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When driving a disordered elastic manifold through quenched disorder, the pinning forces exerted on the
center of mass are fluctuating, with mean fc = −Fw and variance �(w) = FwF0

c
, where w is the externally

imposed control parameter for the preferred position of the center of mass. �(w) was obtained via the functional
renormalization group in the limit of vanishing temperature T → 0, and vanishing driving velocity v → 0.
There are two fixed points, and deformations thereof, which are well understood: The depinning fixed point
(T → 0 before v → 0) rounded at v > 0, and the zero-temperature equilibrium fixed point (v → 0 before T →
0) rounded at T > 0. Here we consider the whole parameter space of driving velocity v > 0 and temperature
T > 0, and quantify numerically the crossover between these two fixed points.

DOI: 10.1103/dkhl-c68t

I. INTRODUCTION

A. Generalities

Elastic manifolds driven in a disordered medium have a
depinning transition at zero temperature. Typical examples
are the motion of domain walls in magnets [1–4], contact
line depinning [5], earthquakes [6,7], and the peeling of an
RNA-DNA helix [8]. What these systems have in common is
that they are governed by an over-damped equation of motion
for the interface u(x, t ) which is driven through a quenched
disordered medium,

∂t u(x, t ) = ∇2u(x, t ) + m2[w − u(x, t )]

+ F (x, u(x, t )) + η(x, t ),

w = vt, v � 0. (1)

Here w = vt is the externally imposed control parameter for
the preferred position of the center of mass, v is the driv-
ing velocity and m2 is the stiffness of the spring which sets
a renormalization scale. (See Appendix D for a list of all
notations.) The disorder forces F (x, u) are short-range corre-
lated, quenched random variables, whereas η(x, t ) is a thermal
noise. Their correlations are

F (x, u)F (x′, u′) = δ(x − x′)�0(u − u′), (2)

〈η(x, t )η(x′, t ′)〉 = 2T δ(x − x′)δ(t − t ′). (3)

The equation of motion (1) can be studied via field theory.
Its principle object is the renormalized force correlator �(w).
�(w) is the zero-velocity limit of the connected correlation
function of the forces acting on the center of mass uw =
1

Ld

∫
x u(x, t ) [9]:

�(w) = lim
v→0

�v (w),

= lim
v→0

Ld m4〈[uw − w][uw′ − w′]〉c. (4)

The functional renormalization group (FRG) predicts two dis-
tinct universality classes, termed depinning and equilibrium.

Equilibrium is the limit of first v → 0 and then T → 0,
whereas depinning is the limit of first T → 0 and then v → 0.
In both classes, �(w) has a cusp, and admits a scaling form

�(w) = m4ρ2
m�̃(w/ρm). (5)

The characteristic scale ρm scales with m,

ρm ∼ m−ζ , (6)

defining a roughness exponent ζ , distinct between depinning
and equilibrium. A second difference is in the shape of �(w).

The function �(w) was measured in numerical simulations
[10,11] and experiments [2,4,5,8,12]. These measurements,
both in simulations and experiments, are done by moving the
center of the confining potential of strength m2 at a small driv-
ing velocity v. For depinning, experiments were performed in
soft ferromagnets, both with short-range (SR) and long-range
(LR) elasticity [4], and for DNA/RNA peeling [8]. An exper-
iment in the equilibrium universality class is DNA unzipping
[12]. In all cases, the measured force correlator �(w) agrees
with the predictions from field theory and exactly solved mod-
els. It is rounded at a finite driving velocity.

Most of the experiments above are for zero-temperature
depinning, defined such that disorder dominates over entropy
and thermal fluctuations are negligible. We think of a finite
driving velocity as a perturbation which takes us away from
the critical point (4)–(5). It it is not the only possible per-
turbation: thermal noise in Eq. (1) with temperature T > 0
is another one. Apart from the two limiting cases (renormal-
ization fixed points) T → 0 before v → 0 (depinning), and
v → 0 before T → 0 (equilibrium), also small deformations
of these limits are well understood: For depinning, driving at
a finite velocity can be accounted for by twice convoluting the
zero-velocity fixed point with the response function, which
leads to a rounding of the cuspy fixed point [13]. However,
the equilibrium fixed point is rounded by a finite temperature,
described by a thermal boundary layer [14,15].

The goal of this paper is to describe the crossover between
these two limiting cases and to serve as a reference for signals
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of either perturbation. We do this by means of numerical
simulations, which at fixed m2 are parametrized by v and T .
Our results capture measurements of various quantities, such
as effective forces and disorder correlations, with an emphasis
on quantities that can be measured in experiments. These
quantities are important because they give insight into whether
an experimental or numerical setting is close to depinning,
close to equilibrium or “in between,” without necessarily
knowing the underlying model, or the relevant microscopic
parameters. The main two features are rounding of the cuspy
fixed point due to either v or T , and an additional peak due to
thermal fluctuations. An example where this framework was
successfully applied is Ref. [12].

