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Spatial shape of avalanches
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In disordered elastic systems, driven by displacing a parabolic confining potential adiabatically slowly, all
advance of the system is in bursts, termed avalanches. Avalanches have a finite extension in time, which is much
smaller than the waiting time between them. Avalanches also have a finite extension � in space, i.e., only a part of
the interface of size � moves during an avalanche. Here we study their spatial shape 〈S(x)〉� given �, as well as its
fluctuations encoded in the second cumulant 〈S2(x)〉c

�. We establish scaling relations governing the behavior close
to the boundary. We then give analytic results for the Brownian force model, in which the microscopic disorder
for each degree of freedom is a random walk. Finally, we confirm these results with numerical simulations. To do
this properly we elucidate the influence of discretization effects, which also confirms the assumptions entering
into the scaling ansatz. This allows us to reach the scaling limit already for avalanches of moderate size. We find
excellent agreement for the universal shape and its fluctuations, including all amplitudes.
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I. INTRODUCTION

Many physical systems in the presence of disorder, when
driven adiabatically slowly, advance in abrupt bursts, called
avalanches. The latter can be found in the domain-wall motion
in soft magnets [1], in fluid contact lines on a rough surface
[2], in slip instabilities leading to earthquakes on geological
faults, or in fracture experiments [3]. In magnetic systems they
are known as Barkhausen noise [4–6]. In some experiments
[2], but better in numerical simulations [7–9], it can be seen
that avalanches have a well-defined extension, both in space
and in time. In theoretical models, this is achieved without
the introduction of a short-scale cutoff. This is nontrivial:
The velocity in an avalanche, i.e., its temporal shape, could
well decay exponentially in time, as is the case in magnetic
systems in the presence of eddy currents [10,11]. However, it
can be shown that generically an avalanche stops abruptly. In
a field-theoretic expansion [12] the velocity of the center of
mass inside an avalanche of duration T was shown to be well
approximated by

〈u̇(t = xT )〉T � [T x(1 − x)]γ−1 exp
(
A

[
1
2 − x

])
, (1)

where 0 < x < 1. The exponent γ = (d + ζ )/z is given by
the two independent exponents at depinning, the roughness ζ

and the dynamical exponent z. The asymmetry A is negative
for d close to dc, i.e., A ≈ −0.336(1 − d/dc), skewing the
avalanche towards its end, as observed in numerical simula-
tions in d = 2 and 3 [13]. In one dimension, the asymmetry
is positive [14]. While more precise theoretical expressions
are available [12], an experimental or numerical verification
of these finer details is difficult and currently lacking.

In this article we analyze not the temporal but the spatial
shape 〈S(x)〉� of an avalanche of extension �. To define this
shape properly it is, as for the temporal shape, important that
an avalanche has well-defined end points in space and a well-
defined extension �.

Let us start to review where the theory on avalanches stands.
The systems mentioned above can efficiently be modeled by
an elastic interface driven through a disordered medium (see
[15,16] for a review of basic properties). The energy functional

for such a system has the form

H[u] =
∫

x

1

2
[∇u(x)]2+ m2

2
[u(x)−w]2+V (x,u(x)). (2)

The term V (x,u) is the disorder potential, correlated as
V (x,u)V (x ′,u′)=δd (x−x ′)R(u−u′). The term proportional
to m2 represents a confining potential centered at w. Changing
w allows us to study avalanches, either in the statics by
finding the minimum-energy configuration or in the dynamics,
at depinning, by studying the associated Langevin equation
(usually at zero temperature)

γ ∂tu(x,t)=−δH[u]

δu(x)

∣∣∣∣
u(x)=u(x,t)

= ∇2u(x,t)−m2[u(x,t)−w]+F (x,u(x,t)). (3)

The random force F (x,u) in Eq. (3) is related to the random
potential V (x,u) by F (x,u) = −∂uV (x,u). It has correlations
F (x,u),F (x ′,u′) = δd (x − x ′)�(u − u′), related to the cor-
relations of the disorder potential via �(u) = −R′′(u). To
simplify notation, we rescale time by t → t/γ , which sets
the coefficient γ = 1 in Eq. (3).

It is important to note that ∂tu(x,t) � 0, thus the movement
is always forward (Middleton’s theorem [17]). This property
is important for the avalanche dynamics and for a proper
construction of the field theory. Much progress was achieved
in this direction over the past years, due to a powerful method,
the functional renormalization group. It was first applied to a
precise estimation of the critical exponents [18–23]. Later it
was realized and verified in numerical simulations that the
central object of the field theory is directly related to the
correlator of the center-of-mass fluctuations, both in the statics
[24] and at depinning [25].

To build the field theory of avalanches, one first identifies
the upper critical dimension, dc = 4 for standard (short-range)
elasticity as in Eq. (2) or dc = 2 for long-range elasticity.
For depinning, it was proven that at this upper critical di-
mension, the relevant (i.e., mean-field) model is the Brownian
force model (BFM): an elastic manifold with the Langevin
equation (3), in which the random force experienced by each
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degree of freedom has the statistics of a random walk [26,27],
i.e.,

�(0) − �(u − u′) = σ |u − u′|. (4)

The BFM then serves as the starting point of a controlled ε ex-
pansion with ε = dc − d around the upper critical dimension.
This is relevant both for equilibrium, i.e., the statics [7,28–31],
and at depinning [10,32]. Results are now available for the
avalanche-size distribution, the distribution of durations, and
the temporal shape, both at fixed duration T as given in Eq. (1)
and at fixed size S.

Much less is known about the spatial shape, i.e., the
expectation of the total advance inside an avalanche as a
function of space, given a total extension �. To simplify our
consideration and notation, we consider dimension d = 1, in
which there is a function 〈S(x)〉�, vanishing for |x| > �

2 .
Most results currently available were obtained for the BFM.

An important step was achieved in Ref. [33]. Starting from
an exact functional for the probability to find an avalanche
of shape S(x) (reviewed in Sec. II), a saddle-point analysis
permitted Thiery et al. to obtain the shape for avalanches of
size S, with a large aspect ratio S/�4 	 1. It was shown that in
this case the mean avalanche shape grows as 〈S(x)〉�,S ∼ (x −
�/2)4 close to the (left) boundary. A subsequent expansion in
�4

S
allowed the authors to include corrections for smaller sizes.

This did not change the scaling close to the boundary.
We believe that this scaling does not pertain to generic

avalanches:1 Avalanches which have an extension � � Lm =
m−1, i.e., the infrared cutoff set by the confining potential in
Eq. (2) or (3), should obey the scaling form

〈S(x)〉� = �ζ g(x/�), (5)

where g(x) is nonvanishing in the interval [−1/2,1/2]. Inte-
grating this relation over space yields S ∼ �d+ζ , the canonical
scaling relation between size and extension of avalanches,
confirming the ansatz (5).

