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We calculate the fractal dimension df of critical curves in the O(n)-symmetric ( �φ2)2 theory in d = 4 − ε

dimensions at 6-loop order. This gives the fractal dimension of loop-erased random walks at n = −2, self-
avoiding walks (n = 0), Ising lines (n = 1), and XY lines (n = 2), in agreement with numerical simulations. It
can be compared to the fractal dimension d tot

f of all lines, i.e., backbone plus the surrounding loops, identical
to d tot

f = 1/ν. The combination φc = df/d tot
f = νdf is the crossover exponent, describing a system with mass

anisotropy. Introducing a self-consistent resummation procedure and combining it with analytic results in d = 2
allows us to give improved estimates in d = 3 for all relevant exponents at 6-loop order.
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I. INTRODUCTION AND SUMMARY

Critical exponents for the O(n) model have been calculated
for many years, using high-temperature series expansions
[1–7], an expansion1 in d = 4 − ε [8–19], field theory in
dimension d = 3 [20–22], Monte Carlo simulations [23–27],
exact results in dimension d = 2 [28–31], or the conformal
bootstrap [32–35]. Most of these methods rely on some re-
summation procedure [10,36,37]. The main exponents are the
decay of the 2-point function at Tc,

〈φ(x)φ(0)〉 ∼ |x|2−d−η, (1)

and the divergence of the correlation length ξ as a function of
T − Tc,

ξ ∼ |T − Tc|−ν . (2)

Other exponents are related to these [11], as the divergence of
the specific heat

c ∼ |T − Tc|−α, α = 2 − νd, (3)

the magnetization M below Tc,

M ∼ (Tc − T )β, β = ν

2
(d − 2 + η), (4)

the susceptibility χ ,

χ ∼ |T − Tc|−γ , γ = ν(2 − η), (5)

and the magnetization at Tc in presence of a magnetic field h,

M ∼ h1/δ, δ = d + 2 − η

d − 2 + η
. (6)

1In this paper we use d = 4 − ε, which is more common for
statistical physics, while the original 6-loop calculations [8–10] were
performed in space dimension d = 4 − 2ε, which is used in high-
energy physics.

The renormalization-group treatment starts from the φ4 theory
with O(n) symmetry,

S =
∫

x

m2
0

2
�φ0(x)2 + 1

2
[∇ �φ0(x)]2 + g0

16π2

4!
[ �φ0(x)2]2, (7)

where �φ0(x) ∈ Rn. The index 0 indicates bare quantities. The
renormalized action is

S =
∫

x
Z1

m2

2
�φ(x)2 + Z2

2
[∇ �φ(x)]2 + Z4

16π2

4!
gμε[ �φ(x)2]2.

(8)
The relation between bare and renormalized quantities reads

�φ0(x) = √
Z2 �φ(x) =: Zφ �φ(x), (9)

m2
0 = Z1

Z2
m2 =: Zm2 m2, (10)

g0 = Z4

Z2
2

gμε =: Zggμε. (11)

Using perturbation theory in g0, counterterms are identified to
render the theory UV finite. In dimensional regularization and
minimal subtraction [38], the Z factors only depend on g and
ε and admit a Laurent series expansion of the form

Zi = Zi(g, ε) = 1 +
∞∑

k=1

Zi,k (g)

εk
. (12)

Each Zi,k (g) is a power series in the coupling g, starting at
order gk or higher.

Three renormalization group (RG) functions can be con-
structed of the three Z factors. The β-function, quantifying
the flow of the coupling constant, reads

β(g) := μ
∂g

∂μ

∣∣∣∣
g0

= −εg

1 + g∂ ln(Zg)
∂g

. (13)
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FIG. 1. Example of a loop-erased random walk on the hexagonal
lattice with 3000 steps, starting at the black point to the right and
arriving at the green point to the left.

The RG functions associated to the anomalous dimensions are
defined as

γi(g) := μ
∂

∂μ
ln(Zi ) = β(g)

∂

∂g
ln[Zi(g)]. (14)

To leading order, the expansion of the β function is

β(g) = −εg + n + 8

3
g2 + O(g3). (15)

Thus, at least for ε small, there is a fixed point with
β(g∗) = 0 at

g∗ = 3ε

n + 8
+ O(ε2). (16)

It is infrared (IR) attractive and thus governs the properties of
the system at large scales. This is formally deduced from the
correction-to-scaling exponent ω, defined as

ω := β ′(g∗) = ε + O(ε2). (17)

The exponents ν and η are obtained from the remaining RG
functions,

η = 2γφ (g∗) ≡ γ2(g∗), (18)

ν−1 = 2 + γm2 (g∗) ≡ 2 + γ1(g∗) − η. (19)

Since g∗ = O(ε), the perturbative expansion in g is turned into
a perturbative expansion in ε. While the exponents ν and η are
well defined in the critical theory, it is not clear whether ω can
be obtained from the critical theory as well.

A different class of exponents concerns geometrical objects
as the fractal dimension of lines. An example is the self-
avoiding polymer, also known as self-avoiding walk (SAW),
whose radius of gyration Rg scales with its microscopic length
� as

RSAW
g ∼ �ν. (20)

Its fractal dimension is

dSAW
f = 1

ν
. (21)

In general, however, ν does not yield the scaling of critical
curves but of the ensemble of all loops. This can be seen
for the loop-erased random walk depicted in Fig. 1. It is
constructed by following a random walk at time t for all

t � T . Whenever the walk comes back to a site it already
visited, the ensuing loop is erased [39]. The remaining sim-
ple curve (blue on Fig. 1) is the loop-erased random walk
(LERW). The trace of the underlying random walk (RW)
is depicted in red (for the erased parts) and blue (for the
nonerased part). Its fractal dimension is (see, e.g., Ref. [40]
Theorem 8.23)

dRW
f = 2 (22)

in all dimensions d � 2, and its radius of gyration scales as

RRW
g ∼ T ν, ν = 1

2 . (23)

The same scaling holds (by construction) for LERWs,

RLERW
g ∼ T ν, ν = 1

2 , (24)

but this does not tell us anything about its fractal dimension,
i.e., the blue curve, which in d = 2 is [41]

dLERW
f = 5

4 . (25)

The latter appears in the scaling of the radius of gyration with
the backbone length, i.e.,

RLERW
g ∼ �1/df , (26)

or can be extracted by measuring the backbone length � as a
function of time,

� ∼ T φc , φc = νdf . (27)

While the function γm2 gives us the RG flow of the operator

E (x) := 1

n

n∑
i=1

φ2
i (x), (28)

there is a second O(n)-invariant operator bilinear in φ, namely
the traceless tensor operator

Ẽi j (x) := φi(x)φ j (x) − δi jE (x). (29)

By construction

∑
i

Ẽii(x) = 0. (30)

Now consider the insertion of operators E and Ẽ into an
expectation value. More specifically, insert (we choose nor-
malizations convenient for the calculations)

E := 1

2

∫
y

∑
i

φ2
i (y) (31)
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into a diagram in perturbation theory of the form

〈
φ1(x)φ1(z)

∫
y

∑
i

1
2
φ2

i (y) e−S
〉

=

x

y

z

− g

x

z

y

− g

x

z

y

− g

x

y

z

− g
y

x

z

− g

yx

z

− g

x

z

y + ... .