B. Mean-field description

Since these questions are difficult to treat numerically for
an interface, we study a single degree of freedom which can
itself be interpreted as the center-of-mass of the interface.
This is sometimes referred to as a mean-field approximation.
As was clarified in Ref. [13], there are different mean-field
descriptions, depending on the correlations of the effective
force acting on the center of mass. To properly describe
experiments, we request force correlations to have a finite
correlation length. This is in contrast to the ABBM [16,17] or
BFM [15,18] models, for which random forces are modeled as
random walks, and for which force correlations do not decay
with distance. While the latter are theoretically appealing as
they are simple to solve, they do not seem to be realized
in nature. Contrary to long-standing claims, even magnetic
domain walls in long-range magnets, for which the avalanche
size exponent is correctly given by ABBM or BFM, have
decaying force correlations [4].

Denoting the center of mass of the interface by u(t ), the
equation of motion (1) and noise correlations (2)–(3) reduce
to

∂t u(t ) = m2[w − u(t )] + F (u) + η(t ), (7)

〈η(t )η(t ′)〉 = 2T δ(t − t ′), (8)

F (u)F (u′) = �0(u − u′). (9)

The first term is the force exerted by a confining well, which
gets replaced by a Hookean spring with spring constant m2.
F (u) is the random pinning force, possibly the derivative
of a potential, F (u) = −∂uV (u). Specifying the correlations
of F (u) defines the system. Following [13] we consider
forces F (u) that describe an Ornstein-Uhlenbeck (OU) pro-
cess driven by a Gaussian white noise ξ (u):

∂uF (u) = −F (u) + ξ (u),

〈ξ (u)ξ (u′)〉 = 2δ(u − u′). (10)

At small distances u � 1, the forces F (u) have the statistics of
a random walk, thus its microscopic limit is the ABBM model
[16,17]. The microscopic force correlator decays as e−|u|, thus
at large distances u 	 1 forces are uncorrelated, putting our
model in the random-field (RF) universality class.

Returning to the equation of motion (7), at zero tempera-
ture and at very slow driving, most of the time the left-hand
side vanishes. This condition defines the force Fw, given w,

FIG. 1. w − uw for δt = 10−3, v = 0.01, m2 = 0.1, T = 0.5
(DNS). In green are the simulation data. The latter are then averaged
over 60δt . This allows us to identify forward moving sections (blue)
and backward moving sections (orange).

and the associated critical force fc as

Fw = m2(uw − w), (11)

fc := lim
v→0

−Fw = lim
v→0

m2(w − uw ), (12)

where uw is the center-of-mass position of the interface1 given
w. The signs are such that exerting a positive force fc over-
comes the pinning forces F (uw ). Due to the thermal noise, uw

can increase even below the threshold force by thermal activa-
tion over energy barriers U . For sufficiently small velocities,
this allows the dynamics to equilibrate with activation times
following an Arrhenius law τ ∼ eU/T . Thermal fluctuations
allow for uw to go backward, violating the Middleton theorem
[19] (forward-only motion at T = 0).

Figure 1 shows one simulation, with the original trajectory
which includes all noise in green. Smoothening it over time
allows us to show predominantly forward movement in blue
and backward movement in orange. We see that at this tem-
perature backward movement is substantial.

The effective disorder is defined as

�v,T (w − w′) := FwFw′
c
. (13)

We write subscripts v, T to indicate that measurements de-
pend on both v and T . Since we have various observables
and various perturbations (T > 0 or v > 0) we can construct
a plethora of distinct objects. To clarify their meaning, we
summarize our notations in Appendix D.

Finally, the critical force is related to the area of the hys-
teresis loop as

m2[(w − uw )
forward − (w − uw )

backward
] = 2 fc. (14)

Hysteresis is absent in equilibrium where fc = 0 and maximal
at depinning.

1Note that for fixed w = vt and v → 0, the time t → ∞, thus
cannot be used to parametrize the interface position u(t ).
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C. Review of known results

Before we present our findings for the questions posed in
the introduction, let us review what is known for a single
perturbation. Firstly, we review what happens to the equilib-
rium fixed point at a finite temperature. Secondly, we consider
changes to the depinning fixed point induced by a finite driving
velocity. These two limits are well understood.

1. Equilibrium fixed point (v = 0)

The zero-temperature equilibrium fixed point can be mea-
sured by energy minimization (EM) at fixed w of

Hw(u) = m2

2
(u − w)2 + V (u), (15)

see Appendix A for implementation details. The random po-
tential is given by V (u) = − ∫

F (u)du. For the RF disorder
relevant for Eq. (10), the model is known as the Sinai model,
introduced in Ref. [20]. The effective force correlator reads
(see Ref. [21], with corrections in Ref. [15])

�(w) = m4ρ2
m�̃(w/ρm), (16)

ρm = 2
2
3 m− 4

3 σ
1
3 , (17)

where σ sets the microscopic disorder strength.