We now want to deduce how g(x) behaves close to the
boundary. For simplicity of notation, we write our argument
for the left boundary in d = 1. Imagine the avalanche dynamics
for a discretized representation of the system. The avalanche
starts at some point, which in turn triggers movement of
its neighbors, and so on. This will lead to a shock front
propagating outward from the seed to the left and to the right.
As long as the elasticity is local as in Eq. (2), the dynamics of
these two shock fronts is local: Consider the joint probability
for the advance of all points conditioned on the position of
the ith point away from the boundary, with i being much
smaller than the total extension � of the avalanche (in fact,
we only need that the avalanche started right of this point),
then we expect that the joint probability distribution for the
advance of points 1 to i − 1 depends on i, but is independent of
the size �. Thus we expect that in this discretized model the

1This is contrary to the claim made in Ref. [33] that in the BFM, also
for generic avalanches, the scaling exponent close to the boundary is
4. We show in Appendix C, by reanalyzing the data of [33], that they
favor an exponent 3 instead of 4, in agreement with our results (6)
and (7).

FIG. 1. Avalanche shape 〈S(x)〉�=1 for σ = 1. The green dashed
line is the shape obtained for avalanches with a large aspect ratio S/�4

at fixed S and � in [33], rescaled to the same height at x = 0.

shape 〈S(x − r1)〉 close to the left boundary r1 is independent
of �. Let us call this the boundary-shape conjecture. We will
verify later in numerical simulations that it indeed holds.

Let us now turn to avalanches of large size � so that we are in
the continuum limit studied in the field theory. Our conjecture
then implies that the shape 〈S(x − r1)〉 measured from the left
boundary r1 = −�/2 is independent of �. In order to cancel
the � dependence in Eq. (5) this in turn implies that

g(x − 1/2) = B × (x − 1/2)ζ , (6)

with some amplitude B. For the Brownian force model in
d = 1, the roughness exponent is

ζBFM = 4 − d = 3. (7)

We will show below that in the BFM the amplitude B is given
by

B = σ

21
. (8)

We further show that the function g(x) = 〈S(x)〉�=1 for the
BFM can be expressed in terms of a Weierstrass-P function
and its primitive function, the Weierstrass-ζ function [see
Eqs. (84), (28), and (62)]. This function is plotted in Fig. 1
(black solid curve). For comparison, we also give the shape
for avalanches with a large aspect ratio S/�4 [33], rescaled to
the same peak amplitude (green dashed curve). The two shapes
are significantly different.

We would like to mention the study [34] of avalanche
shapes, conditioned to start at a given seed and having total
size S. This particular conditioning renders the solution in the
BFM essentially trivial: The spatial dependence becomes that
of diffusion, so the final result is the center-of-mass velocity
folded with the diffusion propagator. The advantage of this
approach is that one can relatively simply include perturbative
corrections in 4 − d away from the upper critical dimension.
A shortcoming is that the such defined averaged shape is far
from sample avalanches seen in a simulation: In particular,
one of the key features, namely, the finite extension of each
avalanche encountered in a simulation, is lost. When applied
to experiments, it is furthermore questionable whether one will
be able to identify the seed of an avalanche. For these reasons,
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we will develop below the theory of avalanches with a given
spatial extension �.

II. PROBABILITY OF A GIVEN SPATIAL
AVALANCHE SHAPE

Here we review some basic results of Ref. [33] for the
Brownian force model. Suppose that the interface is at rest
in the configuration u1(x) = u(x,t1) and then an avalanche
occurs which transforms it to configuration u2(x) = u(x,t2).
We define S(x) := u2(x) − u1(x) as the total advance at point
x, which we call the spatial shape of the avalanche.

We start with a simplified derivation of the key formula of
Ref. [33], given below in Eq. (15). To this aim, we write the
MSR action for the dynamics of the interface, obtained from
a time derivative of Eq. (3), as [26,27,35]

e−S[ũ,u̇] = exp

( ∫
x,t

ũ(x,t)
[ − ∂t u̇(x,t) + ∇2u̇(x,t)

−m2u̇(x,t) + ∂tF (x,u(x,t)) + ∂tf (x,t)
])

. (9)

There are no avalanches without driving and the last term has
been added for this purpose. We want to drive the system with
a force kick at t = 0, i.e.,

f (x,t) = δ(t)w(x). (10)

Note that, compared to the notation in Refs. [26,27,35], we
have absorbed a factor of m2 into w: Here, as in Ref. [36], it
is a kick in the force and there it is a kick in the displacement.
Indeed, if we change the well position w instantaneously from
w to w + δw at time t = 0, i.e., w(t) = w + δwθ (t), then

f (x,t) = δ(t)m2δw. (11)

Our choice (10) is made so that the limit of m → 0 can be
taken.

To obtain static quantities (as the avalanche-size dis-
tribution), one can use a time-independent response field
ũ(x,t) = ũ(x) [26,27]. Integrating over times from t1 before
the avalanche to t2 after the avalanche and using that the
interface is at rest at these two moments yields2

e−S[ũ,u] = exp

(∫
x

ũ(x)
[
w(x) + ∇2S(x) − m2S(x)

+F (x,u2(x)) − F (x,u1(x))
])

. (12)

Averaging over disorder, using F (x,u)F (x ′,u′) = δd (x −
x ′)�(u − u′), we obtain

e−S[ũ,S] = exp

(∫
x

ũ(x)[w(x) + ∇2S(x) − m2S(x)]

+ ũ(x)2[�(0) − �(S(x))]
)

. (13)

2This does not take into account the change of measure from∏
t du̇(x,t) to dS(x), and similarly for ũ(x,t). Our simplified

derivation thus misses an additional global factor in Eq. (50) of [33].
In particular, the result (15) is incorrect for a single degree of freedom.
On the other hand, integrating Eq. (13) over S(x) still gives the correct
instanton equation (17), which can be derived independently from this
argument (see, e.g., [36]).

Integrating over ũ(x) yields∫
D[ũ] e−S[ũ,u]

�
∏
x

1√
�(0) − �(S(x))

× exp

(
− [

∫
x
w(x) + ∇2S(x) − m2S(x)]2

4[�(0) − �(S(x))]

)
. (14)

This formula is a priori exact for any disorder correlator
�(u). For the BFM �(0) − �(u) ≡ σ |u|. Thus we obtain,
upon simplification in the limit of w(x) → 0 [33],

Prob[S(x)] �
∏
x

1√
S(x)

exp

(
−

∫
x

m4S(x)

4σ
+ [∇2S(x)]2

4σS(x)

)
.

(15)

Changing variables to φ(x) := √
S(x) eliminates the factor of∏

x S(x)−1/2. A saddle point for avalanches with a large aspect
ratio S/�4, where S is the avalanche size and � its spatial
extension, can be obtained by varying with respect to φ(x). The
solution of this saddle-point equation is plotted in Fig. 1 (green
dashed line), in contrast to the shape for generic avalanches
(black solid line) to be derived later. See also Fig. 12 for a
numerical validation of the saddle-point solution in Ref. [33].