(32)

All contributions up to 1-loop order are drawn: On the
first line is the free-theory contribution. The insertion of∫

y

∑
i

1
2φ2

i (y) gives the length (in time) of the free propagator.
On the second line are the first type of 1-loop contributions,
with the insertion of

∫
y

∑
i

1
2φ2

i (y) twice in an outer line, once
in a loop. On the third and fourth line are the remaining
1-loop contributions, with the red loop counting a factor of
n. This stems from our graphical convention to note the ( �φ2)2

vertex as

�φ2 2 = ; (33)

contracting the two rightmost lines leads to a free summation∑
i, i.e., a factor of n indicated in red above.
These perturbative corrections are in one-to-one correspon-

dence to diagrams in the high-temperature lattice expansion,
where in appropriate units g is set to 1. Both expansions yield
the total length of all lines, be it propagator or loop.

As the insertion of 1
2

∫
y

∑
i φ

2
i (y) can be generated by

deriving the action (7) with respect to the mass, the fractal
dimension of all lines is related to ν as in Eq. (21) via

d tot
f = 1

ν
= 2 + γ1(g∗) − η. (34)

We are now in a position to evaluate the fractal dimension
of the blue line, also termed the propagator line or back-
bone, i.e., excluding loops: This is achieved by inserting an
operator proportional to Ẽi j . To be specific, we consider the
insertion of

Ẽ := 1

2

∫
y
φ2

1 (y) − φ2
2 (y). (35)

This is, with a normalization convenient for our calculations,
the integrated form of Ẽ11 − Ẽ22 defined in Eq. (29). When
evaluated in a line with index “1” (the correlation function of
〈φ1φ1〉), i.e., in the blue line in Eq. (32) which is connected
to the two external points, the result is the same as for the
insertion (31). On the other hand, when inserted into a loop

(drawn in red), where the sum over indices is unrestricted, it
vanishes.

Let us give some background information: In the O(n)
model, the number of components n is a priori a positive
integer but can analytically be continued to arbitrary n. Two
nonpositive values of n merit special attention: n = 0 corre-
sponds to self-avoiding polymers, as shown by De Gennes
[42]. Here the propagator line (in blue) is interpreted as the
self-avoiding polymer, and the red loops are absent. Focusing
on lattice configurations with one self-intersection, see Eq.
(32), the choice of g = 1 cancels the free-theory result, giving
a total weight 0 for self-intersecting paths—as expected. The
second case of interest is n = −2 and corresponds to loop-
erased random walks [43,44]. Here all perturbative terms ∼g
cancel, as the propagator of a loop-erased random walk is
identical to that of a random walk. To our advantage, we can
equivalently use the cancellation of the first two lines (as for
self-avoiding polymers). Then the random walk is redrawn in
a way making visible the loop-erased random walk (in blue)
and the erased loop (in red), allowing us to extract the fractal
dimension of the loop-erased random walk via the operator Ẽ
as given in Eq. (35). For details, we refer to Refs. [43,44].

The operator Ẽ can be renormalized multiplicatively by
considering the insertion

δS = λ
ZẼ
2

∫
y
φ2

0,1(y) − φ2
0,2(y), (36)

where φ0,i denotes the ith component of the bare field φ0. As
a result, the fractal dimension of the propagator (or backbone)
line is given by

df = 2 + γẼ (g∗) − η, (37)

γẼ := μ
∂

∂μ
ln(ZẼ ) = β(g)

∂

∂g
ln[ZẼ (g)]. (38)

The explicit result to 6-loop order is given below in Eq. (41).
In the literature [11,43,45–47] one also finds the ratio

φc(n) := νdf ≡ df

d tot
f

≡ 2 + γẼ (g∗) − η

2 + γ1(g∗) − η
. (39)

It is known as crossover exponent, since it describes the
crossover from a broken symmetry O(k), k < n, to O(n). We
will review this in Sec. IV below. Since for n = 0 all loops
are absent, the two fractal dimensions coincide. For positive
n, the fractal formed by backbone plus loops is larger than the
backbone, and we expect d tot

f > df . Translated to φc(n) this
implies

φc(0) = 1, φ′
c(n) > 0. (40)

The last relation, which is stronger than d tot
f > df , is expected

since the derivative with respect to n counts loops which
are added to the fractal when increasing n, which should be
positive.

Let us now turn to a comparison of the fractal dimension
given by Eq. (37) with numerical simulations. There are four
systems for which simulations are available (summarized in
Fig. 2):

(i) loop-erased random walks: As shown in Ref. [43] this
is given by n = −2, in all dimensions.
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df n SC KP17 simulation
LERW −2 1.6243(10) 1.623(6) 1.62400(5) [45]
SAW 0 1.7027(10) 1.7025(7) 1.701847(2) [24]
Ising 1 1.7353(10) 1.7352(6) 1.7349(65) [46]
XY 2 1.7644(10) 1.7642(3) 1.7655(20) [46, 47]

FIG. 2. Fractal dimensions of lines in dimension d = 3. Two
expansions are shown: Direct (in red) and expansion for 1/df (blue).
The table compares our values to results from the literature.

(ii) self-avoiding polymers: n = 0. Here df ≡ 1/ν.
(iii) Ising model: n = 1.
(iv) XY model: n = 2.
Simulations for the Ising and XY models are performed

on the lattice [49,50] by considering the high-temperature
expansion, which allows the authors to distinguish between
propagator lines and loops, similarly to our discussion of the
perturbative expansion (32).

In all cases, the agreement of our RG results with simula-
tions in d = 3 is excellent, firmly establishing that the appro-
priate operator was identified. In dimension d = 2 (shown on
Fig. 3), different resummation procedures (see below) yield
different results, showing that extrapolations down to d = 2
are difficult. This can be understood from the nonanalytic
behavior of the exact result close to n = ±2. It is even more
pronounced for the exponent ν (see Fig. 11), which diverges
with a square-root singularity at n = 2. We will come back to
this issue in Sec. VI.

