this Letter, we measured the effective force or c.m.

correlations showing that they have a universal form,
predicted by the FRG, both for SR and LR elasticity
and mostly independent of ECs. We prove that FRG, an
alternative to replica symmetry breaking, correctly models
subtle details such as the dependence on dimension and the
range of interactions. We hope this work inspires the
experimental community to look beyond commonly stud-
ied observables and beyond MF. Further experimental
systems to explore are sheered colloids or foams, DNA
unzipping, and earthquakes.

We thank A. Douin, F. Lechenault, G. Mukerjee, and
A. Rosso for discussions. F. B. and R. L. S. acknowledge
financial support from CNPq and CAPES.
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