�̃(w) = − e− w3

12

4π
3
2
√

w

∫ ∞

−∞
dλ1

∫ ∞

−∞
dλ2 e− (λ1−λ2 )2

4w

× ei w
2 (λ1+λ2 ) Ai′(iλ1)

Ai(iλ1)2

Ai′(iλ2)

Ai(iλ2)2

×
[

1+2w

∫ ∞
0 dVewV Ai(iλ1+V )Ai(iλ2+V )

Ai(iλ1)Ai(iλ2)

]
,

(18)

where Ai is the Airy function. The roughness exponent is
identified from Eq. (17) as ζ = 4/3. Figure 2 shows in
blue the analytical solution of Eqs. (16)–(18). In red and
cyan are numerical simulations of Eq. (15) for uncorrelated
forces, constant in an interval of size one, and unit variance,
i.e., 〈V (u) − V (u′)〉 � |u − u′|. Already for m2 = 0.01, the
simulation has converged to the theory. The inset shows com-
parison to the model of OU forces defined in Eq. (10), which
belongs to the same universality class.

At a finite temperature, thermal fluctuations smoothen the
shocks and round the cusp in a boundary layer u ∼ T . This
thermal rounding is shown in Fig. 3. The size of the boundary
layer can be estimated from the FRG [15] (see Appendix B)

�
eq
T (w̃) = AT �eq(w̃), (19)

w̃ =
√

w2 + T̃ 2,
T̃

ρm
= 3

ε

2T m2

�(0)
, (20)

AT =
∫ ∞

0 dw�eq(w)∫ ∞
0 dw�eq(w̃)

, (21)

where �eq(w) is the zero-temperature equilibrium fixed point
and T̃ sets the size of the boundary layer. The amplitude
AT ensures normalization, i.e., that the area under �(w) is
preserved in the presence of thermal rounding. A derivation
[15] of this set of equations is given in Appendix B. Since

FIG. 2. �̃(w) for the Sinai model (blue) obtained by numerical
integration of Eqs. (16)–(18). It is compared to the energy minimiza-
tion for m2 = 0.1 (red), m2 = 0.01 (cyan dashed) indistinguishable
from the theory. Statistical errors are within the line thickness. Inset:
Idem for the OU model in Eq. (10).

from Eq. (20) w ∼ T̃ ∼ ρm, the ratio T̃ /ρm in Eq. (20) is
dimensionless. This defines the dimensionless temperature
Tm ∼ T mθ , scaling with its own exponent

θ = d − 2 + 2ζ , (22)

where θ is called the equilibrium energy exponent. As
we show in Appendix B, an alternative expression for the

FIG. 3. Boundary layer analysis for equilibrium random-field
disorder via exact minimization (EM) for the dimensionless rescaled
disorder �̃(w) and rescaled to have unit amplitude and slope 1 at
w = 0. Black solid, v = 0, T = 0 fixed point, black dashed, numeri-
cal measurement at m2 = 0.01, T = 2, red dotted, thermal boundary
layer ansatz using equations (19). Inset: The effective force at various
temperatures: T ∈ [0, 0.1, 0.2, 0.5, 1, 2, 5] (from black to orange),
for m2 = 0.01.
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FIG. 4. (a) Inset shows a comparison of the prediction (33) for a system without disorder (blue) for m2 = 0.01, v = 10−3, T = 2 to a
measurement of the noise correlations. Main panel (a) shows the equilibrium regime for T = 2 with the zero temperature fixed point �eq(w),
Eq. (16), in red and �

eq
T (w) (EM), Eq. (19), for T = 2 shown in green. Both are zero velocity results. Simulation of Eq. (7) shows �v,T (w)

(DNS) for v = 0.01 (brown), v = 10−3 (blue) and 10−4 (orange). For the smallest two driving velocities the tail agreement is excellent with the
zero velocity result, and the thermal peak, rounded by the driving velocity, is clearly visible. This reflects the decomposition of the amplitude
in Eq. (36). The largest velocity no longer obeys the decomposition for the amplitude, Eq. (36), and belongs to the crossover regime. For the
same m2 = 0.01, T = 2 (b) and T = 3 (c) main panels show a zoomed in comparison of the equilibrium �

eq
T (w) [green, exact minimization

(EM)] to �v,T (w) at v = 10−3 (blue solid, DNS and v = 10−4 (orange solid, DNS). In dashed cyan/red, we show the combination (35). This
correctly captures the amplitude, but a signal of anticorrelations remains. In the inset we show that the corrections δ�v,T (w/v) introduced in
Eq. (34) are small (note the scales). This subtraction is done using Eq. (33) shown in inset of panel (a).

boundary layer is given by

�T (w) =
∫ ∞

−∞
du �(u)G(u − w, τ ), (23)

G(u, τ ) = 1√
4πτ

e− u2

4τ , (24)

τ = T̃ 2

π
− 2(π − 2)T̃ 3

ρmπ2
+ O(T̃ 4), (25)

where G(u, τ ) is the diffusion kernel with a fictitious time τ .
A delicate question is what the dynamical exponent z is in

equilibrium. The observation that z = 2 in both the free theory
as well as at depinning suggests that this likely holds also in
equilibrium. Finally, the pinning force fc = 0 in equilibrium.