The remainder of this article is organized as follows: In
Sec. II we give the explicit result for the new RG function γẼ .

df n SC KP17 CFT
LERW −2 1.244(6) 1.188(55) 5/4 = 1.25

SAW 0 1.354(5) 1.350(8) 4/3 � 1.333

Ising 1 1.416(1) 1.413(7) 11/8 = 1.375

XY 2 1.482(1) 1.480(4) 3/2 = 1.5

FIG. 3. The fractal dimension of lines in dimension d = 2, as
extracted from field theory (colored), and compared to exact results
(black dashed line). The different curves are from resummation of
df (blue), d−1

f (red), d2
f (cyan), and d−2

f (green). The table compares
the result of our different schemes, with the direct expansion of df

used for SC. Note that the error given is the error of the expansion
in one scheme. Comparing different expansion schemes, we estimate
the overall error to be of order 0.05.

Section III introduces a self-consistent resummation proce-
dure as a (fast) alternative to the elaborate scheme of Ref. [10].
In the next two sections we discuss in more detail the dimen-
sion of curves and their relation to the crossover exponent
(Sec. IV) and loop-erased random walks (Sec. V). Section VI
tests the ε expansion against analytic results in dimension
d = 2, allowing us to identify the most suitable variables for
the resummation procedure. This allows us to give in Sec. VII
improved predictions for all relevant exponents in dimension
d = 3. Section VIII makes the connection to known results
from the large-n expansion, which serves as a nontrivial test
of our results. We conclude in Sec. IX.

II. THE RG FUNCTION γẼ

The RG function γẼ to 6-loop order, evaluated at the fixed
point, reads (with d = 4 − ε)

γẼ = − 2ε

n + 8
+ ε2

[
(n2 − 4n − 36)

(n + 8)3

]
+ ε3

[
24(5n + 22)ζ3

(n + 8)4
+ n4 + 45n3 + 190n2 − 144n − 1568

2(n + 8)5

]

+ ε4

[
− 80(2n2 + 55n + 186)ζ5

(n + 8)5
+ 18(5n + 22)ζ4

(n + 8)4
− (n5 + 16n4 + 808n3 + 3624n2 − 6240n − 30528)ζ3

2(n + 8)6

+ 2n6 + 135n5 + 3672n4 + 26568n3 + 87528n2 + 123264n + 6016

8(n + 8)7

]

+ ε5

[
882(14n2 + 189n + 526)ζ7

(n + 8)6
− 100(2n2 + 55n + 186)ζ6

(n + 8)5
− 4(5n4 + 6n3 + 3444n2 + 26824n + 46752)ζ 2

3

(n + 8)7
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+ (895n4 + 20194n3 + 73636n2 − 68712n − 403392)ζ5

(n + 8)7
− 3(n5 + 16n4 + 808n3 + 3624n2 − 6240n − 30528)ζ4

8(n + 8)6

+ (n7 − 36n6 − 176n5 − 35336n4 − 336080n3 − 842848n2 + 394624n + 2870528)ζ3

4(n + 8)8

+ 4n8 + 367n7 + 13724n6 + 275384n5 + 2162776n4 + 9337408n3 + 25225728n2 + 38978560n + 22308864

32(n + 8)9

]

+ ε6

[
− 64(1819n3 + 97823n2 + 901051n + 2150774)ζ9

9(n + 8)7
− 512(n3 + 65n2 + 619n + 1502)ζ 3

3

(n + 8)7

− 216(42n3 + 2279n2 + 21282n + 50512)ζ3,5

5(n + 8)7
+ 9(28882n3 + 780579n2 + 5963882n + 13076112)ζ8

10(n + 8)7

− 24(59n4 + 5320n3 + 62044n2 + 364256n + 790368)ζ3ζ5

(n + 8)8

− (3679n5 + 605258n4 + 8044820n3 + 25012072n2 − 16957632n − 109427520)ζ7

8(n + 8)8

− 6(5n4 + 6n3 + 3444n2 + 26824n + 46752)ζ3ζ4

(n + 8)7
+ 5(865n4 + 19342n3 + 64708n2 − 109416n − 470976)ζ6

4(n + 8)7

+ (553n6 + 9206n5 + 193932n4 + 341288n3 − 11260928n2 − 64278912n − 99677184)ζ 2
3

2(n + 8)9

+ (−3n8 − 104n7 − 13210n6 − 100464n5 + 2802392n4 + 27327488n3 + 78105408n2 + 46518912n − 78244864)ζ5

8(n + 8)9

+ 3(n7 − 36n6 − 176n5 − 35336n4 − 336080n3 − 842848n2 + 394624n + 2870528)ζ4

16(n + 8)8
+ (n9 + 100n8 + 979n7

+ 54758n6 − 770188n5 − 15180440n4 − 80189984n3 − 169245120n2 − 68332544n + 162652160)
ζ3

8(n + 8)10

+ (8n10 + 927n9 + 48746n8 + 1370920n7 + 22319040n6 + 172596192n5 + 774280256n4 + 2372987392n3

+5281970176n2 + 7489404928n + 4525309952)
1

128(n + 8)11

]
+ O(ε7). (41)

This agrees with Kirkham [45], see Eq. (12) there, up to 4-
loop order. The constant ζ3,5 is defined as

ζ3,5 :=
∑

1�n<m

1

n3m5
≈ 0.037707673. (42)

For n = −2 to 2, numerical values of γẼ and df are given in
Tables I and II.

III. A SELF-CONSISTENT RESUMMATION PROCEDURE

There are many resummation procedures [22,51]; we show
results based on the Borel resummation method proposed in
Ref. [10] and denoted KP17. We also propose a different

approach, using a self-consistent (SC) resummation: Consider
an exponent or observable κ (ε), with series expansion

κ (ε) =
∞∑

n=0

bnε
n. (43)

Suppose that bn has the asymptotic form

bn = c0ann!nα. (44)

Then

rn := bn

bn−1

1

n

(
n

n − 1

)α

= a + δa(n). (45)

TABLE I. Numerical values for the 6-loop RG function γẼ (ε) at the fixed point.

n γẼ (ε)

−2 −0.333333ε − 0.111111ε2 + 0.211568ε3 − 0.611186ε4 + 2.43354ε5 − 11.7939ε6 + O(ε7)
−1 −0.285714ε − 0.090379ε2 + 0.166245ε3 − 0.416899ε4 + 1.50701ε5 − 6.60415ε6 + O(ε7)
0 −0.25ε − 0.0703125ε2 + 0.131027ε3 − 0.29588ε4 + 0.982638ε5 − 3.94648ε6 + O(ε7)
1 −0.222222ε − 0.0534979ε2 + 0.106224ε3 − 0.218192ε4 + 0.673348ε5 − 2.50444ε6 + O(ε7)
2 −0.2ε − 0.04ε2 + 0.088718ε3 − 0.165781ε4 + 0.481055ε5 − 1.67071ε6 + O(ε7)
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FIG. 4. The ratios rn as given in Eq. (45) for α = 0 and the fit to
Eq. (46).

