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Mean-field theory is an approximation replacing an extended system by a few variables. For depinning of
elastic manifolds, these are the position u of its center of mass and the statistics of the forces F (u). There are
two proposals how to model the latter: as a random walk (ABBM model), or as uncorrelated forces at integer u
(discretized particle model, DPM). While for many experiments the ABBM model (in the literature misleadingly
equated with mean-field theory) makes quantitatively correct predictions for the distributions of velocities, or
avalanche size and duration, the microscopic disorder force-force correlations cannot grow linearly, and thus
unboundedly as a random walk, with distance. Even the effective (renormalized) disorder forces which do so
at small distances are bounded at large distances. To describe both regimes, we model forces as an Ornstein-
Uhlenbeck process. The latter has the statistics of a random walk at small scales, and is uncorrelated at large
scales. By connecting to results in both limits, we solve the model largely analytically, allowing us to describe
in all regimes the distributions of velocity, avalanche size, and duration. To establish experimental signatures of
this transition, we study the response function, and the correlation function of position u, velocity u̇, and forces
F under slow driving with velocity v > 0. While at v = 0 force or position correlations have a cusp at the origin
and then decay at least exponentially fast to zero, this cusp is rounded at a finite driving velocity. We give a
detailed analytic analysis for this rounding by velocity, which allows us, given experimental data, to extract the
timescale of the response function, and to reconstruct the force-force correlator at v = 0. The latter is the central
object of the field theory, and as such contains detailed information about the universality class in question. We
test our predictions by careful numerical simulations extending over up to ten orders in magnitude.

DOI: 10.1103/PhysRevE.103.052114

I. INTRODUCTION

A. Mean-field theories

The framework of disordered elastic manifolds covers such
diverse systems as contact-line depinning [1], charge-density
waves, magnetic domain walls [2–6], earthquakes [7–16],
shear of micropillars [17], and stretching of a knit [18]. Many
of these experiments, or at least aspects thereof, are suc-
cessfully described by mean-field theory. But what exactly is
meant by mean-field theory? Let us define mean-field theory
as a theory which reduces an extended system to a single or a
few degrees of freedom. For depinning these are u, the center of
mass of the interface, and the correlations of F (u), the forces
acting on it. The center of mass of the interface follows the
equation of motion

∂t u(t ) = m2[w − u(t )] + F (u(t )). (1)

The first term is the force exerted by a confining well, equiva-
lent to a Hookean spring with spring constant m2. The second
term F (u) is a random force, possibly the derivative of a ran-
dom potential, F (u) = −V ′(u). Specifying the correlations of
F (u) specifies the system, and selects one mean-field theory.
However, when the reader encounters the term “mean-field
theory” in the literature, it is quite generally employed for a
model where the forces perform a random walk,

∂uF (u) = ξ (u), (2)

〈ξ (u)ξ (u′)〉 = 2δ(u − u′). (3)

This model was introduced in 1990 by Alessandro, Beatrice,
Bertotti, and Montorsi (ABBM) [19,20] to describe magnetic
domain walls, and is nowadays referred to as the ABBM
model.

The forces F (u) are the coercive magnetic fields pinning the
domain wall, which were observed experimentally to change
with a seemingly uncorrelated function ξ (u) [21]. The deci-
sion of ABBM [19] to model ξ (u) in Eq. (3) as a white noise is
a strong assumption, a posteriori justified by the applicability
to experiments [20]. It means that F (u) has the statistics of a
random walk, with force-force correlations

�RW
0 (0) − �RW

0 (u − u′) := 1
2 [F (u) − F (u′)]2 = |u − u′|.

(4)

Actually, Eqs. (2)–(3) are the final model analyzed by ABBM.
What they considered first are forces modeled as an Ornstein-
Uhlenbeck process,

∂uF (u) = −F (u) + ξ (u). (5)

Note that by rescaling m2 and time t in Eq. (1), noise strength
“2” in Eq. (3) and the amplitude “1” for the restoring force in
Eq. (5) can always be achieved. Thus the only parameter of
relevance is m2. With the noise in Eq. (3), the process (5) has
correlations (see Appendix A),

�OU
0 (u − u′) := F (u)F (u′)

c = e−|u−u′ |, (6)

i.e., it is uncorrelated at large distances. One explicitly checks
that the small-distance behavior of �OU

0 (u − u′) is as in
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FIG. 1. Avalanche-size distribution P(S) for a particle with
forces given by Eq. (5). The theoretical curves are the kicked
ABBM model as given by Eq. (46) (cyan dotted), and the
DPM as given by Eq. (62) (blue dashed). Improved numerical
solver (INS), m2 = 10−4, δw = 1, δt = 10−4, Sm := 〈S2〉/(2〈S〉) =
2408.89, ρm = 2329.95, N = 108.

Eq. (4). This is the model we study in this article. Contrary
to the claim made by ABBM in Ref. [19] (beginning of Sec
III), even at low domain-wall velocities the reduced model (2)
is only valid at small scales, and there is always an observable,
namely the renormalized disorder correlator defined below in
Eq. (17), which quantifies whether forces are distributed ac-
cording to an Ornstein-Uhlenbeck process or a random walk.

An example for the differences between the two models
is given in Fig. 1, which shows the avalanche-size distribu-
tion, assuming forces generated by the Ornstein-Uhlenbeck
process (5). One sees that, for small avalanche sizes S, the
probability distribution follows P(S) as predicted for the
ABBM model, with no adjustable scale, and a critical expo-
nent τABBM = 3/2 (defined in Table I). However, when the
avalanche size reaches the correlation length of the forces,

which according to Eq. (6) is ξF = 1 in our units, the
avalanche-size distribution crosses over to a pure exponential,
formally equivalent to an avalanche-size exponent τDPM = 0.
As can be seen in Fig. 1 and is summarized in Table I, it also
drastically changes the scaling of the large-scale cutoff, from
SABBM

m ≡ SBFM
m ∼ m−4, to SDPM

m ∼ m−2.
Up to now, we have only discussed mean-field mod-

els. Field theory [22–24] gives a more differentiated view:
First of all, mean-field theory should be applicable for d =
dc [25,26], a case which contains magnets with strong dipolar
interactions [5], earthquakes [9], and micropillar shear exper-
iments [17]. As F (u) has the statistics of a random walk,
the (microscopic) force-force correlator of Eqs. (2)–(3), as
given in Eq. (4), grows linearly with distance. A linearly
increasing correlation function is at the microscopic level
predicted for the correlations of the potential, R(0) − R(u) :=
1
2 〈[V (u)−V (0)]2〉, if the disorder is of the random-field type,
the strongest microscopic disorder at our disposal [27,28].
We know of no microscopic mechanism to generate the
correlations of Eq. (4). On the other hand, the effective (renor-
malized) force-force correlator �(u) has a cusp [28–30], so
Eq. (4) with |�′(0+)| = 1 is an approximation, valid for small
u. The ABBM model defined by Eqs. (1)–(3) should then be
viewed as an effective theory, arriving after renormalization,
and valid for small u only.