III. EXPECTATION OF S(x) IN AN AVALANCHE
EXTENDING FROM −�/2 to �/2

A. Generalities

We consider avalanches in the BFM in d = 1 dimensions.
To this aim, we start from Eq. (13), using the correlator (4).
This yields

e−SFBM[ũ,S] = exp

(∫
x

ũ(x)[w(x) + ∇2S(x) − m2S(x)]

+ σ ũ(x)2S(x)

)
. (16)

We now wish to evaluate the generating function for avalanche
sizes

P̃[λ(x)] := exp

(∫
x

λ(x)S(x)

)

=
∫

D[S]D[ũ] exp

( ∫
x

λ(x)S(x) − SFBM[ũ,S]

)
.

(17)

A crucial remark is that S(x) appears linearly in the exponen-
tial; thus integrating over S(x) enforces that ũ(x) obeys the
differential equation [36]

ũ′′(x) − m2ũ(x) + σ ũ(x)2 = −λ(x). (18)

This is an instanton equation. Suppose we have found its
solution, which for simplicity we also denote by ũ(x). Then
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Eq. (17) simplifies considerably to [36]

P̃[λ(x)] :=exp

(∫
x

λ(x)S(x)

)
=exp

( ∫
x

w(x)ũ(x)

)
. (19)

In Ref. [36], a solution for λ(x) in the form

λ(x) = −λ1δ(x − r1) − λ2δ(x − r2) (20)

was given in the limit of λ1,2 → ∞. This solution ensures that
if the interface has moved at positions r1 or r2, the expression
exp[

∫
x
λ(x)S(x)] is 0; otherwise it is 1. The probability that

the interface has not moved at these two positions r1 and r2

thus is

P̃r1,r2 = exp

( ∫
x

w(x)ũ(x)

)
. (21)

We now consider driving at x between the two points r1 and
r2. In order that the probability (21) decreases for an increase
in the driving at x, we need that

ũ(x) < 0, r1 < x < r2. (22)

This helps us to select the correct solution (see Appendix A).
Call ũ0(x) this solution. According to [36], it reads

ũ0(x) = 1

(r2 − r1)2
f

(
2x − r1 − r2

2(r2 − r1)

)
. (23)

Its extension is

� = r2 − r1. (24)

It further depends on the dimensionless combination �
Lm

= �m.
In the massless limit, i.e., for

�

Lm

= �m � 1, (25)

Eq. (18) is simplified and the function f (x) satisfies

f ′′(x) + f (x)2 = 0. (26)

Solutions of Eq. (18) for finite m exist and the analysis could
be repeated for this case.

This solution diverges with a quadratic divergence at x =
±1/2. We review in Appendix A its construction. We see there
that it is a negative-energy solution with energy −Ē1, where

Ē1 = 8π3�
(

1
3

)6

3�
(

5
6

)6 . (27)

It reads

f (x) = −6P
(

x + 1/2; g2 = 0,g3 = �
(

1
3

)18

(2π )6

)
. (28)

The function P is the Weierstrass P function. The parameter
g3 satisfies

g3 ≡ Ē1

18
(29)

and the solution respects the constraint (22). For later simpli-
fications we note the relations

2
3f 3(x) + f ′(x)2 = −36g3 ≡ −2Ē1, (30)

2
3f (x)f ′′(x) − f ′(x)2 = 36g3 = 2Ē1. (31)

B. Driving

Let us now specify the driving function w(x) introduced in
Eq. (10). There are two main choices. (i) The first is uniformly
distributed random seeds (random localized driving)

w(x) = wδ(x − xs). (32)

Here we first calculate the observable at hand and finally
average, i.e., integrate, over the seed position xs . In a numerical
experiment, one can take a random permutation of the N

degrees of freedom and then apply a kick to each of them
in the chosen order. (ii) The second is uniform driving

w(x) = w. (33)

As we wish to work at first nonvanishing order in w, this makes
almost no difference. Indeed, in Eq. (19) we formally have, for
both driving protocols to leading order in w,

exp

(∫
x

λ(x)S(x)

)
− 1

= exp

(∫
x

w(x)ũ(x)

)
− 1 → w

∫
x

ũ(x). (34)

There is, however, one caveat: If ũ(x) → −∞, as is the case
for the solution (23) at x = r1,2, then, for localized driving,
points x around these singularities are suppressed and the
corresponding points have to be taken out of the integral. On
the other hand, for uniform driving, the middle integral in
Eq. (34) simply vanishes. In that case one has to regularize the
solution, i.e., work at finite λ1,2, then take w → 0, and only at
the end take the limit λ1,2 → ∞. According to Appendix A,
working at finite λ1,2 is equivalent to cutting out a piece of size
x0 around the singularity, with x0 given by Eq. (A3). Thus,
effectively, driving is restricted to the interval [r1 + x0,r2 −
x0], slightly smaller than the the full interval [r1,r2].

For conceptual clarity and simplicity of presentation, we
will work with uniformly distributed random seeds (random
localized driving) below. The idea to keep in mind is that in the
limit w → 0, the driving only triggers the avalanche, but after
the avalanche starts, its subsequent dynamics is independent
of the driving. As a result, the avalanche shape is independent
of the driving and we can choose the most convenient driving.

C. Strategy of the calculation

We now want to construct perturbatively a solution of
Eq. (18) at m = 0 and σ = 1, i.e.,

ũ′′(x) + ũ(x)2 = −λ(x), (35)

with

λ(x) = −λ1δ(x − r1) − λ2δ(x − r2) + ηδ(x − xc), (36)

λ1,λ2 → ∞. (37)
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We are interested in the limit of vanishing η, i.e., at first and
second order in η. This instanton solution will have the form

ũ(x) = ũ0(x) + ηũ1(x) + η2ũ2(x) + · · · . (38)

It will be continuous but nonanalytic at x = xc (see Fig. 2).
Let us reconsider Eq. (19), i.e., exp(

∫
x
λ(x)S(x)) =

exp(
∫
x
w(x)ũ(x)). Its left-hand side can be written as

exp

(∫
x

λ(x)S(x)

)
=

∫ xc

r1

drleft

∫ r2

xc

drright

∫ ∞

0
dS(xc)

× eηS(xc)P(S(xc),rleft,rright), (39)

where P(S(xc),rleft,rright) is the joint probability that the
avalanche has advanced by S(xc) at xc and that it extends
from rleft to rright, with r1 < rleft < xc < rright < r2.

Taking derivatives with respect to points r1 and r2 yields

− ∂2

∂r1∂r2
exp

(∫
x

λ(x)S(x)

)

=
∫ ∞

0
dS(xc)eηS(xc)P(S(xc),rleft,rright)

= P�(r2 − r1)〈eηS(xc)〉r2
r1

= P�(r2 − r1)

[
1 + η〈S(xc)〉r2

r1
+ η2

2
〈S(xc)2〉r2

r1
+ · · ·

]
.