Further suppose that, with c > 0,

δa(n) = b e−cn. (46)

This ansatz can be used to fit the last three elements of the
table of rn (at 6-loop order this is r2, . . . , r6) to the three
parameters a, b, and c. The value of a is our best estimate
for the inverse of the branch-cut location in the inverse Borel
transform. Having established a fit allows us to estimate the
ratios ri with i larger than the order to which we calculated.
It in turn fixes bn to the same order, in practice up to order
28...40 using double precision and depending on the series.
An example studying the fractal dimension of LERWs is
given in Figs. 4 and 5 for α = 0. In general, the fit (46) is
possible only for a certain range of α. The fit fails if the three
chosen ratios rn are not monotone, as the exponential function
then grows. As a consequence, in this case the SC scheme
makes no prediction, and we leave the corresponding table
entries empty. Different fitting forms could be proposed and
tested, e.g., to account for such a nonmonotone behavior. We

FIG. 5. Resummation of df for LERWs (n = −2) in d = 3 as
a function of the series-order n, setting α = 0. One sees that the
resummed series converges, for all assumed values of the branch cut,
with orange zbc = 0.3/a to green with zbc = 1/a and ending with
cyan zbc = 1.1/a, which clearly sits inside the supposed branch cut,
which oscillates, and for which only the real part is shown.

FIG. 6. Minus the exponential decay constant c from Eq. (46).

restricted our tests to an algebraic decay, but no benefit could
be extracted from the latter. We believe that the advantage of
the ansatz (45) is its fast convergence, which is lost for an
ansatz with algebraic decay.

We can still use our freedom to choose α, which also leads
to different values of the exponential decay c given in Fig. 6.
Our approach is to try with all values of α for which a fit of
the form (46) is feasible. The result is shown on Fig. 7: Apart
from error bars of the procedure, we obtain the midrange and
the mean of all obtained exponents as the centered and best
estimates. Note that when the allowed range of α is small, the
estimated error bars are also small, since the estimate varies
continuously with α. Thus a small error bar may indicate a
robust series and indeed a small error or a series which is
delicate to resum. As a consequence, error bars of this method
have to be taken with a grain of salt. The method of KP17 [10]
does not suffer from this artifact.

IV. DIMENSION OF CURVES AND
CROSSOVER EXPONENT

Following the classic book by Amit [11] (for more refer-
ences see Refs. [45,47,52]), the crossover exponent arises for
the following question: Consider the anisotropic O(n) model,
where the first k < n components have a mass m2

1 and the
remaining n − k components have a mass m2

2 (we suppressed
the index 0 for the bare objects for convenience of notation),

S =
∫

x

m2
1

2

k∑
i=1

φi(x)2 + m2
2

2

n∑
i=k+1

φi(x)2

+ 1

2
[∇ �φ(x)]2 + 16π2

4!
g[ �φ(x)2]2. (47)

This form arises in mean-field theory, when coarse graining
an n-component model with anisotropy. Consider m2

1 < m2
2,

i.e., λ := m2
2 − m2

1 > 0. The corresponding phase diagram is
shown in Fig. 8. When lowering the temperature, the k first
modes will become massless before the remaining ones, and
one arrives at an effective O(k) model. In the opposite case,
m2

1 > m2
2, the remaining n − k modes become massless first,

resulting in a critical O(n − k) model, while for m2
1 = m2

2 all
modes becomes massless at the same temperature.
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FIG. 7. (a) In blue the fractal dimension df of LERWs as a function of α. The latter yields bounds for df , i.e., df ∈ [1.62378, 1.6254], and
as a best estimate the mean of the obtained values, df ≈ 1.62426 (blue dashed line). The numerical result is df = 1.62400 ± 0.00005 (orange
with error bars in dashes) [48]. (b) Same for d = 2. We find df ∈ [1.238, 1.259], with a mean estimate df = 1.244, to be compared to the exact
result df = 5/4. Using only the 5-loop series gives df (d = 3) ≈ 1.621 and df (d = 2) = 1.11.

Let us rewrite the quadratic (derivative free) terms in
Eq. (47) as

Sm2 = m2

2
�φ(x)2 − λ

2
Ẽ, (48)

where

m2 := km2
1 + (n − k)m2

2

n
, (49)

λ := m2
2 − m2

1, (50)

Ẽ = 1

n

[
(n − k)

k∑
i=1

φi(x)2 − k
n∑

i=k+1

φi(x)2

]
. (51)

Further denote the distance to the critical point by

t := T − Tc,n

Tc,n
. (52)

FIG. 8. The crossover phase diagram as given in Ref. [11], with
λ = m2

2 − m2
1. The thick black line is a line of first-order phase

transitions.

Then any thermodynamic observable, as, e.g., the longitudinal
susceptibility, will assume a scaling form with t as

χ−1
L (t, g) = tγ f

(
λ

tφc

)
. (53)

The function f is the crossover function, while φc is the
crossover exponent. It is the ratio of dimensions between λ

and m2, namely

φc = dimμ(λ)

dimμ(m2)
= 2 + γẼ (g∗) − η

2 + γ1(g∗) − η
. (54)

In the numerator is the renormalization of Ẽ as given by
Eq. (51) and which sits in the same representation as Ẽi, j

defined in Eq. (29) or Ẽ defined in Eq. (35) (thus the same no-
tation for all these objects) and which is the fractal dimension

FIG. 9. Slope of the crossover exponent at n = 0 for dimensions
0 � d � 4. The black cross is the analytic result from Eq. (102) in
d = 2.
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d f of the backbone, as given in Eq. (37). The denominator is ν−1 = d tot
f , as introduced in Eq. (19). This allows us to rewrite φc

as in Eq. (39) as

φc = df

d tot
f

= νdf . (55)

Its series expansion reads

φc = 1 + εn

2(n + 8)
+ ε2n(n2 + 24n + 68)

4(n + 8)3
+ ε3

[
−6n(5n + 22)ζ3

(n + 8)4
+ n(n4 + 48n3 + 788n2 + 3472n + 5024)

8(n + 8)5

]

+ ε4

[
20n(2n2 + 55n + 186)ζ5

(n + 8)5
− 9n(5n + 22)ζ4

2(n + 8)4
− n(n4 − 13n3 + 544n2 + 4716n + 8360)ζ3

(n + 8)6

+ n(n6 + 72n5 + 2085n4 + 28412n3 + 147108n2 + 337152n + 306240)

16(n + 8)7

]