2. Depinning fixed point (T = 0)

For depinning the effective disorder (4) is given by [13,22]

�(w) = m4ρ2
m�̃Gumbel(w/ρm), (26)

�̃Gumbel(w) = w2

2
+ Li2(1 − e|w|) + π2

6
, (27)

ρm = 1

2m2 ln (m−2)
. (28)

Li2 is the polylog function. The roughness exponent is ζ =
2−; the dynamical exponent is z = 2− [13]; the minus sign
denotes logarithmic corrections. In the simulations, we can
measure (26) at zero velocity, by moving the parabola from
w → w + δw and waiting for the dynamics to cede. In an
experiment, performed at finite v, �(w) is rounded by the
driving velocity [13]

�v (w − w′) =
∫∫

t,t ′
R(t )R(t ′)�(w − w′ − v(t − t ′)). (29)

R(t ) is the response function in absence of disorder, decaying
on a timescale τ = 1/m2,

R(t ) = 1

τ
e−t/τ�(t ). (30)

By construction,
∫

t R(t ) = 1 and the integral of �v (w) is
independent of v. At small v, Eq. (29) can be approximated
by

�v (w) = 1

N �(
√

w2 + (vτ )2), (31)

where N is chosen such that
∫
w

�v (w) = ∫
w

�(w).
For v = 0 the critical force fc is defined in Eq. (12). For

v > 0, the combination m2(w − uw ) increases to [13]

m2(w − uw ) ≈ fc

∣∣∣
v=0

+ ηv + O(v2), (32)

where η is the viscosity, set to η = 1 in Eq. (1).

II. RESULTS IN THE GENERAL SITUATION

We now present our numerical results, mostly obtained
by direct numerical simulation (DNS). First in Sec. II A we
check Eqs. (16)–(21) for equilibrium. In Sec. II B we discuss
several order parameters characterizing the crossover between
equilibrium and depinning. Section II C shows that with the
rescalings established so far, we can collapse all our data.

A. Thermal peak in the equilibrium regime

In Fig. 4 we show the results of numerical simulations of
�v,T (w) in the near-equilibrium regime. The presence of the
thermal noise leads to a thermal peak (TP) at small w. In
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absence of disorder it reads

�TP
v (w − w′) = 2T m4

∫ ∞

−∞
R(t, τ )R(t ′, τ ) dτ

= T m2e−m2|t−t ′|

= T m2e−m2|w−w′|/v, (33)

where R(t ) = �(t )e−m2t is the response function of the free
theory, and in the last line we have expressed t − t ′ by the
distance the parabola moved in this time interval. This is
checked in the inset of Fig. 4(a).

Let us now turn back to the disordered case, at finite veloc-
ity v > 0 and finite temperature T > 0. We define δ�v,T (w)
via

�v,T (w) = �
eq
T (w) + �TP

v (w) + δ�v,T (w). (34)

The first term is the relevant result for v = 0. The second term
is the contribution (33) from the thermal noise. If the driving
velocity is small enough for the dynamics to equilibrate, then
we expect the third term δ�v,T (t ) to vanish, or at least to be
small.

Figures 4(b) and 4(c) (insets) show the combination

�v,T (w) − �TP
v (w) = �

eq
T (w) + δ�v,T (w), (35)

for T = 2 (b) and T = 3 (c). While �TP
v (w) correctly sub-

tracts the thermal noise at w = 0, the remaining term δ�v,T (t )
is visible. In the inset, we show δ�v,T (t ), i.e., the error
we make in the approximation �v,T (w) ≈ �

eq
T (w) + �TP

v (w).
We see that despite a difference of v by a factor of ten, the
rescaled combination δ�v,T (t = w/v) at small t depends little
on v. This estimates the boundary layer in our example to be
δt ≈ 2.

Equation (34) approximately predicts the amplitude for
equilibrium as

�v,T (0) ≈ �T (0) + m2T . (36)

As can be seen in main Fig. 4(a), this relation breaks down
for v = 0.01, corresponding to T̂ = T m2/3 ln (v) ≈ 2 and the
brown dashed curve. A look at Fig. 5, discussed next, shows
that there f / fc ≈ 0.05, which signals the approach to the
crossover regime.