(40)

Here P�(�) is the probability to have an avalanche with
extension � and angular brackets 〈· · · 〉r2

r1
denote conditional

averages given that the end points of the avalanches are at r1

and r2.
We now consider derivatives with respect to points r1 and

r2 of the right-hand side of Eq. (19). Using the expansion (38)
yields

− ∂2

∂r1∂r2
exp

( ∫
x

w(x)ũ(x)

)

= − exp

( ∫
dx w(x)ũ0(x)

)[ ∫
dx w(x)

∂2ũ0(x)

∂r1∂r2

+ η

∫
dx w(x)

∂2ũ1(x)

∂r1∂r2
+ η2

∫
dx w(x)

∂2ũ2(x)

∂r1∂r2
+ · · ·

]
.

(41)

Omitted terms indicated by an ellipsis are higher order in w.
Comparing Eqs. (40) and (41) yields, for the probability to
find an avalanche with extension �,

P�(� = r2 − r1) = − exp

( ∫
dx w(x)ũ0(x)

)

×
∫

dx w(x)
∂2ũ0(x)

∂r1∂r2
+ · · · . (42)

We now have to specify the driving. Following the discussion
in Sec. III B, we have to either use uniform driving restricted
to [r1 + x0,r2 − x0] or choose random seeds xs uniformly
distributed between r1 and r2. Here we write formulas for

FIG. 2. Solutions (38) at order η for xc = 0.15. Note that ũ1(x)
grows with a quartic power close to the boundary.

the latter, choosing w(x) = wδ(x − xs). This yields

P�(�=r2−r1)=−w

∫ r2

r1

dxse
wũ0(xs ) ∂

2ũ0(xs)

∂r1∂r2
+ · · · . (43)

In the limit of small w this becomes

P�(� = r2 − r1) = −w

∫ r2

r1

dxs

∂2ũ0(xs)

∂r1∂r2
+ · · · . (44)

Dropping the index s for the seed position, the final formulas
for the observables of interest are

P�(� = r2 − r1) = −w

∫ r2

r1

dx
∂2ũ0(x)

∂r1∂r2
, (45)

P�(� = r2 − r1)〈S(xc)〉r2
r1

= −w

∫ r2

r1

dx
∂2ũ1(x)

∂r1∂r2
, (46)

P�(� = r2 − r1)
1

2
〈S(xc)2〉r2

r1
= −w

∫ r2

r1

dx
∂2ũ2(x)

∂r1∂r2
. (47)

The shape is given by the ratio of Eqs. (46) and (45), while the
variance is given by the ratio of Eqs. (47) and (45).

The following calculations are structured as follows. In
the next section, we give the instanton solution (35) for the
extension � = 1 or, more precisely, r1 = −1/2 and r2 = 1/2.
In the second step, performed in Sec. IV, we reconstruct the
solution for general r1 and r2. This allows us to vary as in
Eq. (41) with respect to r1 and r2, thus selecting only those
avalanches which touch the borders at r1 and r2. With the
normalization (45) obtained from the probability to find an
avalanche of extension � performed in Sec. IV A, this allows us
to give the normalized shape and its fluctuations in Sec. IV C.

D. How to obtain the mean shape of all avalanches inside
a box of size 1 and its fluctuations

We now solve Eq. (35) at r1 = −1/2 and r2 = 1/2. One
can write down differential equations to be solved by ũ1(x)
and ũ2(x). There is, however, a more elegant way to derive the
perturbed instanton solution: To achieve this, we first realize
that if ũ(x) is a solution of ũ′′(x) + ũ(x)2 = 0, then ũλ,c(x) :=
λ2ũ(λx + c) is also a solution. We wish to construct solutions
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which diverge at x = ±1/2, i.e., have extension 1, and which
produce the additional term proportional to η in Eq. (36). This
can be achieved by separate solutions for the left branch, i.e.,
−1/2 < x < xc, and the right branch xc < x < 1/2. Using the
symbol f to indicate extension 1 as in Eq. (28), we have

f L
λL

(x) := λ2
Lf

(
λL(x + 1/2) − 1/2

)
, (48)

xL
λL

(f ) = λ−1
L x

(
λ−2

L f
) + 1

2

(
1

λL
− 1

)
, (49)

f R
λR

(x) := λ2
Rf

(
λR(x − 1/2) + 1/2

)
, (50)

xR
λR

(f ) = λ−1
R x

(
λ−2

R f
) − 1

2

(
1

λR
− 1

)
. (51)

The two functions must coincide at xc and their slope must
change by η or, more precisely,

f L
λL

(xc) = f R
λR

(xc), (52)

∂xf
L
λL

(x)|x=xc = ∂xf
R
λR

(x)|x=xc + η. (53)

The second equation is written in a way to make clear that
while λL and λR depend on xc, this dependence is not included

in the derivatives of Eq. (53). We make the ansatz

λL = 1 + aη + cη2, (54)

λR = 1 + bη + dη2. (55)

Repeatedly using Eqs. (26), (30), and (31) to eliminate higher
derivatives, we find

a = (2xc − 1)f ′(xc) + 4f (xc)

12Ē1
, (56)

b = (2xc + 1)f ′(xc) + 4f (xc)

12Ē1
, (57)

c = 1

288Ē2
1

(
16f (xc)[(1 − 3xc)f ′(xc)]

+ (2xc − 1)
{
f ′(xc)

[(
4x2

c − 1
)
f ′′(xc)

+ 4(3xc + 1)f ′(xc)
] + 24Ē1xc

} − 96f (xc)2
)
, (58)

d = 1

288Ē2
1

(
16f (xc)[−(3xc + 1)f ′(xc)] − 96f (xc)2

+ (2xc + 1)
{
f ′(xc)

[(
4x2

c − 1
)
f ′′(xc)

+ 4(3xc − 1)f ′(xc)
] + 24Ē1xc

})
. (59)

This gives

f L
λL

(x)=f (x)+η
a

2
[(2x+1)f ′(x) + 4f (x)] + η2

8
[8(a2 + 2c)f (x) + 4(2x + 1)(2a2 + c)f ′(x) + a2(2x + 1)2f ′′(x)] + O(η3),

(60)

f R
λR

(x)=f (x)+η
b

2
[(2x−1)f ′(x) + 4f (x)] + η2

8
[8(b2 + 2d)f (x) + 4(2x − 1)(2b2 + d)f ′(x) + b2(2x − 1)2f ′′(x)] + O(η3).