+ ε5

[
−441n

(
14n2 + 189n + 526

)
ζ7

2(n + 8)6
+ 25n(2n2 + 55n + 186)ζ6

(n + 8)5
+ 2n(4n4 + 39n3 + 2028n2 + 14468n + 24528)ζ 2

3

(n + 8)7

+ n(−230n4 − 2857n3 + 33832n2 + 280596n + 466016)ζ5

2(n + 8)7
− 3n(n4 − 13n3 + 544n2 + 4716n + 8360)ζ4

4(n + 8)6

− n(9n5 − 661n4 + 7584n3 + 125232n2 + 465592n + 554064)ζ3

(n + 8)8

+ n(n8 + 96n7 + 4154n6 + 95668n5 + 1177480n4 + 6723904n3 + 19390624n2 + 28388096n + 17677824)

32(n + 8)9

]

+ ε6

[
16n(1819n3 + 97823n2 + 901051n + 2150774)ζ9

9(n + 8)7
+ 128n(n3 + 65n2 + 619n + 1502)ζ 3

3

(n + 8)7

− 9n(28882n3 + 780579n2 + 5963882n + 13076112)ζ8

40(n + 8)7
+ 54n(42n3 + 2279n2 + 21282n + 50512)ζ3,5

5(n + 8)7

+ 12n(13n4 + 2288n3 + 28088n2 + 172816n + 385584)ζ3ζ5

(n + 8)8

+ n(1136n5 + 174529n4 + 1284304n3 − 8699596n2 − 73803936n − 120419232)ζ7

16(n + 8)8

+ 3n(4n4 + 39n3 + 2028n2 + 14468n + 24528)ζ3ζ4

(n + 8)7
− 5n(215n4 + 2431n3 − 38296n2 − 300948n − 499808)ζ6

8(n + 8)7

+ n(−140n6 − 471n5 − 2192n4 + 947100n3 + 11661984n2 + 46428608n + 61839872)ζ 2
3

4(n + 8)9

+ n(−6n7 + 348n6 − 30199n5 − 656384n4 − 615916n3 + 21367744n2 + 87069536n + 100818688)ζ5

8(n + 8)9

− 3n(9n5 − 661n4 + 7584n3 + 125232n2 + 465592n + 554064)ζ4

4(n + 8)8

+ n(2n8 − 19n7 + 689n6 + 168914n5 − 416016n4 − 21086984n3 − 121746544n2 − 283766528n − 249483264)ζ3

8(n + 8)10

+ (4n10 + 480n9 + 27419n8 + 921208n7 + 18509364n6 + 215607792n5 + 1332297632n4 + 4570604800n3

+ 8857566208n2 + 9208365056n + 4150108160)
n

256(n + 8)11

]
+ O(ε7). (56)

This agrees with Ref. [45], see Eq. (14) in that paper, for φc (noted φ there), except for a misprint for the order ε3 term: The
coefficient 682 in the second line of Eq. (14) of Ref. [45] should read 628.
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TABLE II. Numerical values for the 6-loop fractal dimension df (ε).

n df (ε)

−2 2 − 0.333333ε − 0.111111ε2 + 0.211568ε3 − 0.611186ε4 + 2.43354ε5 − 11.7939ε6 + O(ε7)
−1 2 − 0.285714ε − 0.100583ε2 + 0.155051ε3 − 0.410163ε4 + 1.48492ε5 − 6.52249ε6 + O(ε7)
0 2 − 0.25ε − 0.0859375ε2 + 0.114425ε3 − 0.287513ε4 + 0.956133ε5 − 3.85575ε6 + O(ε7)
1 2 − 0.222222ε − 0.0720165ε2 + 0.0875336ε3 − 0.209864ε4 + 0.647691ε5 − 2.42316ε6 + O(ε7)
2 2 − 0.2ε − 0.06ε2 + 0.069718ε3 − 0.157887ε4 + 0.457846ε5 − 1.60209ε6 + O(ε7)

The curve φc(n), at least in higher dimensions, is rather
straight, and thus the most important quantity to give is

φ′
c(0)|d=0 = 0.70(18), (57)

φ′
c(0)|d=1 = 0.44(6), (58)

φ′
c(0)|d=2 = 0.239(10), (59)

φ′
c(0)|d=3 = 0.0912(7). (60)

We have in all dimensions d

φ′
c(0) = ν[γ ′

Ẽ (0) − γ ′
1(0)]. (61)

Estimates for φ′
c(0) obtained by SC resummation and the

procedure suggested in Ref. [10] (KP17) are presented in
Table III and Fig. 9. Integrals of the inverse Borel transform
do not converge well for d = 0 in the KP17 resummation
scheme, which prevents us from obtaining an estimate there.

Explicit values for the crossover exponent in d = 3 to be
compared with experiments, high-temperature series expan-
sion, and numerics are

φSC
c (d = 3, n = 1) = 1.089(1), (62)

φSC
c (d = 3, n = 2) = 1.180(4), (63)

φSC
c (d = 3, n = 3) = 1.265(5), (64)

φSC
c (d = 3, n = 4) = 1.329(8), (65)

φSC
c (d = 3, n = 5) = 1.391(2). (66)

There are experiments for n = 2 and n = 3. For n = 2:

φexp
c (d = 3, n = 2) = 1.17(2) [53], (67)

φexp
c (d = 3, n = 2) = 1.18(5) [54], (68)

φexp
c (d = 3, n = 2) = 1.23(4) [55] (69)

TABLE III. Numerical values for the 6-loop φ′
c(0).

d SC KP17 Exact

0 0.70(18) —
1 0.44(6) 0.58(12)

2 0.239(10) 0.262(10)
3

4π
� 0.238732

3 0.0912(7) 0.0925(4)
4 0 0 0

φexp
c (d = 3, n = 2) = 1.19(3) [56] (70)

φexp
c (d = 3, n = 2) = 1.17(10) [57]. (71)

The first paper [53] examines the bicritical point in GdAl3 and
the second one [54] the bicritical point in TbP4. In the third
[55] the structural phase transition in K2SeO4 is investigated.2

The fourth one [56] is related to a continuous phase transition
in Rb2ZnCl4. The last one is for the nematic-smectic-A2

transition [57].
Let us proceed to n = 3:

φexp
c (d = 3, n = 3) = 1.278(26) [58], (72)

φexp
c (d = 3, n = 3) = 1.274(45) [58], (73)

φexp
c (d = 3, n = 3) = 1.279(31) [59]. (74)

The first two figures are for two different samples of the very
nearly isotropic antiferromagnet RbMnF3 [58], and the last
one [59] is for the bicritical point in MnF2.

In Ref. [60] a theory based on SO(5), i.e., n = 5, has
been proposed to explain superconductivity and antiferromag-
netism in a unified model. While MC simulations support
this scenario [61,62], it has been argued in Ref. [63] that
the isotropic fixed point is unstable and breaks down into
SO(2) × SO(3).