B. Order parameters

1. Mean force as an order parameter

The measured pinning force

f := m2(w − uw ) − v, (37)

vanishes in equilibrium, and is maximal for depinning at tem-
perature zero, where it takes the value fc, see Eqs. (11)–(12).
It is a natural candidate for an order parameter. We define

� f := f

fc
, (38)

which vanishes in equilibrium and is 1 at depinning. The inset
of Fig. 5 shows this force ratio for different m2, T , and v, for
v = 0.1, 10−2, 10−3, 10−4, m2 = 10−3. Using that the dimen-
sionless temperature is T mθ and velocity and temperature are
related by Arrhenius’ law as ln(v) ∼ 1/T , a natural ansatz for

FIG. 5. Scaling collapse of the measured force for T > 0, and
different m, v. We found an optimal collapse for v0 = 1, but any v0

of the same order of magnitude does well. v = 0.1, 10−2, 10−3, 10−4,
m2 = 10−3, T ∈ [0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.3].

a scaling parameter is

T̂ := T m2/3 ln(1/v). (39)

This collapses all curves on a single master curve, as shown
in the main plot of Fig. 5.

We can go one step further. To do so, let us plot the ln of
f / fc as a function of T̂ φ . We find on Fig. 6 an almost linear
behavior for an exponent φ = 0.55, with slope −2.41. Thus,

f

fc
≈ e

−
(

T̂
T̂c

)φ

, φ ≈ 0.55, T̂c ≈ 0.2, (40)

is a stretched exponential. Note that if the fit is attempted
close to f ≈ fc, then one can also conclude on φ ≈ 0.51. If
we restrict to 10 percent deviation, then this allows for φ in
the range φ ∈ [0.51, 0.56]. We expect the regime f / fc → 1
to be governed by the depinning fixed point, and f / fc → 0

FIG. 6. This plot shows that as a function of temperature the
scaled force f / fc from Fig. 5 is a stretched exponential, with an
exponent of φ ≈ 0.55. Gray dashed is a fit to a linear function, gray
dotted putative error bars.

014109-5



CATHELIJNE TER BURG AND KAY JÖRG WIESE PHYSICAL REVIEW E 112, 014109 (2025)

FIG. 7. Check of the scaling relation (41). The green dashed line
has a slope of φ = 0.50.

by the equilibrium fixed point. Thus, f / fc = 0.9 is a small
perturbation by temperature of the depinning fixed point,
while f / fc = 0.1 is a small perturbation of the equilibrium
fixed point by a finite driving velocity. For f / fc ≈ 1/2 both
effects are equally important.

Let us finally interpret T̂c: according to Eq. (39) T =
m−2/3T̂c/ ln(1/v) is the temperature at which f / fc is reduced
by a factor of 1/e ≈ 0.37.

2. Correlation length as an order parameter

In Sec. II B 1 we established the mean force as an order
parameter between equilibrium and depinning. While this is
the most robust quantity we found, there are other quantities
one may use. The first is the correlation length ρm, which
decreases with temperature compared to its value at depin-
ning. In the following, we denote by ρm the T = 0 value
at depinning, and by ρT

m its finite-temperature value. If one
considers zero-temperature depinning as a reference point,
then at small temperatures

ρm − ρT
m ∼ T̂ φ, (41)

with φ = 0.50 ± 0.02; see Fig. 7.

3. Disorder amplitude as an order parameter

Assuming that

�v,T (w) = m4(ρT
m

)2
�̃

(
w

/
ρT

m

)
, (42)

the amplitude �v,T (0) at small T should behave as

�v,T (0)

�(0)
− 1 �

(
ρT

m

ρm

)2

− 1 ∼ T φ + O(T 2φ ). (43)

Our measurements presented in the inset of Fig. 8 are consis-
tent with an exponent in the range φ ∈ [0.5, 0.6].

4. Disorder integral as an order parameter

Both the correlation length as well as the amplitude are
very sensitive to details of the rounding around the cusp. More
robust is the area under �(w). The above relations imply that∫

w>0 �v,T (w)∫
w>0 �(w)

∼
(

ρT
m

ρm

)3

∼ T φ + O(T 2φ ). (44)

FIG. 8. Change with temperature of the area (main plot) and
amplitude at w = 0 (inset) for φ = 0.56.

Our data are consistent with an exponent in the range of φ =
0.5 to φ = 0.67, favoring the upper end. The decrease of the
area is shown in Fig. 8. The orange dashed lines are references
for depinning (top) and equilibrium (bottom).

C. Scaling close to equilibrium and depinning

Let us next consider scaling close to equilibrium and
depinning.

1. Scaling near equilibrium

For equilibrium

�(w) ∼ m4/3�̃(wm4/3). (45)

While this scaling holds for all w at the zero-temperature fixed
point, the scaling within the boundary layer is more subtle.
Consider first the inset of Fig. 9. In black is shown the equi-
librium fixed point for m2 = 0.1; red/blue/purple show from
top to bottom m2 = 0.1, 0.05, 0.01 for T = 1, v = 10−3. In
the main plot we perform a scaling collapse from m2 = 0.01
onto m2 = 0.1. In blue dotted (marked as I), we rescaled by
accounting for the difference in mass, i.e., with m4/3. One
sees that no scaling collapse is achieved. To improve the
scaling collapse, one also needs to scale temperature with its
corresponding dimension, i.e., T m−θ with θ = 2/3, leading
to the blue-dashed curve (marked as II). The remaining offset
comes from the velocity which scales as m2. Using that z = 2
both in the free theory and at depinning, suggest a scaling
of v ∼ m2/3. A look at the size of the boundary layer of
the thermal peak suggests that the driving velocity should be
reduced by a factor of 2, which is approximately consistent
with the above scaling.