(61)

For illustration we plot in Fig. 2 the order-η solution for xc = 0.15.
We are finally interested in uniformly distributed random seeds, i.e., we need to integrate these solutions over the driving point

x inside the box, i.e., from −1/2 to 1/2. To this purpose we define

F (x) := 6ζ

(
x + 1

2
; 0,

�
(

1
3

)18

64π6

)
− F0, F0 = 6ζ

(
1

2
; 0,

�
(

1
3

)18

64π6

)
≡ 2π

√
3, F ′(x) = f (x), (62)

F (0) = 0, F (x + 1) = F (x) + 2F0. (63)

Then, subtracting the solution at η = 0, which is not needed (but whose integral is divergent), we obtain

∫ xc

−1/2
dx

[
f L

λL
(x) − f (x)

] = ηa

[
1

2
(2xc + 1)f (xc) + F0 + F (xc)

]

+ η2

{
1

8
a2(2xc + 1)2f ′(xc) + 1

2
(a2 + c)(2xc + 1)f (xc) + c[F (xc) + F0]

}
,

∫ 1/2

xc

dx
[
f R

λR
(x) − f (x)

] = ηb

[
1

2
(1 − 2xc)f (xc) + F0 − F (xc)

]

+ η2

{
−1

2
(b2 + d)(2xc − 1)f (xc) − 1

8
b2(2xc − 1)2f ′(xc) + d[F0 − F (xc)]

}
. (64)
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This yields the (unnormalized) expectation, given that the interface has not moved at points ±1/2:

〈eηS(xc) − 1〉 = w

∫ xc

−1/2
dx

[
f L

λL
(x) − f (x)

] + w

∫ 1/2

xc

dx
[
f R

λR
(x) − f (x)

]

= wη

{
1

2
f (xc)[2(a − b)xc + a + b] + (a − b)F (xc) + (a + b)F0

}

+ w
η2

8
{4f (xc)[2xc(a2 − b2 + c − d) + a2 + b2 + c + d] + [2(a − b)xc + a + b][2(a + b)xc + a − b]f ′(xc)

+ 8(c − d)F (xc) + 8(c + d)F0} + · · ·

= wη
2f (xc)[f (xc) + 2F0] − [F (xc) − 2F0xc]f ′(xc)

6Ē1

+ w
η2

144Ē2
1

(
−4xcF (xc)[6Ē1 + f ′(xc)2] + 4F0

[
12Ē1x

2
c + (

6x2
c − 1

)
f ′(xc)2

] + f (xc)2[8xcf
′(xc) − 96F0]

+ f (xc)f ′(xc)
[
3
(
4x2

c − 1
)
f ′(xc) + 16F (xc) − 48F0xc

] + (
4x2

c − 1
)
[2F0xc − F (xc)]f ′(xc)f ′′(xc) − 32f (xc)3

)

+ · · ·

=: wηS�=1
box (xc) + w

η2

2
S

2,�=1
box (xc) + · · · . (65)

We have termed these expressions S�=1
box (xc) and S

2,�=1
box (xc). We recall that this is not yet the sought avalanche shape and

fluctuations. Rather, it is the expectation of the size S(x) inside a box of size 1, given that the avalanche does not touch any of
the two boundaries x = ±1/2. We will have to vary the boundary points in order to extract the shape 〈S(x)〉 of avalanches which
vanish at the boundary points, but not before. This is the objective of the next section.

For later reference, we note that

∫ 1/2

−1/2
dx Sbox(x) = −3f ′(x) + f (x)F (x) − 2F0[xf (x) + F (x)]

6Ē1

∣∣∣∣
1/2

−1/2

= 2F 2
0

3Ē1
= 256π8

9�
(

1
3

)18 = 0.005 344 01, (66)

∫ 1/2

−1/2
dxcS

2,�=1
box (xc) = 2.3030×10−6. (67)

IV. FROM Sbox(x) TO THE SHAPE S(x):
SCALING ARGUMENTS, ETC

A. Probability of finding an avalanche of extension
� and probability for seed position

The probability to have an avalanche of size � is, according
to Eqs. (23) and (26) to leading order in w, given by

P�(�) = −w

∫ r2

r1

dx
∂2ũ0(x)

∂r1∂r2

= w

�3

∫ 1/2

−1/2
dx

(4x2 − 1)f ′′(x) + 24[xf ′(x) + f (x)]

4

+ · · · � 4F0
w

�3
+ · · · ≡ 8π

√
3

w

�3
+ · · · , (68)

with F0 defined in Eq. (62).
It is interesting to note that the integrand in Eq. (68) gives the

probability to have the seed at position x. More precisely, the
probability that the seed was at position x inside an avalanche
extending from −1/2 to 1/2 is

P seed
�=1 (x) = (4x2 − 1)f ′′(x) + 24[xf ′(x) + f (x)]

32π
√

3
. (69)

This function starts with a cubic power at the boundary. We
give a series expansion below in Eq. (89).

B. Basic scaling relations and consequences

In general, the size of an avalanche scales as S(�) ∼ �d+ζ .
For the BFM, the latter reduces to

S(�) ∼ �4. (70)

The proportionality constant is calculated in Eq. (81) below.
Let us now solve the instanton equation (35) with the source

(36) for arbitrary r1 and r2. This can be achieved by observing
that, as a function of |r2 − r1|,

ũ′′(x) ∼ ũ(x)2 ∼ 1

|r2 − r1|4

∼ ηδ(x − xc) ≡ η

|r2 − r1|δ
(

x − xc

|r2 − r1|
)

. (71)

Thus η ∼ |r2 − r1|−3 and

ũ
xc
1,r2,r1

(x) = |r2−r1| ũ[xc − (r1 + r2)/2]/(r2 − r1)
1,r1/2 =∓1/2

(
x − (r1 + r2)/2

r2 − r1

)
,

(72)
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⇒ S
r1,r2
box (xc) =

∫ r2

r1

dx ũ
xc
1,r2,r1

(x)

=|r2−r1|2 S
r2−r1=1
box

(
xc−(r1 + r2)/2

r2−r1

)
. (73)

This is consistent with the dimension of an avalanche S per
length �, i.e. S/� ∼ �3.

Now the (unnormalized) shape of an avalanche of extension
� is according to Eq. (46) obtained as

S�=r2−r1 (x) = −∂r2∂r1S
r2,r1
box (x). (74)

Using Eq. (72), this yields

S�=1(x) = −∂r2∂r1

[
|r2−r1|2S�=1

box

(
x − (r1 + r2)/2

r2 − r1

)]r2=1/2

r1=−1/2

= [
2 − 2x∂x + (

x2 − 1
4

)
∂2
x

]
S�=1

box (x). (75)

We note that this function grows cubically at the boundary,
consistent with our scaling argument (6). To achieve this, the
factor of |r2−r1|2 in Eq. (75) is crucial: Were the exponent
larger than 2, then the growth would be linear. Were it smaller,
the function (75) would become negative.