Recent Monte Carlo simulations [26] provide very precise
estimates for the crossover exponent for n = 2, 3, 4 (in terms
of Ref. [26] φc = Y2ν):

φMC
c (d = 3, n = 2) = 1.1848(8), (75)

φMC
c (d = 3, n = 3) = 1.2735(9), (76)

φMC
c (d = 3, n = 4) = 1.3567(15). (77)

The high-temperature series expansion of Ref. [64] yields

φHT
c (d = 3, n = 2) = 1.175(15), (78)

φHT
c (d = 3, n = 3) = 1.250(15). (79)

2This is the only experiment where the value of the crossover
exponent is significantly higher than our (and other) estimates, but
its lower bound is close to the theoretical values. The notation used
in the experiments is φc = 2 − α − β̄.
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An alternative to the ε expansion is to work directly in dimen-
sion d = 3 (renormalization group in fixed space dimension
d = 3, denoted RG3), as was done in Ref. [65]:

φRG3
c (n = 2) = 1.184(12), (80)

φRG3
c (n = 3) = 1.271(21), (81)

φRG3
c (n = 4) = 1.35(4), (82)

φRG3
c (n = 5) = 1.40(4), (83)

φRG3
c (n = 8) = 1.55(4), (84)

φRG3
c (n = 16) = 1.75(6). (85)

Another approach is the nonperturbative renormalization
group (NPRG). With this method the following estimates were
obtained [66] (in terms of Ref. [66] φc = θ1/θ2 = y2,2ν):

φNPRG
c (n = 2) = 1.209, (86)

φNPRG
c (n = 3) = 1.314, (87)

φNPRG
c (n = 4) = 1.407, (88)

φNPRG
c (n = 5) = 1.485, (89)

φNPRG
c (n = 10) = 1.710. (90)

Values provided by NPRG are systematically higher than
those provided by other methods, but it is not clear how pre-
cise these values are. Their deviation from all other values is
on the level of several percentages, and we believe this to be an
appropriate error estimate. The most precise 6-loop estimates
are obtained by a resummation of the φ−13/4

c expansion: They
have lower error estimates (in both the SC and KP17 methods)
and better agree with the most precise values from Monte
Carlo simulations. See also the discussion in Sec. VI B.

A summary is provided in Table IV.

V. LOOP-ERASED RANDOM WALKS

The connection between the O(n)-symmetric φ4 theory
at n = −2 and loop-erased random walks has only recently
been established for all dimensions d [43], even though in
d = 2 this was known from integrability [68,69]. As we
discussed above [see after Eq. (21)], this is a random walk
where loops are erased as soon as they are formed. As such
it is a non-Markovian process. On the other hand, its trace
is equivalent to that of the Laplacian random walk [70,71],
which is Markovian if one considers the whole trace as state
variable. It is constructed on the lattice by solving the Laplace
equation ∇2�(x) = 0 with boundary conditions �(x) = 0 on
the already-constructed curve, while �(x) = 1 at the destina-
tion of the walk, either a chosen point or infinity. The walk
then advances from its tip x to a neighboring point y, with
probability proportional to �(y). In dimension d = 2, it is
known via the relation to stochastic Löwner evolution [41,72]
that the fractal dimension of LERWs is

dLERW
f (d = 2) = 5

4 . (91)

f

FIG. 10. df as a function of d for LERW (n = −2). The red
dashed line is the bound df � 5

6−d [67] (bound continuation to all
dimensions guessed). The gray dashed lines are the bounds 1 � df �
dRW = 2.

In three dimensions, there is no analytic prediction for the
fractal dimension of LERWs, only the bound [67]

1 � dLERW
f � 5

3 . (92)

We conjecture that it can be generalized to arbitrary dimension
d as

1 � dLERW
f � 5

6 − d
. (93)

Note that this conjecture becomes exact in dimensions d = 1
and d = 2. The best numerical estimation in d = 3 is from D.
Wilson [48],

dLERW
f,num (d = 3) = 1.62400 ± 0.00005 = 1.62400(5). (94)

Our resummations from the field theory are (see Fig. 10)

dLERW
f,SC (d = 3) = 1.6243(10).

dLERW
f,KP17(d = 3) = 1.623(6). (95)

VI. THE LIMIT OF d = 2 CHECKED AGAINST
CONFORMAL FIELD THEORY

A. Relations from conformal field theory

In d = 2, all critical exponents should be accessible via
conformal field theory (CFT). The latter is based on ideas
proposed in the 1980s by Belavin, Polyakov, and Zamolod-
chikov [73]. They constructed a series of minimal models,
indexed by an integer m � 3, starting with the Ising model at
m = 3. These models are conformally invariant and unitary,
equivalent to reflection positive in Euclidean theories. For
details, see one of the many excellent textbooks on CFT
[2,29,30,74]. Their conformal charge is given by

c = 1 − 6

m(m + 1)
. (96)

The list of conformal dimensions allowed for a given m is
given by the Kac formula with integers r, s (Eq. (7.112) of
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FIG. 11. The exponent ν for d = 2 (a) and its inverse (b). The different colors come from resummations of ν (blue), 1/ν (red), 1/ν2

(green), 1/ν3 (cyan), and α = 2 − νd (dark green). The dashed black line is from CFT as given by Eq. (100). The shaded errors are (minimal)
errors estimated from the uncertainty in the extrapolation, see Sec. III.

Ref. [30]),

hr,s = [r(m + 1) − sm]2 − 1

4m(m + 1)
, 1 � r < m, 1 � s � m.

(97)

It was later realized that other values of m also correspond
to physical systems, in particular m = 1 (loop-erased random
walks) and m = 2 (self-avoiding walks). These values can
further be extended to the O(n) model with noninteger n and
m, using the identification

n = 2 cos
(π

m

)
. (98)

More strikingly, the table of dimensions allowed by Eq. (97)
has to be extended to half-integer values, including 0. It
is instructive to read [75], where all operators were identi-
fied. This yields the fractal dimension of the propagator line
[75–77],

df = 2 − 2h1,0 = 1 + π

2
(
arccos

(
n
2

) + π
) . (99)

This is compared to the ε expansion on Fig. 3.
For ν, i.e., the inverse fractal dimension of all lines, be it

propagator or loops, we get

ν = 1

2 − 2h1,3
= 1

4

[
1 + π

arccos
(

n
2

)
]
. (100)

This agrees with Ref. [75], inline after Eq. (2). (Note that
the choice h2,1 coinciding with h1,3 for Ising does nor work
for general n.) A comparison to the ε expansion is given in
Fig. 11.

For η, there are two suggestive candidates from the Ising
model, η = 4h1,2 = 4h2,2. This does not work for other values
of n. We propose, in agreement with Refs. [75–77],

η = 4h 1
2 ,0 = 5

4
− 3 arccos

(
n
2

)
4π

− π

arccos
(

n
2

) + π
. (101)

It has a square-root singularity for both n = −2 and n = 2. A
comparison to field theory is given in Fig. 12.