2. Scaling near depinning

In Figs. 10 and 11 we show the whole crossover regime
from depinning to equilibrium. The previous section stud-
ied the change in correlation length and area as an order
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FIG. 9. Scaling of �(w) (DNS). The inset shows the equilibrium
fixed point (EM) at m2 = 0.1 (black) and �v,T (w) for m2 = 0.1
(red), m2 = 0.05 (purple), and m2 = 0.01 (blue) for T = 1, v =
10−3. The main plot shows the collapse of m2 = 0.01 onto m2 = 0.1
(marked as I) rescaling only the explicit m-dependence. This is
improved by rescaling in addition T as T mθ (marked as II).

parameter, but more can be said close to depinning. For this
consider Fig. 10, at v = 0.001. In the inset we use the scaling
relation (42) to collapse the curve for T = 0.02 onto the one
for T = 0. In particular, this implies that the shape �̃(w) is
not affected by temperature. When comparing experimental

FIG. 10. Simulations (DNS) of �v,T (w) for m2 = 0.01, v =
10−3 and T ∈ [0, 0.005, 0.01, 0.02, 0.05, 0.2, 0.5, 1] from depinning
(cyan-dashed, top) to the equilibrium regime (purple, bottom). Also
shown are v = 0, T = 0 equilbrium fixed point (red, bottom EM),
and the equilibrium thermal rounding (green). The inset shows a
scaling collapse using the scaling relation in Eqs. (42) and (39) for
T = 0.02, where T mθ ln 1/v = 0.03 is close to depinning. Brown
dashed curve (main plot, T = 0.05, with �(0) = 0.16) corresponds
to T mθ ln 1/v = 0.075 already at 60 % of the maximal value of fc.
(see Fig. 5). No scaling collapse could be obtained here (red curve in
the inset).

FIG. 11. �v,T (w) (DNS) for m2 = 0.01 at fixed v = 0.1 and
varying T compared to the depinning (black, top) and equi-
librium (red, bottom, EM) and thermal rounding at T = 5.
From top to bottom temperature increases T ∈ [0, 0.001, 0.01,

0.1, 0.5, 1, 2, 3, 4, 5]. At T = 3, the velocity boundary layer dis-
appears due the formation of the thermal peak. Inset shows the
small temperature effect on the boundary layer. It is little affected
at small T = 0.001. Inset black dashed shows T = 0.01, v = 10−3

and purple dashed T = 0.01, v = 10−3, showing they are not related
by velocity deconvolution.

data to theoretical predictions, this is important as scales are
fixed using the correlation length. At larger T this no longer
holds true, and the shape changes. Another interesting feature
can be identified at a larger driving velocity. Consider Fig. 11
for v = 0.1, where rounding due to a finite driving velocity
is clearly present. As we now know that when approaching
equilibrium a thermal peak forms, one would expect some
interplay between the velocity boundary layer and the ther-
mal peak. Figure 11 shows that this is indeed the case. For
large T > 3 an apparent cusp seems to re-emerge. Its nature,
however, is very different from the cusps of the depinning and
equilibrium fixed points. There it is related to the existence of
shocks and avalanches. Here, it is an artifact of the combined
effect of the velocity boundary layer and the thermal peak
forming on top. This regime corresponds to T̂ = 0.32, which
is far in the crossover regime of Fig. 5.

III. SUMMARY AND DISCUSSION

In this work we addressed the long-standing question of the
full crossover between depinning and equilibrium. Studying
the mean effective force and its correlator for a one-particle
model, we characterized the phase diagram of finite velocity
v and finite temperature T . This may serve as a reference
point for experiments and simulations in dimensions d > 0.
We showed that the mean force, divided by the mean force
at depinning, is a robust order parameter, allowing one to
quantify where one is in between depinning and equilibrium,
and what one should expect for the force correlations.