Integrating by parts, we obtain, using Eq. (66),

∫ 1/2

−1/2
dx S�=1(x) = 6

∫ 1/2

−1/2
dxcS

�=1
box (xc) = 4F 2

0

Ē1
. (76)

Similarly, we find for the order-η2 term

S2
�=1(x) = −∂r2∂r1

[
|r2−r1|5S2,�=1

box

(
x − (r1 + r2)/2

r2 − r1

)]r2=1/2

r1=−1/2

= [
20 − 8x∂x + (

x2 − 1
4

)
∂2
x

]
S

2,�=1
box (x). (77)

This implies∫ 1/2

−1/2
dx S2,�=1(x) = 30

∫ 1/2

−1/2
dxcS

2,�=1
box (xc). (78)

Note that, according to Eqs. (45)–(47), S�(x) and S2
� (x) are not

yet properly normalized to give the expectation of the shape
of an avalanche. For this purpose, let us define, with the help
of Eq. (68),

〈S(x)〉� := wS�(x)

Paval(�)
= S�=1(x/�)

4F0
�3, (79)

〈S2(x)〉� := wS2
� (x)

Paval(�)
= S2

�=1(x/�)

4F0
�6. (80)

These functions give the shape of an avalanche given that
the avalanche extends from − 1

2 to 1
2 , as well as its fluc-

tuations, including the amplitude. For the total size 〈S〉� =∫ �/2
−�/2 dx〈S(x)〉� and the integral of the second moment

〈S2(x)〉� we find∫ �/2

−�/2
dx〈S(x)〉� = F0

Ē1
�4 = 0.000 736 576�4, (81)

∫ �/2

−�/2
dx〈S2(x)〉� = 5.290 44 × 10−8�7. (82)

C. Results for the shape and its second moment

We give explicit formulas for 〈S(x)〉�=1 and 〈S2(x)〉�=1

below. They are plotted in Fig. 3. We did not succeed in finding
much simpler expressions. While in particular the expression
for the second moment 〈S2(x)〉�=1 is lengthy, its ratio with the
squared first moment is almost constant, given by

〈S2(x)〉�=1

〈S(x)〉2
�=1

≈ 1.635 ± 0.02. (83)

This can be seen in Fig. 3. The explicit formulas are

〈S(x)〉�=1 = 1

48F0Ē1

[
3(4x2 − 1)Ē1 − {f (x)[−4x2F (x) + F (x) + 12x] + 2F0x[(4x2 − 1)f (x) + 8] + 4F (x)}f ′(x)

+ 3(4x2 − 1)f ′(x)2 + 4f (x)(f (x){−x[F (x) + 2F0x] + F0 + 2} + 4F0)
]
, (84)

〈S2(x)〉�=1 = 1

576F0Ē2
1

(
F (x)[−1344xĒ1 + (1 − 4x2)2f ′(x)3 − 736xf ′(x)2]

+ 2F0
{
192(3x2Ē1 + Ē1) + [−(1 − 4x2)2xf ′(x) + 384x2 + 88]f ′(x)2

}
+ f (x)

{
24(12x2 + 1)Ē1 − 4[(8x3 − 2x)F (x) + F0(32x4 − 20x2 + 3) + 72x2 + 18]f ′(x)2

+ 640[F (x) + 3F0x]f ′(x)
} − 6x(4x2 − 1)f ′(x)[14Ē1 + 9f ′(x)2] + 4f (x)3

{
(4x2 − 1)[−4x2F (x)

+ 2F0(4x2 − 1)x + F (x) − 2x]f ′(x) − 320
} + f (x)2

{
f ′(x)[−11(1 − 4x2)2f ′(x) − 4(52x2 + 3)F (x) + 1472x]

+ 16F0[x(52x2 − 5)f ′(x) − 240]
} + f (x)4[4x(4x2 − 1)F (x)

+ F0(64x4 − 40x2 + 6) + 8(28x2 − 3)] + 2(1 − 4x2)2f (x)5
)
. (85)
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FIG. 3. Shown on the left is the spatial shape 〈S(x)〉�=1 of an avalanche conditioned to have size � = 1 (blue solid line). The dashed curves
represent 〈S(x)〉�=1 ±

√
〈S2

� (x)〉c
�=1. On the right is the ratio 〈S2

� (x)〉�=1/〈S�(x)〉2
�=1, which has spatial average (integral) 1.63523384. The blue

dotted curve is from an interpolating function and the red dashed curve is from series expansion with the 16 leading terms. Note that below in
Eq. (88) only the leading 8 are given.

While these expressions are cumbersome, one can work with a converging Taylor series. An expansion in ( 1
2 − x)( 1

2 + x)
respecting the Taylor expansion at the boundary is

〈S(x)〉�=1 = 1

21

(
1

4
− x2

)3

+ 3

28

(
1

4
− x2

)4

+ 2

7

(
1

4
− x2

)5

+ 5

6

(
1

4
− x2

)6

+
(

18

7
− Ē1

1540F0

)(
1

4
− x2

)7

+
(

1

4
− x2

)8(33

4
− 7Ē1

1760F0

)
+

(
1

4
− x2

)9(
− Ē1

55F0
+ 5Ē1

34 398
+ 572

21

)

+
(

1

4
− x2

)10(3(Ē1 + 78 078)

2548
− 3Ē1

40F0

)
+ · · · , (86)

〈S(x)2〉�=1 = 1

273

(
1

4
− x2

)6

+ 5

294

(
1

4
− x2

)7

+ 503

7644

(
1

4
− x2

)8

+ 309

1274

(
1

4
− x2

)9

+
(

561

637
− 529Ē1

3 898 440F0

)(
1

4
− x2

)10

+
(

937

294
− 8641Ē1

7 796 880F0

)(
1

4
− x2

)11

+
(

− 531 133Ē1

85 765 680F0
+ Ē1

25 137
+ 485

42

)(
1

4
− x2

)12

+ · · · , (87)

〈S(x)2〉�=1

〈S(x)〉2
�=1

= 21

13
+ 3

13

(
1

4
− x2

)
+ 87

208

(
1

4
− x2

)2

+ 411

416

(
1

4
− x2

)3

+
(

1

4
− x2

)4(8877

3328
− 307Ē1

19 448F0

)

+
(

1623

208
− 127Ē1

2992F0

)(
1

4
− x2

)5

+
(

− 31 591Ē1

311 168F0
+ 74Ē1

9633
+ 1 281 987

53 248

)(
1

4
− x2

)6

+
(

− 732 863Ē1

3 111 680F0
+ 5543Ē1

134 862
+ 8 216 901

106 496

)(
1

4
− x2

)7

+ · · · . (88)

For completeness, we also give a series expansion for P seed
�=1 (x),

P seed
�=1 (x) = Ē1

8
√

3π

[
2

7

(
1

4
− x2

)3

+ 5

14

(
1

4
− x2

)4

+ 4

7

(
1

4
− x2

)5

+
(

1

4
− x2

)6

+ 12

7

(
1

4
− x2

)7

+ 33

14

(
1

4
− x2

)8

+ 5Ē1

22 932

(
1

4
− x2

)9

+ 11(Ē1 − 12 168)

6552

(
1

4
− x2

)10

+ 205Ē1 − 2 895 984

22 932

(
1

4
− x2

)11

+ · · ·
]
. (89)
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FIG. 4. Twenty avalanches with extension � = 200, rescaled to
� = 1. Here n = 2871 is the number of samples used for the average.