If indeed the microscopic disorder has the statistics of a
random walk, then the force-force correlator (4) does not
change under renormalization, as is easily checked by in-
serting it into the one-loop or two-loop flow equations for
depinning [23,24]. Counting of derivatives for higher-order
corrections proves that this statement persists to all orders in
perturbation theory. Even an extended (non-mean-field) sys-
tem where each degree of freedom sees a force which has the
statistics of a random walk, is stable under renormalization.
An example is the Brownian-force model (BFM) introduced
in Ref. [31], which has a roughness exponent ζBFM = 4 − d ,

TABLE I. Comparison of the ABBM model with the DPM.

ABBM model Discretized particle model (DPM)

Characteristic scale of effective (renormalized) force correlator

1 ρm = (m2
√

2 ln(m−2))
−1

Effective (renormalized) disorder �(w)
�(0) − �(w) = σ |w|, σ = 1 �(w) = m4ρ2

m

[
Li2(1 − e|w|/ρm ) + w2

2ρ2
m

+ π2

6

]

Critical force
fc(m2) = F (u = 0) fc(m2) =

√
2 ln(m−2)

Response function R(t ) = τ−1e−t/τ

τ−1 = m2 τ−1 = τ−1
m := 2m2 ln(m−2)

Avalanche-size distribution for infinitesimal kick P(S) ∼ S−τ e−S/Sm

τ = 3/2, Sm = m−4 τ = 0, Sm = ρm

Avalanche-duration distribution for infinitesimal kick P(T ) ∼ T −αe−T/Tm

α = 2, Tm = τ = m−2 α = 0, Tm = τm = [2m2 ln(m−2)]−1

Roughness exponent ζ , defined by u ∼ m−ζ

ζ = 4 ζ = 2− (2 reduced by logarithmic corrections)
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FIG. 2. Geometric solution to find uw as a function of w for the
DPM model of [33].

where d is the dimension of the elastic object. This was
indirectly verified numerically in Ref. [32].

Our discussion below shows that the ABBM model (2)–(3)
is adequate only at small distances, but fails at larger ones,
where the force-force correlator decorrelates. We therefore
expect that at large distances it crosses over to a model of
uncorrelated random forces. Such a model, which we term the
discretized particle model (DPM), was introduced in Ref. [33].
In this model, the random forces are modeled by needles at in-
teger positions, blocking the advance of the particle. Figure 2
shows this model, and how to geometrically construct the
solution of Eq. (1): Draw a straight line f (u) := m2(u − w)
of slope m2, intersecting the horizontal axis (F = 0) at u = w.
As long as f (u) < F (u), the particle advances. The motion is
stopped at the first obstacle this line encounters. In Fig. 2,
this is u(w) = j and u(w′) = j′. It remains to specify the
correlations of the random forces F ( j), j ∈ N. As field theory
in general supposes Gaussian disorder, we choose F ( j) to be
Gaussian distributed, with variance

F ( j)F ( j′) = δ j, j′ . (7)

In this article, we wish to study the crossover from ABBM
disorder, given by Eqs. (2)–(4), to the correlations (7). We do
this by analyzing the Ornstein-Uhlenbeck process (5).

To compare Ornstein-Uhlenbeck forces with the DPM, let
us consider their microscopic disorder force-force correlator.
For the DPM, with forces constant between integers,1 it reads

�DPM
0 (u − u′) = F (u)F (u′)

c = max(1 − |u − u′|, 0). (8)

Both models have a linear (microscopic) cusp, with

−�′
0(0+) = 1. (9)

On the other hand, the integrals over their force-force correla-
tions are different, ∫ ∞

−∞
du �DPM

0 (u) = 1, (10)

∫ ∞

−∞
du �OU

0 (u) = 2. (11)

Our working hypothesis to be checked below is that the two
models have the same universal large-scale properties, with

1To render F (u)F (u′) function of u − u′ only, the needle forces
F ( j), j ∈ N of Fig. 2 are extended to F (u) = F ( j), j � u < j + 1.
The solutions uw of Fig. 2 change, uw → uw − δ, with 0 � δ < 1,
negligible for small m2.

the same scale, and without any additional parameter. Nev-
ertheless, we expect that nonuniversal quantities such as the
critical force might be shifted.

Equation (5) also serves as an effective theory for the
crossover, observed in systems of linear size L, from a regime
with mL 
 1 described by an extended elastic manifold to a
single-particle regime described by the DPM. This crossover
has indeed be seen in numerical simulations for a line with
periodic disorder [34].

B. The effective disorder and measurements

1. Force correlator at finite driving velocity

The question we are now turning to is the following: What
can experiments teach us about the underlying field theory?
Can the crossover be seen in an experiment?

Suppose the system is driven quasistatically, i.e.,

w = vt, (12)

and we wish to study the limit of v → 0. To do so, parametrize
the solution of Eq. (1) as

uw := u(t ). (13)

In this limit most of the time ∂t u(x, t ) = 0, and Eq. (1) yields

F
(
uw

) = −m2(w − uw ). (14)

The geometric construction to find this solution is shown in
Fig. 2. The critical force is defined as

fc(m) := −F (uw ) ≡ m2[w − uw]. (15)

The signs are such that applying the external force fc (counted
positive in the driving direction) overcomes the pinning forces
F (uw ).