Our results are directly applicable to the unzipping of a
DNA hairpin [12]. This experiment has all the ingredients
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FIG. 12. Comparison of the experimental curve (red) to simu-
lation (blue). For the main plot, simulation parameters are chosen
to agree with the largest mass, i.e., small w in Eq. (46). In the
inset we see results when the DNA molecule is almost unzipped,
corresponding to a reduction in m by a factor of about 0.4. Again the
simulation agrees well with the experiment, and captures the shape
of the boundary layer.

studied here: It has a finite temperature, it has random forces,
and it has a confining potential whose minimum is slowly
increasing at a driving velocity v, allowing us to measure
its force correlations. Earlier analysis [23] has suggested this
experiment to be close to equilibrium. Interestingly, in this
experiment the stiffness of the trap, (m2 in our notation) de-
creases when unzipping the DNA molecule,

1

m2
= 1

m2
0

+ an = 1

m2
0

+ a′w, (46)

where n is the number of unzipped bases, itself proportional to
the position of the confining potential w, starting with w = 0
for the completely closed molecule. Reminding that m sets
the renormalization scale, we see that the experiment runs the
renormalization group for us! Figure 12 shows a comparison
of experimental data for two different masses to numerical
simulations. For the largest mass, simulation parameters are
chosen such as to agree with experimental data. Using the
ratio of masses in the experiment, this then predicts the simu-
lation parameters for the smaller mass. We see that simulation
and experiment agree well. Details can be found in Ref. [12].

We hope that this work serves as a reference where both the
driving velocity v and temperature T are nonvanishing, and it
is a priori not clear where in the phase diagram one is sitting.
Looking at the measured critical force divided by its value at
depinning allows one to identify where in the phase diagram
an experiment is located. One can then asses and quantify all
the features discussed here: Thermal rounding, the thermal
peak and its broadening as a function of m2, as well as the
scaling length ρm in the w direction. This should be useful to
bring some order into these many-parameter systems.
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APPENDIX A: NUMERICAL IMPLEMENTATIONS

The number of samples is denoted by N . In this work we
use two numerical implementations:

(i) Direct numerical simulation (DNS). To solve the cou-
pled set of differential equations (7)–(10) we use a space
discretization δu = 10−2 to first obtain the random forces
F (u) for u = nδu, n ∈ N. F (u) is then linearly interpolated
between these points. We finally solve Eq. (7) with the Euler
method, using a time-discretization of δt = 10−3.

(ii) Exact minimization (EM). In the statics at temperature
T = 0, the relevant quantities are computed using minimiza-
tion of the energy in Eq. (15). For a given disorder realization
V (u), the minimum of the potential as a function of w is

V̂ (w) = minu

[
V (u) + m2

2
(u − w)2

]
. (A1)

At finite temperature, this is replaced by

V̂ (w) = V (w) − T ln
(〈

e− V (u)−V (w)
T − m2

2T (u−w)2 〉
u

)
. (A2)

Using potential differences allows to better restrict the nec-
essary range in u − w. For RF disorder, as for OU forces, the
(microscopic) potential is obtained by integrating the random
forces,

V (u) − V (w) = −
∫ u

w

F (u′)du′. (A3)

The effective force F̂ (w) = −∂wV̂ then becomes

F̂ (w) = m2

〈
e− V (u)−V (w)

T − m2

2T (u−w)2
(u − w)

〉
u〈

e− V (u)−V (w)
T − m2

2T (u−w)2 〉
u

. (A4)

APPENDIX B: BOUNDARY LAYER

At finite temperature, the unrescaled 1-loop FRG equa-
tion acquires an additional term,

−m∂m�(w) = −1

2
∂2
w[�(w)−�(0)]2 + T̃m�′′

m(w) . . . (B1)

T̃m := 2T mθ

∫
k

1

k2 + m2

∣∣∣∣
m=1

. (B2)

(In dimension d = 0, the integral simplifies to 1/m2.) The
fixed-point equation for the rescaled dimensionless disorder
�̃(w) := mε−2ζ �(wmζ ) then takes the form

−m∂m�̃(w) = (ε−2ζ )�̃(w) + ζw�̃′(w)

− 1
2∂2

w[�̃(w)−�̃(0)]2 + T̃m�̃′′(w) . . . .

(B3)

What is remarkable about Eq. (B1) is that the RG flow con-
serves the integral

∫
w>0 �(w), both at vanishing temperature

T̃m = 0 and at T̃m > 0. The reason is that the right-hand side
of Eq. (B1) is a total derivative.
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For the random-field solution ζ = ε/3 in equilibrium, rel-
evant for us, this also holds for the rescaled Eq. (B3).

The finite-temperature solution in the standard boundary-
layer form is [15]

�T (w) ≈ AT �(
√

w2 + t2), (B4)

t = 6T m2

ε|�′(0+)| ⇔ t

ρm
= 6T m2

ε�(0)
. (B5)

As the flow preserves the area, it is important to fix AT ,
such that the integrals on both sides coincide. This adds a
nontrivial change in normalization which cannot be given
in closed form. Another problem of the boundary layer is
that given �T (w), one can reconstruct �(w) only for w � t .
Since the boundary layer is phenomenological and not exact,
we propose a different approximation: namely, to obtain the
finite-t solution by convoluting the zero-temperature solution
with an appropriately chosen diffusion kernel,

�T (w) =
∫ ∞

−∞
du �(u)G(u − w, τ ), (B6)

G(u, τ ) = 1√
4πτ

e− u2

4τ . (B7)