As we discuss in the next section, we have no clear can-
didate for the exponent ω. This is apparent in Fig. 13, where
our estimates from the resummation are confronted to some
guesses from CFT.

Finally, the crossover exponent φc defined in Eqs. (39) and
(54) becomes

φc = νdf = 1 − h1,0

1 − h1,3
= 1

4
+ 3π

8 arccos
(

n
2

) . (102)

This is compared to the ε expansion in Fig. 14.

B. Resummation

Note that there are singularities at n = ±2, the most severe
one being at n = 2 for the exponent ν. For this reason,
resummation is difficult for n ≈ 2. We found that the singu-

FIG. 12. The exponent η in d = 2. The blue curve is the direct
expansion and the green one a resummation of

√
η, which, as η starts

at order ε2, has a regular series expansion in ε. The black solid line
is η = 4h1/2,0 as given by Eq. (101).
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FIG. 13. The exponent ω in d = 2. Dots represent values re-
ported in the literature, mostly based on CFT. The value ω = 7/4
for n = 1 is consistent with the O(1) term in Ref. [78], while the
reanalysis of Ref. [79] concludes on ω = 2. In Ref. [79] it is also
argued that ω = 2 for n > 2. The black dashed line is the guess
(103) resulting from the operator generating an intersection between
two lines.

larity in d = 2 is much better reproduced when resumming
1/ν3 instead of ν, see Fig. 11. This expansion catches the
divergence at n = 2 in d = 2, even though the singularity thus
constructed is not proportional to 1/

√
2 − n but proportional

to 1/ 3
√

2 − n. As we will see, reproducing this singularity at
least approximately renders expansions also more precise in
d = 3, even for n = 0, 1.

The same situation appears for φc, where 1/φ13/4
c provides

the most precise fit of the n = 2 singularity (see Fig. 14). This
leads to smaller error bars for both resummation methods (see
Table IV) and supports our statement about the necessity of
a proper choice of the object for resummation, based on the
knowledge of the d = 2 singularities.

For df (Fig. 3) and η (Fig. 12), the ε expansion is approx-
imately correct. But there are square-root singularities when
approaching n = ±2 in d = 2, which are not visible in the
ε expansion. It is suggestive that these singularities in d = 2
influence the convergence in d = 3. Building in these exact
results in d = 2, including the type of singularity in the (d, n)
plane would increase significantly the precision in d = 3.

FIG. 14. The exponent φc in d = 2. The dashed black line is the
analytic result from Eq. (102). The colored lines are resummations of
φc (blue), 1/φc (red), 1/φ2

c (green), 1/φ3
c (cyan), 1/φ13/4

c (magenta),
and 1/φ3

c (gray). Resumming 1/φ13/4
c considerably improves the

precision.

As for ω presented in Fig. 13, the situation is rather unclear,
as there is no choice of hr,s which is a good candidate for all n
in the range of −2 � n � 2. Intersections in high-temperature
graphs are given by h2,0, and this operator is the closest in
spirit to the ( �φ2)2 interaction of our field theory, resulting in

ωguess = 2h2,0 − 2. (103)

This contradicts the results from the ε expansion presented in
Fig. 13. It is not even clear whether this is a question which
can be answered via CFT: As all observables depend on the
coupling g, the exponent ω quantifies how far this coupling
has flown to the IR fixed point. On the other hand, in a CFT the
ratio of size L over lattice cutoff a has gone to infinity, and the
theory by construction is at g = g∗. Our results are consistent
with ω = 2 for all n, in which case the associated operator
might simply be the determinant of the stress-energy tensor,
sometimes (abusively) referred to as T T̄ , see, e.g., Ref. [80].

VII. IMPROVED ESTIMATES IN d = 3 FOR ALL
EXPONENTS

With the knowledge gained in d = 2, we are now in a
position to give our best estimates for all critical exponents.

TABLE IV. Numerical values for φc(n) in d = 3.

n SC SC from φ−13/4
c KP17 KP17 φ−13/4

c RG3 [65] NPRG [66] HT [64] MC [26] Experiment

2 1.180(4) 1.183(1) 1.183(3) 1.1843(6) 1.184(12) 1.209 1.175(15) 1.1848(8) 1.17(2) [53]
1.18(5) [54]
1.19(3) [56]
1.23(4) [55]
1.17(10) [57]

3 1.265(5) 1.273(1) 1.263(13) 1.2742(10) 1.271(21) 1.314 1.250(15) 1.2735(9) 1.278(26) [58]
1.274(45) [58]
1.279(31) [59]

4 1.329(5) 1.361(1) 1.33(3) 1.3610(7) 1.35(4) 1.407 1.3567(15)
5 1.391(2) 1.442(2) 1.42(4) 1.444(5) 1.40(4) 1.485
8 1.534(2) 1.64(1) 1.59(7) 1.625(17) 1.55(4)
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TABLE V. Numerical values for the exponent η in d = 3. SC
combines expansion for η and

√
η.

n SC KP17 Other

−2 0 0 0
−1 0.0198(3) 0.0203(5)
0 0.0304(2) 0.0310(7) [10] 0.031043(3) [23,24]
1 0.0355(3) 0.0362(6) [10] 0.036298(2) [33]
2 0.0374(3) 0.0380(6) [10] 0.0381(2) [25]
3 0.0373(3) 0.0378(5) [10] 0.0378(3) [26]
4 0.0363(2) 0.0366(4) [10] 0.0360(3) [26]

For the exponent ν, we use the expansion of 1/ν3, while for η

and ω we use the standard direct expansions. For df we both
use the direct expansion, as the expansion of 1/df , to get an
idea about the errors induced by changing the quantity to be
extrapolated.

Our findings are given on Tables IV to VII, as well as Fig. 2
and Figs. 15 to 18. Let us summarize them.

The exponent η is shown in Table V and Fig. 15. For
SAWs, the agreement of KP17 with the Monte Carlo results of
Refs. [23,24] is better than 10−3 (relative). For the Ising model
(n = 1), the agreement with the conformal bootstrap [33] is of
the same order.

Our predictions for ν are given in Table VI and Fig. 16.
Using the expansion of 1/ν3, the relative deviation to the
conformal bootstrap is about 3 × 10−4 instead of 10−3 for
the direct expansion, validating both schemes. The same
deviation of 3 × 10−4 appears in the comparison to Monte
Carlo simulations of SAWs.

The exponent φc has already been discussed in Sec. IV.
Table IV summarizes our findings. In general, there is a very
good agreement between the diverse theoretical predictions
and experiments. We find it quite amazing that experiments
were able to measure this exponent with such precision.

Via the relation (54), which can be written as φc = νdf , the
exponent φc is intimately related to the fractal dimension df of
curves discussed in the Introduction and summarized in Fig. 2.
Again, in all cases the agreement is well within the small error
bars.