At a finite driving velocity v, averaging Eq. (1) yields an
additional term u̇ = v, leading, at least for small velocity v, to

fc(m) := −F (uw ) ≡ m2[w − uw] − v. (16)

The effective disorder force-force correlator is defined as

�(w − w′) := lim
v→0

F (uw )F (uw′ )
c

= lim
v→0

m4[w − uw][w′ − uw′]
c
. (17)

Note that if we consider an extended system, and uw is the
center of mass position uw := 1

Ld

∫
x uw(x), then there is an

additional factor of Ld on the right-hand side (r.h.s.) [29,35].
In a real experiment, it is impossible to measure adiabati-

cally, and instead one measures at a finite velocity,

�v (w − w′) := m4[w − uw][w′ − uw′]
c
. (18)

By definition,

�(w − w′) = lim
v→0

�v (w − w′). (19)

While �(w − w′) is the second cumulant of the effective
action of the field theory [35], the expectation (18) is an
observable. Perturbation theory allows us to calculate it as

�v (w) =
∫ ∞

0
dt

∫ ∞

0
dt ′ �(w−vt+vt ′)R(t )R(t ′), (20)
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FIG. 3. �(w) = e−w (blue solid), and the finite-velocity cor-
relator (25) (red) for τv = 0.3, compared to the boundary-layer
approximation (27) (green dotted).

where R(t ) is the response of the center of mass to an increase
in w, and

∫
t R(t ) = 1. (Usually, the response is defined with

respect to an increase δF in force. Using δF = m2δw, the
response with respect to a force is normalized as

∫
t R(t ) =

1/m2.)
Equation (18) implies that the integral of �v (w) is inde-

pendent of v. In general, both �(w) and R(t ) may themselves
depend on v. We show below in Sec. III H that using the
zero-velocity functions on the r.h.s. of Eq. (20) is sufficient
at small driving velocities v, and the error made is probably
O(v3) or smaller; see Fig. 19.

An analytic expression for the amplitude of the rounding
can be given by expanding Eq. (20) at w = 0 for small v,

�v (0) =
∫ ∞

0
dt

∫ ∞

0
dt ′ [�(0) + v�′(0+)|t − t ′|

+O(v2)]R(t )R(t ′)

= �(0) + vτ̃�′(0+) + O(v2), (21)

τ̃ :=
∫ ∞

0
dt

∫ ∞

0
dt ′ |t − t ′|R(t )R(t ′), (22)

τ := 〈t〉 ≡
∫ ∞

0
dt R(t )t . (23)

If R(t ) decays exponentially, then τ̃ = τ , which should remain
a good approximation in most cases.

As an illustration for the operation defined in Eq. (20),
consider �(w) = �(0)e−|w|/ξ , and

R(t ) = τ−1e−t/τ . (24)

Then, as plotted in Fig. 3,

�v (w) = �(0)
e−|w|/ξ − τv

ξ
e−|w|/(τv)

1 − (
τv
ξ

)2 . (25)

This is a superposition of two exponentials, with the natural
scales ξ and τv. Since

�′
v (0+) = 0, (26)

the cusp characteristic for depinning at the origin is rounded.
This can be proven in general from Eq. (20). Note that �v (w)
is not analytic, as the expansion contains a term of order |w|3.

Since experiments are performed at a finite driving veloc-
ity, but we are mostly interested in the zero-velocity limit,
the question arises of whether the folding of Eq. (20) can be
undone. There are several possibilities to do this.

2. Boundary-layer analysis

As long as τv � ξ , the second term of Eq. (25) de-
cays much faster than the first, allowing us to perform a
boundary-layer analysis. This term was coined in the con-
text of turbulence, where a turbulent bulk behavior has to
be connected to a laminar boundary layer. There is a large
amount of mathematics and physics literature on the subject.
Relevant keywords are boundary layer (physics literature) or
singular perturbation theory (mathematics literature); a few
references to start with are [36–39]. Let us proceed by noting
that Eq. (20) can be approximated by the boundary-layer
ansatz

�v (w) � Av �
(√

w2 + δ2
w

)
, (27)

δw = τv, τ := 〈t〉 =
∫ ∞

0
dt R(t )t, (28)

Av =
∫ ∞

0 dw �(w)∫ ∞
0 dw �

(√
w2 + δ2

w

) . (29)

The amplitude Av ensures normalization. The quality of this
approximation can be seen in Fig. 3: it works well for v small,
but deteriorates for larger v.

We can use the boundary-layer formula (27) to plot the
measured �v (w) against w̃ := √

w2 + δ2
w, and then find the

best δw which removes the curvature of �v (w). It yields δw,
and by extrapolation to w = 0 the full �(w). This idea is
tested below in Sec. III I.

3. Estimate of timescale

If in an experiment the response function is unavailable, us-
ing the boundary-layer ansatz (27), its characteristic timescale
τ can be reconstructed approximatively from �v (w) as

δw = τv � limw→0 �′(w)

�′′
v (0)

. (30)

In the numerator is written limw→0 �′(w), which is obtained
by extrapolating �′

v (w) from outside the boundary layer, i.e.,
w � δw = τv, to w = 0.

4. Differential equation

First note that the response function R(t ) defined in
Eq. (24) satisfies the differential equation

(τ∂t + 1)R(t ) = δ(t ). (31)

Second, rewrite Eq. (20) as

�v (v(t − t ′))

=
∫ t

−∞
dt1

∫ t ′

−∞
dt2 �(v(t1−t2))R(t − t1)R(t − t2). (32)
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Applying the differential operator of Eq. (31) both to t and t ′
yields

(τ∂t + 1)(τ∂t ′ + 1)�v (v(t − t ′)) = �(v(t − t ′)). (33)

In terms of the variable w, this relation can be simplified to

�(w) = [
1 − (τv)2∂2

w

]
�v (w). (34)

While Eq. (34) is more precise, and reconstructs �v=0(w)
down to w = 0, the boundary-layer analysis may be more
robust for noisy data. We will examine these procedures in
Sec. III I.