A nice property of the convolution in Eq. (B6) is that by
construction it is area preserving, thus no additional normal-
ization AT is necessary. While using the diffusion kernel is
natural, given that Eq. (B3) is the diffusion equation in ab-
sence of nonlinear terms, what remains to be done is to fix
the “diffusion time” τ . Given the properties of the diffusion
kernel, this can analytically be done for

�(w) = Ce−w/ρm−b(w/ρm )2
. (B8)

Demanding that �′′
T (0)/�T (0) agree yields

τ = t2

π
− 2(π − 2)t3

ρmπ2
+ O(t4). (B9)

The leading-order term only depends on t , while the sublead-
ing one contains ρm. Higher-order terms depend on the fitting
parameter b in Eq. (B8).

Figure 13 shows a comparison of numerics for m2 = 0.01
at T = 0 (black) and T = 1 (cyan) to the boundary-layer
approximation (B4) (dark-green dot-dashed) and the diffusion
kernel (B6) (red dashed), with t from Eq. (B5). Both approxi-
mations seem to work well.

APPENDIX C: EXACT RELATION BETWEEN
MICROSCOPICS AND MACROSCOPICS

The FRG equation (B1) predicts that the integral∫
�(w)dw remains unrenormalized. Therefore the integral

over the microscopic disorder �0(w) equals the integral
over the renormalized disorder �(w), which we can rewrite
through its scaling form (5) as∫ ∞

0
dw �0(w) ≡

∫ ∞

0
dw �(w)

=
∫ ∞

0
dw m4ρ2

m�̃(w/ρm)

= m4ρ3
m

∫ ∞

0
dw �̃(w). (C1)

FIG. 13. Comparison of the boundary layer (dark-green dot-
dashed) to the diffusion kernel (red-dashed), experimental data at
T = 1, m2 = 0.01 in cyan and the zero temperature fixed point in
black.

Since ρm ∼ m−ζ , the combination m4ρ3
m is independent of m

for RF disorder which has ζ = 4/3. (Note that this also works
in dimension d > 0, with m4 in Eq. (C1) replaced by mε, ε =
4 − d , and ζ = ε/3.) Solving for ρm we find

ρm =
[ ∫

w>0 �0(w)

m4
∫
w>0 �̃(w)

]1/3

. (C2)

For equilibrium RF disorder in d = 0 (see Sec. I C 1),∫
w>0 �̃(w) = 0.252, and this reduces to

ρm =
[

3.97

m4

∫
w>0

�0(w)

]1/3

. (C3)

Equation (C1) has been verified experimentally in Ref. [12].
Here we perform a numerical test. For the simulations of
Fig. 2 microscopic forces are taken constant on an interval
of size one, with variance 1. As a consequence, the micro-
scopic disorder has integral

∫
w>0 �0(w) = 1/2. Numerical

simulations of Eq. (15) confirm that this is preserved un-
der RG:

∫
w>0 �(w) = 0.496 for m2 = 10−2,

∫
w>0 �(w)w =

0.484 for m2 = 10−3, and
∫
w>0 �(w) = 0.525 for m2 = 10−4.

Using Eq. (C3) this gives a prediction for the scale ρm. This
confirms for a single particle that if the microscopic disorder
is known, then there are no unknown scales. Both ρm as well
as �(0) are predicted by the microscopic disorder.

APPENDIX D: NOTATIONS

Our study contains the depinning fixed point at scale m,
which when properly rescaled is close to its m → 0 limit.
It further contains two relevant perturbations away from it:
temperature T and driving velocity v. This leads to different
observables and their rescaled versions, summarized here:

(1) m2 is the strength of the confining potential, which sets
the overall (renormalization) scale.
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(2) u(t ) is the interface position as a function of time t ,
uw the interface position given a minimum for the confining
potential at u = w. We mostly use this in the limit of v → 0,
where the former cannot be defined.

(3) Fw is the force seen by the confining potential posi-
tioned at w, defined in Eq. (11). It depends on m and v, T .

(4) fc is the critical/pinning force in the limit of T → 0
(first) and v → 0 (second), defined in Eq. (12). It still depends
on m, but converges quickly when m → 0 [24].

(5) f , defined in Eq. (37), is the measured pinning force.
f = fc at depinning and f = 0 in equilibrium.

(6) �v,T (w) is the measured v > 0, T > 0 effective force
correlator defined in Eq. (13).

(7) �(w) is the effective force correlator defined in Eq.
(16) for equilibrium (Sinai) and Eq. (26) for depinning (Gum-
bel class).

(8) �̃(w) is the rescaled force correlator, defined in
Eq. (18) for equilibrium and Eq. (27) for depinning.

(9) �
eq
T (w) = �T (w) is the zero-velocity, ther-

mally rounded equilibrium force correlator defined in
Eq. (19).

(10) �TP
v (w) is the thermal peak defined in Eq. (33).
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