V. NUMERICAL VALIDATION

We verified our findings with large-scale numerical sim-
ulations. To this aim, we consider the equation of motion
discretized in space, started with a kick of size 1,

∂t u̇i(t) = u̇i+1(t) + u̇i−1(t) − 2u̇i(t) +
√

u̇i(t)ξ (t), (90)

〈ξ (t)ξ (t ′)〉 = δ(t − t ′), (91)

u̇0(0) = δi,0. (92)

Since we work in the Brownian force model, these equations do
not depend on the shape of the interface before the avalanche
and one can always start from a flat interface. This would not
be the case for finite-range disorder. For the same reason, we
can choose to put the seed at zero and to not change the seed
position between avalanches.

One further has to discretize in time, using a step size δt .
A naive implementation would lead to a factor of

√
δt in front

of the noise term. Thus the limit of δt → 0 is difficult to

FIG. 5. Function 3
√〈S(x − r1)〉 at given � becomes linear starting

at about the third nonvanishing point. This leads to an effective offset
of 2 for the size. An extrapolation is shown for � = 360.

FIG. 6. Measured avalanche size 〈S〉, as a function of �, divided
by the theory prediction from Eq. (81). The dashed orange line is the
estimated finite-size correction 1 + 30/�2.

take. Here we use an algorithm proposed in [37] and further
developed for the problem at hand in [36]. The idea is to use
the conditional probability P (u̇i(t + δt)|u̇i(t),u̇i±1(t)), where
u̇i±1(t) are assumed to remain fixed. From this probability,
which is a Bessel function, u̇i(t + δt) is then drawn. Sampling
of the Bessel function is achieved by its clever decomposition
into a sum of Poisson times � functions, for which efficient
algorithms are available. This algorithm scales linearly with
the time discretization δt . It is explained in detail in Ref. [36],
Appendix H.

We run our simulations for a system of size 410 and time
step δt = 0.01, producing a total of 526 929 535 avalanches.
Since P (�) ∼ 1/�3, most avalanches have a small extension
and the statistics for them will be good. On the other hand,
small avalanches have important finite-size corrections and
thus are not in the scaling limit. In the following, we will
show all our data, reminding the reader of these two respective
shortcomings.

Let us start by showing 20 avalanches of extension 200
(see Fig. 4). One sees that there are substantial fluctuations in
the shape, roughly consistent with the theoretically expected
domain plotted in Fig. 3.

Let us next study the shape of the discretized avalanches
close to the boundary. To this aim we plot in Fig. 5 the
mean shape of all avalanches with a given size, taken to
the power 1/3. One can see that, for a given point i from
the boundary, these curves converge against a limit when
increasing �. This confirms our boundary-shape conjecture
made in the Introduction. In addition, we see that the shape
taken to the power 1/3 converges against a straight line with
slope 3

√
1/21, as predicted [see Eqs. (8) and (86)]. However,

there is a nonvanishing boundary-layer length �B such that

〈S(x − r1)〉 � 1
21 (x − r1 − �B)3 + · · · . (93)

Our extrapolations in Fig. 5 show that

�B ≈ 2. (94)
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FIG. 7. Rescaled distribution of extensions P (�)�3 as a function
of �.

In order to faster converge to the field-theoretic limit, we define
the total extension � of an avalanche to be

� := �discretized − 2�B, (95)

where �discretized is the number of points which advanced in
an avalanche. This definition can be interpreted such that the
avalanche extends to the middle between the first nonmoving
point and the first moving one. As such, it contains some
arbitrariness. The choice is motivated as follows: A good test
object is the total size 〈S〉� of an avalanche of extension �,
which we know from Eq. (81) to be

〈S〉� = 0.000 736 576�4. (96)

Figure 6 confirms this; it also shows that the approach to this
limit has finite-size corrections, which we estimate as

〈S〉 � 0.000 736 576�4

[
1 + 30

�2
+ O(�−3)

]
. (97)

FIG. 8. Shape 〈S(x)〉 ≡ 〈S(x/�)〉�/�
3 averaged for all avalanches

with a given � between 40 and 360. To reduce statistical errors, we
have symmetrized this function. The convergence is very good; this
can best be seen on the error plot of Fig. 10 (left).

FIG. 9. Symmetrized ratio 〈S2(x)〉/〈S(x)〉2 ≡ 〈S2(x/�)〉�/

〈S(x/�)〉2
� , averaged for � � �0. Convergence to the theoretical

prediction in the boundary region is slow.

It is important to note that the curve enters with slope 0 into
the asymptotic value at � = ∞, which is the best one can
achieve with a linear shift in �. This makes us confident that
our definition (95) is indeed optimal.

We also note that the size of the kick puts an effective
small-scale cutoff on the extension of avalanches. This can be
seen in Fig. 7: One first verifies that the amplitude conforms
to Eq. (68). Demanding that

∫ ∞
�c

P (�)d� = 1 yields

�c ≈ 2

√√
3πw = 4.665. (98)

We now come to a check of the shape itself. To this aim, we
plot in Fig. 8 the mean shape of our avalanches, rescaled to
� = 1. We see that these curves converge rather nicely to the
predicted universal shape (84), even for relatively small sizes.

We then turn to the fluctuations. In Fig. 9 we plot the ratio
〈S2

� (x)〉�=1/〈S�(x)〉2
�=1. A glance at the right-hand side of Fig. 3

shows that it is almost constant, equal to 1.635 ± 0.02. Our
simulations even allow us to see the variation of this ratio.

Finally, we plot on the left-hand side of Fig. 10 the
difference between the numerically obtained shape 〈S(x)〉 and
its theoretically predicted value. On the right-hand side we
make the same comparison for the ratio 〈S2(x)〉/〈S(x)〉2. The
precision achieved is a solid confirmation of our theory.

VI. CONCLUSION

In this article, we considered the spatial shape of avalanches
at depinning. We gave scaling arguments showing that close to
the boundary in d = 1, the average shape grows as a power law
with the roughness exponent ζ . We then obtained analytically
the full shape functions 〈S(x)〉� for the BFM, where each
degree of freedom sees a force which behaves as a random
walk.

It would be interesting to extend these considerations in
several directions. First of all, one could ask what the shape
function would be in higher dimensions. The techniques
developed here will not immediately carry over: The domain
where the advance of the avalanche is nonzero should be
compact, but may have a fractal boundary. So we could still
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FIG. 10. Shown on the left is the error for the estimation of 〈S(x)〉 ≡ 〈S(x�)〉�/�
3 minus its theoretical prediction, averaged over all

avalanches with extension � larger than a cutoff as given in the legend. We see that the systematic error decreases for increasing size, while
the statistical error grows. The optimum value of � is around � = 280, with a relative error of about 3 × 10−3 in the center region. On the right
is the error for the estimation of the ratio 〈S2(x)〉/〈S(x)〉2 ≡ 〈S2(x/�)〉�/〈S(x/�)〉2

� . Convergence in the boundary region x → ± 1
2 is slow, i.e.,

finite-size effects are important there.

calculate the shape inside a given domain, but it would be
meaningless to prescribe the boundary as in d = 1, where
there are only two boundary points.