5. Other autocorrelation functions

Equation (1) allows us to consider three different observ-
ables,

uw = u(t ), (35)

u̇w = u̇(t ), (36)

Fw = F (uw ) = F (u(t )). (37)

What is measured in magnetic domain-wall experiments is
the induced current, proportional to u̇w [2–5]; in contact-line
depinning where the interface is filmed, this is uw [1]; when
stretching an elastic material as a knit, this is the external force
exerted on the knit, itself proportional to uw − w [18]. We do
not know of any system where one can measure solely the
force Fw of the disorder.

Equations (35)–(37) define three autocorrelation functions:

�v (w − w′) := m4[uw − w][uw′ − w′)]
c
, (38)

�u̇(w − w′) := [u̇w − v][u̇w′ − v]
c
, (39)

�F (w − w′) := FwFw′
c
. (40)

We will show in Sec. III F that they satisfy

�F (w) = �v (w) + �u̇(w), (41)

�u̇(w) = − v2

m4
∂2
w�v (w). (42)

II. REVIEW OF KNOWN RESULTS FOR ABBM AND DPM

Key features for the ABBM model and the DPM are given
in Table I.

A. ABBM model

The response function is unchanged from the free theory:

R(t ) = m2e−m2t�(t ). (43)

The velocity distribution Pt (u̇) reads [19,40–42]

Pt (u̇) = m2(m2u̇)vm2−1 e−m2 u̇


(vm2)
. (44)

By construction it is normalized, its first moment is 〈u̇〉 = v,
and

vABBM
m := 〈u̇2〉

〈u̇〉 = m−2 + v. (45)

The avalanche-size distribution PS
δw(S), given a kick δw,

reads [42]

PS
δw(S) = m2δw

e− m4 (S−δw)2

4S

2
√

πS3/2
. (46)

The avalanche-size exponent is τ = 3/2. The first moments
are

〈1〉 = 1, 〈S〉 = δw, SABBM
m := 〈S2〉

2〈S〉 = m−4 + δw

2
.

(47)
The duration distribution given a kick of size δw is

PT
δw(T ) = exp

(
− δwm4

eT m2 − 1

)
δwm6

[2 sinh(T m2/2)]2
. (48)

This distribution is normalized. The first moments to leading
order in δw are

〈T 〉 = m2[1 − γE − ln(m4δw)] + · · · , (49)

〈
T 2

〉 = π2

3
δw + · · · , (50)

〈
T 3

〉 = 6ζ (3)
δw

m2
+ · · · , (51)

〈
T 4

〉 = 4π4

15

δw

m4
+ · · · , (52)

T ABBM
m := 〈T 3〉

3〈T 2〉 = 6ζ (3)

π2m2
+ · · · = 0.730763

m2
+ · · · . (53)

B. The discretized particle model (DPM)

The discretized particle model (DPM) was introduced in
Ref. [33]. There the reader finds a thorough discussion of its
quasistatic properties, encompassing all three main universal-
ity classes of extreme-value statistics: Gumbel, Weibull, and
Fréchet.

1. Static quantities

As we assume forces to be distributed according to

PF (F ) = e−F 2/2

√
2π

, (54)

this is the Gumbel class of Ref. [33] with A = 1/2, γ =
2, β(x) = x2/2, and β−1(x) = √

2x. The name of this class
stems from the fact that the blocking forces are distributed
according to a Gumbel distribution ([33], Eq. (29), first line)

PG(a) = e−a�(a), (55)

f =
√

2
√

ln(m−2) − ln(a) (56)

= f 0
c − ln(a) m2ρm + · · · . (57)

The constant f 0
c , the scale ρm, and the exponent ζ are

f 0
c =

√
2 ln(m−2)+ O(m−1), ρm = 1

m2
√

2 ln(m−2)
, (58)

ζ = 2−. (59)
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By ζ = 2 we mean ρm ∼ m−ζ with ζ = 2. The growth of
Eq. (58) with 1/m is slightly slower, reduced by the logarithm
in Eq. (58), and denoted ζ = 2−.

The effective disorder force-force correlator reads

�(w) = m4ρ2
m�̃(w/ρm), (60)

�̃(w) = w2

2
+ Li2(1 − ew ) + π2

6
. (61)

The avalanche-size distribution for an infinitesimal kick was
obtained in Ref. [33], where it was shown to be P(S) ∼ e−S/ρm .
For a kick of size δw, this can be generalized to

PDPM
δw (S) = 4δw sinh

(
1

2ρm

)2

e−S/ρm � δw

ρ2
m

e−S/ρm . (62)

Note that for the DPM the avalanche size S is discrete. The
normalization is constructed such that the first moment of this
discrete measure is 〈S〉 = δw. This yields for the characteris-
tic scale of avalanches

Sm = 〈S2〉
2〈S〉 = 1

2
coth

(
1

2ρm

)
= ρm + O(1/ρm). (63)

2. Dynamic quantities

The DPM defined in Ref. [33] advances instantaneously.
The easiest way to endow it with a realistic dynamics is to
consider the Langevin equation (1). If the disorder is needle-
like as on the right of Fig. 2 (the original construction of [33]),
then either the particle is at rest blocked by a needle, or it
moves, and the only force acting on it comes from the spring.
Neglecting that the spring gets shorter during the movement,
the response function is given by R(t ) ∼ P(S/v), where v =
fc, resulting in

RDPM(t ) = τ−1
m e−t/τm , τm = ρm

fc
= 1

2m2 ln(m−2)
. (64)

Stated differently, the velocity distribution is

PDPM(u̇) = δ(u̇ − fc). (65)

As a consequence, the distribution of durations T , given a kick
δw, can be obtained from the avalanche-size distribution as

PDPM
δw (T ) � δw

ρmτm
e−T/τm . (66)

III. NUMERICAL RESULTS

A. Critical force

First one integrates the equation of motion (1), with forces
as given by Eq. (5). This gives u(t ), or uw as a function of
the external point w = vt , defined such that uw = u(t ). Ex-
ample trajectories for uw − w, u̇w − v, and Fw are plotted in
Figs. 4–6.