The exponent ω is notoriously difficult to obtain, possibly
due to a nonanalyticity of the β function at the fixed point
g∗ [79]. We show our predictions in Table VII and Fig. 17.
The deviations from results obtained by other methods are
much larger but consistent with our error bars. The only
value from simulations we have doubts about is ω for SAWs

TABLE VI. Numerical values for the exponent ν in d = 3.

n SC (ν−3) KP17 (ν−3) KP17 (1/ν) Other

−2 0.5 0.5 0.5
−1 0.54436(2) 0.545(2) 0.5444(2)
0 0.5874(2) 0.5874(10) 0.5874(3) [10] 0.5875970(4) [24]
1 0.6296(3) 0.6298(13) 0.6292(5) [10] 0.629971(4) [33]
2 0.6706(2) 0.6714(16) 0.6690(10) [10] 0.6717(1) [25]
3 0.70944(2) 0.711(2) 0.7059(20) [10] 0.7112(5) [82]
4 0.7449(4) 0.748(3) 0.7397(35) [10] 0.7477(8) [27]

TABLE VII. Numerical values for the exponent ω in d = 3.

n SC KP17 Other

−2 0.828(13) 0.819(7)
−1 0.86(2) 0.848(15)
0 0.846(15) 0.841(13) [10] 0.904(5) [24,81]
1 0.827(13) 0.820(7) [10] 0.830(2) [34]
2 0.808(7) 0.804(3) [10] 0.811(10) [35]
3 0.794(4) 0.795(7) [10] 0.791(22) [35]
4 0.7863(9) 0.794(9) [10] 0.817(30) [35]

in d = 3, which is an “outlier” in Fig. 17. As reported by
Refs. [24,81],

ω = �/ν = 0.899(14) [24], (104)

ω = �/ν = 0.904(6) [81]. (105)

Reference [24] provides the most precise result for ν =
0.58759700(40), while the value of � = ων = 0.528(8) is
less precise than that of Ref. [81], namely � = 0.5310(33).
The value ν = 0.58756(5) of Ref. [81] is less precise than the
one of Ref. [24], but the error is negligible compared to that
of �. Combining the most precise values gives an estimate
ω = 0.904(5) as in Eq. (105) but with a slightly reduced error
bar.

As already stated, proper choice of the object of resum-
mation can significantly increase the convergence and yield
estimates closer to those of CFT in d = 2 and conformal
bootstrap in d = 3. While for the exponent ν this choice is
obviously ν−3, and for φc it is 1/φ13/4

c , since both catch the
singularity in d = 2 (see Figs. 11 and 14), for the exponents η

and ω there is no evident choice. A more detailed investigation
of these ideas is beyond the scope of the present paper and left
for future research.

FIG. 15. The exponent η in d = 3. The SC resummation scheme
(in blue) seems to be systematically smaller than the values of KP17
(in red). SC resummation of

√
η (in cyan) works slightly better. Black

crosses represent the best values from MC and conformal bootstrap,
as given in Ref. [10].
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FIG. 16. The exponent ν in d = 3, obtained from a resummation
of 1/ν3. In blue the results from SC and in red using KP17. Black
crosses are from MC and conformal bootstrap, as given in Ref. [10].

VIII. CONNECTION TO THE LARGE-n EXPANSION

One of the most effective checks of perturbative expansions
is comparison of different expansions of the same quantity.
For the O(n) model, the ε expansion provides a series in ε

which is an exact function in n, while the large-n expansion
(or 1/n expansion) provides a series in 1/n with coefficients
exact in d . Thus setting d = 4 − ε in the 1/n expansion and
expanding it in ε, while expanding the coefficients of the ε

expansion in 1/n for the same quantity must yield identical
series. As for each expansion a different method is used, this
provides a very strong cross-check for both expansions.

The large-n expansion of the crossover exponent φc as
given in Eqs. (39) and (54) was calculated in Ref. [46] to
1/n2. Expanding it in ε, we obtain a double (ε, 1/n) expansion
φ(ε,n)

c ,

φ(ε,n)
c =

[
1 + ε

2
+ ε2

4
+ ε3

8
+ ε4

16
+ ε5

32
+ ε6

64
+ O(ε7)

]

+ 1

n

[
−4ε + ε3 + (−ζ3 + 1)ε4 + 3

4
(−ζ4 + 1)ε5

FIG. 17. The exponent ω in d = 3 via SC (blue, with shaded
error bars) and KP17 (in red). Crosses represent the best values from
MC, as given in Ref. [10].

FIG. 18. The exponent φc in d = 3. Crosses are from MC and
experiments [54,58]. The value for n = −2 is taken as df/2 with df

the fractal dimension of LERWs [48].

+ 1

4
(−3ζ5 + ζ3 + 2)ε6 + O(ε7)

]

+ 1

n2

[
32ε − 31ε2 −

(
30ζ3 − 43

2

)
ε3

+
(

40ζ5 − 45ζ4

2
+ 61ζ3 − 155

16

)
ε4

+
(

50ζ6 + 8ζ 2
3 − 115ζ5 + 183ζ4

4
− 9ζ3 + 61

16

)
ε5

+
(

71ζ7 + 12ζ3ζ4 − 1075ζ6

8
− 35ζ 2

3 + 195ζ5

2

− 27ζ4

4
− 179ζ3

8
+ 2075

256

)
ε6 + O(ε7)

]

+ O

(
1

n3

)
. (106)

This expansion agrees with Eq. (56) expanded in 1/n. Even
though not all 6-loop diagrams contribute to the 1/n2 term,
the comparison with the large-n expansion is a very strong
consistency check.

IX. CONCLUSION AND PERSPECTIVES

In this paper, we evaluated the fractal dimension of crit-
ical lines in the O(n) model, yielding the fractal dimension
of loop-erased random walks (n = −2), self-avoiding walks
(n = 0), as well as the propagator line for the Ising model
(n = 1) and the XY model (n = 2). Our predictions from
the ε expansion at 6-loop order are in excellent agreement
with numerical simulations in d = 3 for the larger values of
n, even exceeding the numerically obtained precision. This
was possible through a combination of several resummation
techniques, including a self-consistent one introduced here.
Analyzing its behavior in dimension d = 2 to determine the
most suitable quantity to be resummed allowed us to improve
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the precision for the remaining exponents, especially ν, yield-
ing now an agreement of 3 × 10−4 for the Ising model in
d = 3, as compared to the conformal bootstrap.

We plan to extend this work in several directions as
follows:

(i) Analyze the analytic structure of the critical exponents
as a function of d and ε to better catch the singularities in
d = 2 and thus obtain more precise resummations in d = 3
for all exponents.

(ii) Use the 7-loop results of Ref. [19] to improve our
estimates.

(iii) Estimate universal amplitudes appearing in the log-
CFT for self-avoiding polymers.
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