Second, one can ask how the shape changes for short-range
correlated disorder, by including perturbative corrections.
Work in this direction is left to future investigations.

Finally, it would be interesting to obtain the avalanche shape
for long-range elasticity, which is relevant for fracture, contact-
line wetting, and earthquakes. The complication here is that
an avalanche may contain several connected components.

ACKNOWLEDGMENTS

We are grateful to Mathieu Delorme for providing the
PYTHON code which generated the avalanches used in the
numerical verification.

APPENDIX A: SOLUTION OF ũ′′(x) + ũ(x)2 = −λδ(x)
WITH λ → −∞

Let us give a solution for the instanton equation with a
single source [36], i.e.,

ũ′′(x) + ũ(x)2 = −λδ(x). (A1)

The ansatz

ũx0 (x) := − 6

(|x| + x0)2
(A2)

satisfies Eq. (A1) with

−λ = 24

x3
0

. (A3)

Note that this is an exact solution for a single source, but
it also gives the leading behavior in the case of several
sources, in particular how the nontrivial instanton solution

with two sources at x = ±1/2 can be regularized around its
singularities.

APPENDIX B: FINITE-ENERGY INSTANTON SOLUTIONS

We want to solve the instanton equation

ũ′′(x) + ũ(x)2 = 0. (B1)

Multiplying with ũ′(x) and integrating once gives

ũ′(x)2

2
+ ũ(x)3

3
= E . (B2)

Solving for ũ′(x) yields

ũ′(x) = ±
√

2E − 2
3 ũ(x)3, (B3)

ũ′(x)√
2E − 2

3 ũ(x)3
= ±1. (B4)

Integrating once, we find

ũ 2F1
(

1
3 , 1

2 ; 4
3 ; ũ3

3E
)

√
2E

= ±x + const. (B5)

These solutions are real for E > 0, which we consider first (see
Fig. 11):

xc := lim
u→−∞

ũ 2F1
(

1
3 , 1

2 ; 4
3 ; ũ3

3E
)

√
2E

= −
3
√

3�
(

1
6

)
�

(
4
3

)
√

2π
6
√
E

. (B6)

The solution stops at the last argument of the hypergeometric
function being 1, i.e., u = 3

√
3E , such that

x0 := ũ 2F1
(

1
3 , 1

2 ; 4
3 ; ũ3

3E
)

√
2E

∣∣∣∣
u→ 3√3E

=
3
√

3
√

π
2 �

(
4
3

)
6
√
E�

(
5
6

) . (B7)

Note that xc = −2x0. This allows us to write a solution
symmetric around x = 0 (with the right-hand side being
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FIG. 11. Solutions x(ũ), patching the two branches together at x = 0, as well as its derivatives. The solid curve is the solution for E = E1 > 0,
the dashed the solution for Ē = −Ē1 < 0.

positive),

±x =
3
√

3
√

π�
(

4
3

)
√

2 6
√
E�

(
5
6

) − ũ 2F1
(

1
3 , 1

2 ; 4
3 ; ũ3

3E
)

√
2E

. (B8)

The instanton has extension 1 for

E1 :=
(

3
√

3
√

2π�
(

1
3

)
�

(
5
6

)
)6

= 52488π3�
(

4
3

)6

�
(

5
6

)6 . (B9)

This yields, for the positive branch of the solution with
extension 1,

±x = 1

6
− ũ 2F1

(
1
3 , 1

2 ; 4
3 ; ũ3

3E1

)
√

2E1
. (B10)

Now we consider solutions for Ē := −E > 0. Using Pfaffian
transformations for the hypergeometric function yields

±x =
√

6ũ 2F1
(

1
2 ,1; 7

6 ; 3Ē
ũ3+3Ē

)
√

−3Ē − ũ3
+

3
√

3
√

2π�
(

7
6

)
6
√
Ē�

(
2
3

) . (B11)

Note that this solution is real; the shift brings the solution
around x = 0. It has extension 1 in the x direction for

Ē1 =
[√

2π�
(

1
3

)
6
√

3�
(

5
6

)
]6

= 8π3�
(

1
3

)6

3�
(

5
6

)6 . (B12)

There

±x =
√

6ũ 2F1
(

1
2 ,1; 7

6 ; 3Ē
ũ3+3Ē

)
√

−3Ē − ũ3
+ 1

2

∣∣∣∣
Ē=Ē1

. (B13)

As is easily checked numerically, it agrees with the solution
(52) of [36]

ũ(x) = −6P
(

x + 1/2; g2 = 0,g3 = �
(

1
3

)18

(2π )6

)
. (B14)

The function P is the Weierstrass P function. By construc-
tion, the solution f (x) ≡ ũ(x) satisfies the following relations,
which we give together for convenience:

f 2(x) + f ′′(x) = 0, (B15)

FIG. 12. Shown on the left is the data reverse engineered from [33], slightly shifted in the x direction and rescaled in the y direction to
collapse with our result for S(x), normalized to 1. The exponents from top to bottom are a = 1/4, 1/3, and 1/2. Contrary to the claims of [33],
a = 1/4 is not the best fit, but a = 1/3 is, corresponding to a cubic behavior at the boundary. On the right is the consistency with our theory
(top curve). This is compared to the theory in [33] and its numerical validation: The lower dashed curve is the theory for avalanches with a
large aspect ratio S/�4, while the dots are the numerical verification from the same reference.
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2
3f 3(x) + f ′(x)2 = −36g3 ≡ −2Ē1, (B16)

2
3f (x)f ′′(x) − f ′(x)2 = 36g3 = 2Ē1. (B17)

Using these relations, some terms which in general are not
total derivatives can be written as such, e.g.,

f ′(x)2 = d2

dx2

[
1

5
f (x)2 − 3

5
E1x

2

]
. (B18)

APPENDIX C: REANALYSIS OF THE DATA OF REF. [33]

In Ref. [33] it was claimed that when averaging over all
avalanches of a given extension �, close to the boundary

the scaling function grows as 〈S(x)〉� ∼ (x − �/2)4. This was
supported by a log-log plot of the data (see Fig. 14 of Ref. [33]).
This procedure is dangerous, due to the boundary layer studied
in Sec. IV C, which shifts the effective size of an avalanche. It
is more robust to take S(x) to the inverse expected power and
verify whether the resulting plot yields a straight line close
to the boundary of the avalanche. This is done in Fig. 12.
One can clearly see in the left plot that the data are most
consistent with a = 1

3 , equivalent to a cubic growth close to
the boundaries. We also show on the right-hand side of Fig. 12
that these data are consistent with our theory; note that the
amplitude has been adjusted, since it could not be extracted
from [33].
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