It is important to note that the position uw and force Fw are
related, since Eq. (1) yields, after averaging over time,

∂t u(t ) = v = m2[w − u(t )] + F (t ). (67)

Note that the overline, defined as an average over disor-
der realizations, can be performed as an average over time
when driving the system at a finite velocity v > 0. For the

FIG. 4. uw − w for δt = 10−4, v = 0.1, m2 = 0.1, INS. See
Appendix B for implementation details. Red points are data
points equally spaced in time, the green line between them is an
interpolation.

discretized particle model, the critical force was computed
analytically in Ref. [33]. It is given by Eqs. (55)–(56):

fc(m) := 〈 f 〉G =
√

2
∫ m−2

0

√
ln(m−2) − ln(a) e−a da.

(68)
Expanding for small m, we find

fc(m) = f 0
c + γE

f 0
c

−
γ 2

E
2 + π2

12(
f 0
c

)3

+ 2γ 3
E + γEπ2 − 2ψ ′′(1)

4
(

f 0
c

)5 + · · · , (69)

f 0
c =

√
2 ln(m−2). (70)

In Fig. 7 we compare the measured critical force for the
Ornstein-Uhlenbeck model, f OU

c ≡ m2[w − u(w)] − v, to the
critical force (69) predicted by the particle model. We find that
they agree, up to a constant

f OU
c � fc(m) − 0.35. (71)

This constant is not surprising, as the microscopic disorder of
the Ornstein-Uhlenbeck process is different from the DPM,

FIG. 5. u̇(w) − v with the same parameters as in Fig. 4.
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FIG. 6. F (w) with the same parameters as in Fig. 4.

and the critical force is not universal. We note that the re-
ported value 0.35 is almost the correlation e−1 ≈ 0.368 of the
Ornstein-Uhlenbeck process at distance u = 1.

B. Velocity distribution

In the discretized-force model, and supposing that the
forces remain constant between integers, the velocity distri-
bution between sites u and u + 1 is given by

Pu(u̇) = 〈PF ( f − u̇)〉G. (72)

Here PF ( f ) is the initial force distribution (54), and the aver-
age is over the Gumbel distribution defined by Eqs. (55)–(56).
As we are interested in the velocity distribution sampled
equally in time and not in space, we still have to multiply with
v/u̇, resulting in

Pt (u̇) = v

u̇
Pu(u̇)

= v

u̇

1√
2π

∫ m−2

0
e
−

(
u̇√
2
−
√

ln(m−2 )−ln(a)
)2

e−a da. (73)

This formula, evaluated numerically, is compared to simu-
lations for m2 = 10−3 in Fig. 8. While the tail is correctly
predicted, the amplitude for small u̇ is underestimated. This

FIG. 7. The critical force fc as a function of m. Thick black
curve: the results of the integral (68). The small-m expansion is in
blue, cyan, green, and yellow. The data points are from our numerical
simulation. (DNS, δu = 10−2, δt = 10−4, N = 3 × 106.)

FIG. 8. P(u̇) for m2 = 10−3 (orange solid line). The blue dashed
curve is given by Eq. (73); the gray dotted one by the same formula,
replacing m−2 → 0.39m−2, yields a perfect fit. The cyan dotted line
is the result for ABBM, Eq. (44). (INS, δt = 10−3, v = 0.1, N =
5 × 108.)

is related to the underestimation of fc reported in Eq. (71).
Indeed, we find a perfect fit for m2 = 10−3 under the replace-
ment m−2 → 0.39m−2; see Fig. 8.

C. The response function

1. Measurement prescription

The response function plays a key role as it enters into the
rounding of the cusp, and we need to measure it to verify the
prediction in Eq. (64). To this aim, we let the system relax to
u̇ = 0 and then kick it at time t = tkick, moving the center of
the well from w to w + δw. The nonlinear response function
is then given by

R(t |δw) := 〈u̇(t + tkick )〉
δw

. (74)

The linear response is the limit of a small kick δw,

R(t ) := lim
δw→0

R(t |δw). (75)

In practice, δw can be chosen finite; we give suitable values
in Figs. 9 and 10. The response function is normalized, and its
first moment defines a characteristic timescale τ ,∫ ∞

0
R(t ) dt = 1, τ := 〈t〉 =

∫ ∞

0
t R(t ) dt . (76)

Comparing the measured timescale τ := 〈t〉 to the predicted
one τm from Eq. (64) is an important check of the theory.

2. Response function for DPM

We start with the response function for the discretized force
model of Ref. [33]. In Fig. 9 we show a numerical verification
for the analytic prediction in Eq. (64). Already for a rather
large mass of m2 = 10−2 the agreement between theory and
simulation is rather good.

3. Response function for Ornstein-Uhlenbeck forces

In Fig. 10 we show the response function for Ornstein-
Uhlenbeck forces. While for the DPM, which has needlelike
disorder, the response function in Fig. 9 had already converged

052114-7



CATHELIJNE TER BURG AND KAY JÖRG WIESE PHYSICAL REVIEW E 103, 052114 (2021)

FIG. 9. The response function for the discretized force model
(needle disorder) for m2 = 10−2 (blue). The red dashed curve is an
exponential function with timescale τm as given by Eq. (64). Inset:
the same for ln R(t ). (DNS, δt = 10−4, δw = 0.1.)

to the asymptotic behavior of Eq. (64) for m2 = 10−2, the
convergence for Ornstein-Uhlenbeck forces is much slower,
and one has to go to m2 = 10−5 to reach a similar agree-
ment, albeit with a noticeable difference in the timescale
τ = 〈t〉. The rather slow convergence [43] is shown in the
inset of Fig. 10. A second observation is that the response
function R(t ) for t → 0 starts at 1/τABBM = m2. This is a
consequence of the continuity of F (u): Since in the beginning
m2[w − u(t )] + F (u(t )) = 0, the response function is that of
the free theory, itself equivalent to that of the ABBM model,

R(t ) ≈ Rfree(t ) ≡ RABBM(t ) = m2e−m2t�(t ). (77)

The position u(t ) then increases, and since pinning occurs at
maxima of F (u), most likely F (u) decreases, leading to an
increase in u̇ as compared to the free theory. When u(t ) −

FIG. 10. The response function for the Ornstein-Uhlenbeck pro-
cess: the analytical result is the black dashed curve. Numerical
results from bottom to top are for m2 = 10−2 (blue), m2 = 10−3

(orange), m2 = 10−4 (cyan), and m2 = 10−5 (red). DNS, δt = 10−4,
N = 108. The two larger masses have δw = 0.1 and δu = 10−6,
the two smaller ones δw = 1 and δu = 10−4. Inset: The measured
timescale 〈t〉 (dots) compared to the prediction for τm in Eq. (64).

FIG. 11. The function δBL(t ) := (τ∂t + 1)R(t ) for the measured
response function with m2 = 10−2 (blue), m2 = 10−3 (orange), m2 =
10−4 (cyan). Parameters as in Fig. 10, except N = 2 × 108 for m2 =
10−4.

u(tkick ) � 1, we expect the forces F (u) to be decorrelated from
their initial value. This estimates the boundary layer in u as
δu ≈ 1. It is nontrivial to predict the boundary layer in t , i.e.,
the region in which R(t ) rises, before decaying approximately
as an exponential. After some experimentation, we found that
this can be extracted by plotting the combination

δBL(t ) := (τ∂t + 1)R(t ) (78)

appearing in Eq. (31), with τ defined in Eq. (76). By construc-
tion ∫ ∞

0
dt R(t ) =

∫ ∞

0
dt δBL(t ) = 1. (79)

If R(t ) is exponentially decaying, δBL(t ) equals δ(t ). Devia-
tions lead to a smeared-out δ function. In Fig. 11 we show
δBL(t ) for several masses and timescales ranging from τ ≈ 14
to τ ≈ 596. Despite the enormous range of timescales, the
resulting δBL(t ) is almost independent of τ , and decays to
zero on a range of δt ≈ 2. We believe that this function could
be extracted from extreme-value statistics, by considering the
statistics of a Brownian motion close to one of its records. It
is, e.g., known that the fractal dimension of the record set, i.e.,
the position when the movement of the particle stops again, is
1/2 [44,45].

4. The response function at a finite driving velocity

The response function at a finite driving velocity and the
associated timescales are defined as

Rv (t ) := lim
δw→0

1

δw

[〈u̇(t )〉δwv − v
]
, (80)

〈t〉v =
∫ ∞

0
dt Rv (t )t . (81)

The expectation value on the r.h.s. of Eq. (80) is the expecta-
tion of u̇(t ), given a driving velocity v and an additional kick
at time t = 0; we have subtracted the expectation without a
kick, 〈u̇(t )〉δw=0

v = v. The timescale 〈t〉v defined in Eq. (81)
should then behave as

1

〈t〉v
� fc − v, v small. (82)
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FIG. 12. Inverse of the measured timescale 〈t〉v := ∫ ∞
0 dt tRv (t ),

as a function of v. The data points are given with 99% confidence
intervals (green). Superimposed are the two analytical curves (81),
valid for v � fc, and (82), valid for v � fc. (DNS, δt = 10−4, δu =
10−6 for m2 = 0.01, and δu = 10−4 for m2 = 10−4.)

What appears on the r.h.s. is the relative velocity between the
“ballistically” moving particle as given by Eq. (65) and the
advancement of the confining potential. On the other hand,
at large driving velocity, the disorder acts as a thermal noise,
and the response function reduces to that of the free theory,
equivalent to that of the ABBM model, resulting in

1

〈t〉v
� τ−1

ABBM = m2, v large. (83)

These two curves are plotted in Fig. 12. They intersect at
v = fc − m2. Intuitively we expect the transition to take place
at v = fc, and to be smoothed out due to the finite width of
the velocity distribution (73). As we can see in Fig. 12, the
transition gets sharper when m2 decreases. A phase transition
at v = fc is expected in the limit of m2 → 0.

Our final observation is that the timescale 〈t〉v defined in
Eq. (82) can be used for a scaling collapse of the response
functions Rv (t ) defined in Eq. (80); see Fig. 13. Details of the
analysis are given in Ref. [43].

D. Avalanche-size distribution

The avalanche-size distribution is shown in Fig. 1, for
m2 = 10−4, overlayed with two theoretical curves: the kicked
ABBM model as given in Eq. (46) (bright dotted cyan), and
the DPM given in Eq. (62) (dark blue dashed).

For small S, one sees the S−3/2 behavior characteristic for
ABBM coincide with the theoretical curve (46) (cyan dashed).
For large S, this crosses over to the prediction of Eq. (62)
for the DPM with avalanche exponent τ = 0 (blue dashed).
Note that there are no adjustable parameters, and both curves
respect their own normalizations. The crossover takes place at
S ≈ 1, and extends over about half a decade in both directions.

E. Avalanche-duration distribution

The avalanche-duration distribution is shown in Fig. 14,
superimposed with the two theoretical predictions (48) for
ABBM (cyan dotted) and (66) for the DPM (blue dashed).
The simulations agree very well with ABBM for small times,

FIG. 13. Main plot: The response function rescaled with the the-
oretically predicted timescale τm. Velocities from top to bottom are
v = 0 (red), v = 0.3 (blue), v = 0.5 (green), v = 1 (violet), v = 1.5
(brown), v = 2 (black), and v = 3 ≈ fc (magenta). Inset: Scaling
collapse for the velocities v � 2, using the measured timescale 〈t〉 in-
stead of τm for the rescaling. (DNS, δu = 10−6, δt = 10−4, N = 107.)

while the overall weight for large times is seemingly over-
estimated in Eq. (66), contrary to what one saw in Fig. 1 for
the avalanche-size distribution. Normalization issues are more
pronounced since the singularity for small times, P(T ) ∼
T −2, is stronger than the P(S) ∼ S−3/2 for the avalanche
size. Another reason for the slow convergence is the rela-
tively broad avalanche-velocity distribution, assumed to be
restricted to u̇ = fc in the derivation of Eq. (48).

F. Correlators �v (w), �u̇(w), �F (w)

In Sec. I B 5, we defined the three correlation functions
�v (w), �u̇(w), and �F (w), which are the correlations of
three forces: confining well, friction, and disorder. Since they
add up to zero, two variables are independent, and one would
expect three independent correlation functions, which are
most symmetrically expressed as �v (w), �u̇(w), and �F (w).
This expectation is incorrect: there are only two independent

FIG. 14. P(T ) measured numerically via INS for m2 = 10−3,
(δw = 1, δt = 10−3, N = 5 × 108). This is compared to the theory
prediction (48) for ABBM (cyan dotted), and (66) for DPM (blue
dashed).
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FIG. 15. The measured �v (cyan), �F (orange dashed), and �u̇

(purple dotted) for m2 = 0.01 at v = 0.5. The inset shows that the
difference �F − �v − �u̇ vanishes. (DNS, δu = 0.01, δt = 10−4,
N = 108.)

quantities, summarized in the relation

�v (w) + �u̇(w) = �F (w). (84)

A numerical verification is presented in Fig. 15. An analytical
proof can be given too: identifying w ≡ vt , one has

�F (w − w′) = 〈FwFw′ 〉c

= 〈[u̇w + m2(uw − w)][u̇w′ + m2(uw′ − w′)]〉c

= 〈u̇wu̇w′ 〉c + m4〈(uw − w)(uw′ − w′)〉c

+ m2〈u̇w(uw′ − w′) + (uw − w)u̇w〉c. (85)

The last term can be written as

〈u̇w(uw′ − w′) + (uw − w)u̇w〉c

= (∂t + ∂ ′
t )〈(uw − w)(uw′ − w′)〉c

= 1

v
(∂w + ∂ ′

w )�v (w − w′) = 0. (86)

This proves Eq. (84).
In Fig. 16, we find numerically satisfied another relation,

m4�u̇(w) = −v2∂2
w�v (w). (87)

This relation expresses the time derivative of u(t ) = uw by
its dependence on w = vt : ∂t u(t ) = v∂wuw. Thus knowing
�v (w) is enough, and the two other quantities can be ex-
pressed as

�u̇(w) = − v2

m4
�′′

v (w), (88)

�F (w) = �v (w) − v2

m4
�′′

v (w). (89)

Knowing �v (w) it is easy to find �u̇(w) by taking two deriva-
tives. It is already less obvious to reconstruct �v (w) from
�u̇(w), as this procedure involves two integration constants.
In principle the latter are fixed since all correlations vanish
for w → ∞; in practice, however, fluctuations grow with in-
creasing w, and they show up in the two integration constants.
It is even more involved to reconstruct �v (w) from �F (w):

FIG. 16. Numerical test of Eq. (88) for m2 = 10−2, v = 0.5.
Plotted are �u̇(w) (cyan dotted) and − v2

m4 �′′
v (w) (red dashed). The

inset shows the difference. (DNS, δu = 0.01, δt = 10−4, N = 108.)

Formally, this can be achieved by the series

�v (w) =
∞∑

n=0

[
v

m2

d

dw

]2n

�F (w). (90)

As it is rather badly converging, it may well be useless in
practice.

G. Measuring �(w) at vanishing driving velocity

In an experiment, it is difficult to measure �(w) =
limv→0 �v (w). In our simulation, we can do this: We move the
parabola from w → w + δw, and then wait until the dynamics
cedes. Due to Middleton’s theorem [46], the position uw is his-
tory independent. From uw we obtain �(w) via formula (17).
The DPM [33] predicts that

�(w) = m4ρ2
m�̃(w/ρm), (91)

�̃(w) = Li2(1 − e|w|) + w2

2
+ π2

6
. (92)

To check this relation, we study the experimentally measured
�exp(w), and then invert Eq. (91) to obtain

�̃exp(w) = 1

m4ρ2
m

�exp(w/ρm). (93)

Figure 17 shows convergence against the theoretical result.

H. The disorder correlator �v (w) at a finite driving velocity

For a finite driving velocity, Eq. (20) predicts that the
measured �v (w) is obtained from the zero-velocity correlator
�(w) by folding with two response functions. In the inset of
Fig. 18 we check that this construction works for v = 0.5,
by folding the numerically measured zero-velocity correlator
�(w) with the numerically measured zero-velocity response
function R(t ).

We numerically established that the response function
evolves with v from their zero-velocity limit (see Fig. 13),
and the same may happen for the effective disorder corre-
lator, technically the effective action of the theory. While
the agreement shown in Fig. 18 should be sufficient for a
typical experiment, the question arises what happens when we
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FIG. 17. Convergence of the measured �̃(w) for m2 = 10−2

(gray dot-dashed), m2 = 10−3 (cyan dotted), and m2 = 10−4 (red
dashed). This is compared to three theoretical curves: an exponential
function with the same slope at w = 0 (green, top curve), Eq. (92)
(black, middle curve), and the one-loop functional renormalization
group result (blue, bottom curve); see Eqs. (4.5) and (4.11) of [23].
The inset shows the difference of the measured �̃(w) at m2 = 10−4

and the theoretical curves in their respective colors, together with
error bars at a 99% confidence level. (DNS, δu = 0.01, δt = 10−4,
N = 108, δw = 0.1.).

increase the driving velocity. Intuitively, as for the response
function, we expect a transition when the driving velocity
exceeds fc.

I. Reconstructing �(w) from �v (w)

In Secs. I B 2 to I B 4 we proposed two procedures to re-
construct the zero-velocity correlator �(w), based either on a
boundary-layer analysis (Sec. I B 2) or a differential equation
(Sec. I B 4). These methods contain a parameter, the timescale
τ of the response function, in the combination δw = τv, and

FIG. 18. The numerically measured �v (w) for v = 0.5 (red
dashed, with 95%-confidence intervals shaded red) as defined in
Eq. (18). For w > 1000 it agrees well with the theoretical pre-
diction (91) (black solid). The inset shows the same curves,
superimposed with the theoretical prediction (91) folded according
to Eq. (20) with the numerically measured response function (green),
lying underneath �v (w) obtained numerically (red dashed). (DNS,
δu = 0.01, δt = 10−4, N = 107.)

FIG. 19. The measured amplitude of the round-
ing v−1[�v=0(0) − �v (0)] for m2 = 0.01 and v =
0.1, 0.3, 0.5, 1, 2, 3.5, 4; fc � 3.035. Error bars (green) are
included in the fit and represent 99% confidence intervals on the
data. We compare several curves. In black is shown the prediction
from Eq. (22) with τ = τm, and �′(0+) as given by Eq. (91). In
blue is the prediction from Eq. (22) with τ = 〈t〉, and �′(0+) as
measured in the simulation, accompanied by error bars in green.
In red is a weighted fit to the velocities v � 0.5, verifying Eq. (22)
with a relative precision of 3 × 10−3. Note the transition at v = fc.
(DNS, δu = 0.01, δt = 10−4, N = 108.)

allow us to extract the latter if unknown. Let us analyze these
methods in turn.

1. Boundary-layer analysis

As proposed in Sec. I B 2, we use the boundary-layer for-
mula (27) to plot in Fig. 20 the measured �v (w) against
w̃ = √

w2 + δ2
w, δw = vτ , using the timescale τ = 〈t〉 mea-

sured from the response function. By extrapolation to w̃ = 0
we obtain the full �(w). This works decently well, especially
for the smaller driving velocity v = 0.1.

FIG. 20. Measurement of �v (w) for v = 0 (solid blue, top), v =
0.1 (solid red, middle), and v = 0.3 (solid green, bottom). We show
unfolding via a boundary layer analysis, using τ := 〈t〉 = 14.08 as
measured for the response function, both for v = 0.1 (black dots),
prolonged to zero (red dashed), and v = 0.3 (black dots), prolonged
to zero (green dashed). The variable w̃ =

√
w2 + (τv)2. (DNS, δt =

10−4, δu = 10−2, N = 108.)
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FIG. 21. Measurement of �v (w) for v = 0 (solid blue, top), v =
0.1 (solid red, middle), and v = 0.3 (solid green, bottom). We show
unfolding via the differential equation (34) using τ := 〈t〉 = 14.08
as measured for the response function, both for v = 0.1 (red dashed)
and v = 0.3 (green dotted). (DNS, δt = 10−4, δu = 10−2, N = 108.)

2. Differential equation

A second unfolding procedure was proposed in Sec. I B 4.
Repeating the analysis performed in Fig. 20, we show in
Fig. 21 the reconstructed �(w). For v = 0.1 the unfolding
procedure reproduces the v = 0 correlator with high preci-
sion. The agreement is not as good for v = 0.3.

3. Reconstructing the timescale τ

In the last two sections, we tested the reconstruction pro-
cedures under the assumption that the timescale τ was known
from an independent measurement of the response function.
In practice, τ may not be available. In that case, we try to find
δw = vτ , which best removes the curvature of �v (w). The
estimated values for τ are reported in Table II, together with
an estimate of τ from Eq. (30). While the latter gives only fair
results, both reconstruction procedures allow us to extract the
time scale τ rather precisely.

IV. SUMMARY AND CONCLUSION

We have shown that there is more to mean-field theory
than replacing the effective force landscape by a random
walk (ABBM model). As forces cannot grow unboundedly,
they must finally saturate, leading to a different regime of
uncorrelated forces (DPM). Above we propose to describe
the crossover by modeling forces as an Ornstein-Uhlenbeck
process. Using numerical simulations supported by analytical
results for all key ingredients, we quantify the signa-
tures expected in experiments. The key observable is the

effective force-force correlator, which is readily accessible
in experiments. As experiments necessitate a finite driv-
ing velocity, the measured signal is always smeared out.
Above we developed and tested procedures to reconstruct
the zero-velocity response and force-force correlations from
finite-velocity measurements. We have already tested our pro-
cedure with success for magnetic domain walls (collaboration
with G. Durin) and knits (collaboration with A. Douin and F.
Lechenault). Each of these systems has its own peculiarities,
on which we will report in forthcoming publications.
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APPENDIX A: CORRELATIONS OF AN
ORNSTEIN-UHLENBCK PROCESS

Suppose that

∂uF (u) = −F (u) + ξ (u). (A1)

This equation is solved by

F (u) =
∫ u

−∞
du1 e−(u−u1 )ξ (u1). (A2)

It leads to microscopic correlations

�(u − u′) := F (u)F (u′)

=
∫ u

−∞
du1

∫ u′

−∞
du2 e−(u+u′−u1−u2 )ξ (u1)ξ (u2)

= 2
∫ min(u,u′ )

−∞
dũ e−(u+u′−2ũ)

= e−|u−u′ |. (A3)

APPENDIX B: NUMERICAL IMPLEMENTATIONS

We used several numerical implementations:
(i) Direct numerical simulation (DNS). To solve the cou-

pled set of differential equations (1)–(3) we use a space
discretization δu = 10−6 to 10−2 (depending on m) to first ob-
tain the random forces F (u) for u = nδu, n ∈ N. F (u) is then
linearly interpolated between these points. We finally solve
Eq. (1) with the Euler method, using a time discretization of
δt = 10−4.

TABLE II. Comparison of the measured timescale τ and its estimation using the methods of Secs. I B 2–I B 4. The estimation via the
differential equation (27) is the most precise, followed by the boundary-layer analysis using Eq. (34), whereas the approximation (30) has a
relatively large error.

Parameters τ := ∫
t tR(t ) τ from boundary layer analysis via Eq. (27) τ from differential Eq. (34) τ from Eq. (30)

m2 = 0.01, v = 0.1 14.08 14.10 14.08 14.87
m2 = 0.01, v = 0.3 14.08 14.08 14.08 13.90
m2 = 10−4, v = 0.5 596 587 587 664
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(ii) Improved numerical solver (INS). In the coupled
equations of motion (1)–(3), the force F (t ) := F (u(t )) can
statistically equivalently be modeled as [47–49]

∂tF (t ) = −F (t ) +
√

u̇(t )η(t ), (B1)

〈η(t )η(t ′)〉 = 2δ(t ). (B2)

The advantage of this scheme is that there is only one param-
eter, namely the time discretization δt , but none for the space

discretization δu. The effective space discretization is δu ≈
u̇(t ) δt , thus is finer when the system moves slowly. Treating
the multiplicative noise of Eq. (B1) however demands some
care [50]. We use both a direct simulation with a very small
time step, and the scheme proposed in [47] and tested
in [48,49].

The number of samples is denoted

N := number of samples. (B3)

Most of our results were verified with both schemes, DNS and
INS.
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