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Large orders and strong-coupling limit in functional renormalization
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We study the large-order behavior of the functional renormalization group (FRG). For a model in dimension
zero, we establish Borel summability for a large class of microscopic couplings. Writing the derivatives of
FRG as contour integrals, we express the Borel transform as well as the original series as integrals. Taking the
strong-coupling limit in this representation, we show that all short-ranged microscopic disorders flow to the same
universal fixed point. Our results are relevant for FRG in disordered elastic systems.
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Introduction. Perturbative expansions are a workhorse in
theoretical physics. Most of them are not converging, but
asymptotic series [1–6]. The main strategy to obtain a series
with a finite radius of convergence is to define its Borel
transform by dividing its nth series coefficient by n!. One
then continues the latter and reconstructs the original function
via an integral over this analytic continuation. The aim is
to extend the range of applicability from small expansion
parameters, where the series naively converges, to larger ones.
Techniques using Padé-Borel resummation or conformal map-
pings are successful here [3–5,7–9], and were employed for
the ε expansion of perturbative renormalization group (RG)
[7,9,10]. In simpler examples, as the anharmonic oscillator
[11], one can go further, and use resurgence [12–14] to reach
finite couplings. Borel resummation identifies singularities of
the Borel transform, and using this information extends the
domain of convergence. It is not effective in reaching strong
coupling.

An additional problem arises when the microscopic set of
couplings is itself a function, as in the functional renormaliza-
tion group (FRG) treatment of disordered systems. In FRG,
one uses a confining potential of strength m2 to obtain the
effective disorder in terms of the bare one, order by order in
λ = md−4. Varying the FRG scale m allows one to obtain an
approximate solution in the limit of m → 0, i.e. λ → ∞.

Here, we consider a specific model in dimension d =
0, which is later derived from the field theory of disor-
dered elastic manifolds (for a review, see Refs. [6,15]), in
which we can take the limit of λ → ∞ directly. We wish
to answer the following fundamental questions: What is the
large-order behavior of FRG? Is it Borel summable? How can
we study its strong-coupling limit? And how does universality
arise?

Setting the stage. In order to address these questions, we
start with the O(2) model on a single site. This is not only the
simplest possible model, but key formulas will prove useful
later. Consider the partition function,

ZO(2)(λ) :=
∫

φ̃,φ

e−φ̃φ−λφ̃2φ2
, Z (0) = 1. (1)

Here, φ and φ̃ are complex conjugate fields. Analysis pro-
ceeds via Wick’s theorem, using the measure induced by e−φ̃φ ,

〈φ̃n f (φ)〉 = (∂φ )n f (φ)|φ=0 ⇒ 〈φ̃nφm〉0 = n! δn,m. (2)

This implies that

ZO(2)(λ) =
∞∑

n=0

(2n)!

n!
(−λ)n. (3)

Stirling’s formula shows that this series is divergent. Its Borel
transform, obtained by dividing the nth series coefficient by
n!, has a finite radius of convergence,

ZB
O(2)(t ) :=

∞∑
n=0

(2n)!

(n!)2
(−t )n = 1√

1 + 4t
. (4)

ZB
O(2)(t ) has a branch cut starting at t = −1/4, and its analytic

continuation is well defined for t > 0. This allows one to
obtain ZO(2)(λ) via an inverse Borel transform

ZO(2)(λ) =
∫ ∞

0
dt e−tZB

O(2)(tλ) =
√

π

4λ
e

1
4λ erfc

(
1

2
√

λ

)
.

(5)

The crucial step in this resummation is our ability to analyti-
cally continue the Borel transform ZB

O(2)(t ) beyond its radius
of convergence of 1/4, to the positive real axis.

When no analytic result is available, the standard procedure
is to do a saddle-point (instanton) analysis of the integral
[1–5], and then use resummation techniques or resurgence. In
practice one is often constrained to either approximate ZB(t )
via a Padé approximant [3], Meijer G-function [16], or use a
conformal mapping [3,7,9]. While this allows one to extend
the range of convergence, say by a factor of 5, the question of
the strong-coupling behavior remains elusive.

Resummation of a functional expansion. Let us proceed to
a zero-dimensional model for FRG [norm as in Eq. (1)],

ZFRG(w, λ) :=
∫

φ̃,φ

e−φ̃(φ−w)+λφ̃2[�(0)−�(φ)]. (6)
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FIG. 1. The different paths and contour integrals. In blue the
one used for Eqs. (16) and (17), encircling the cut in Eq. (18)
(green/dashed). In red the path used for the derivation of Eq. (14)
which passes through φSP.

At this stage, this is a mathematical problem; we show later
its significance for depinning. We assume that �(φ) is an
analytic function, fast and monotonously decaying for φ � 0,
and that �(0) = 1. A good example is �(φ) = e−φ . The field
φ has an expectation w. Wick’s theorem (2) allows us to write
the perturbative expansion for w > 0,

ZFRG(w, λ) :=
∞∑

n=0

λnZ (n)
FRG(w), (7)

Z (n)
FRG(w) := 1

n!
(∂w )2n

[
1 − �(w)

]n
. (8)

To evaluate Eq. (6) nonperturbatively, integration contours
need to be specified. As we show later, this is not an ob-
vious task. Therefore we define our model by Eqs. (7) and
(8). The latter are motivated by perturbative results for the
renormalization of disordered elastic manifolds in dimension
d = 0 [17–22], for which �(φ) is the microscopic disorder
correlator.

Let us start with the large-order behavior of Z (n)
FRG(w). This

is given by the saddle point of Eq. (6) over both φ and φ̃.
It implies two saddle-point equations, is quite formal, and
difficult to control. A more powerful approach is to evaluate
Eq. (8) via the residue theorem,

Z (n)
FRG(w) = (2n)!

n!

1

2π i

∮
dφ

φ
gw(φ)n, (9)

gw(φ) := 1 − �(w + φ)

φ2
. (10)

The contour goes counterclockwise around the origin (see
Fig. 1). It picks out the coefficient of order φ0 in the Laurent
series at φ = 0. Since �(φ) is bounded for Re φ > 0, we can
push the path in that domain to ∞. We expect a saddle point
(SP) elsewhere, given by

d

dφ
gw(φ) = 0. (11)

FIG. 2. Plot of [gw (φ)/gw (φSP )]n for w = 0, n = 100, with the
real part in blue (solid) and imaginary part in red (dashed); φ =
φSP + iy/

√
n, as indicated by the red curve in Fig. 1. In green (dotted-

dashed) exp (− g′′
w (φ)

gw (φ)
y2

2 )|
φ=φSP

, whose integration leads to Eq. (14).

To make our analysis concrete, set �(φ) := e−φ . For w = 0,
the saddle point is at

φSP = −W (−2 e−2) − 2 = −1.593 62, (12)

g0(φSP) = −1.544 14, (13)

where W is the Lambert W function. Figure 2 shows that the
large-order behavior of Eq. (8) is captured by the integral
running over φ = φSP + iR (see Fig. 1 for the path). This
gives the leading order of the large-n behavior,

Z (n)
FRG(w) 	 	(2n+1/2)

	(n+1)
√

π
[gw(φ)]n

√
gw(φ)

g′′
w(φ)

∣∣∣∣∣
φ=φSP

. (14)

The large-order behavior is asymptotic and its Borel transform
exists, as 	(2n+1/2)/	(n+1) 	 n!. The saddle point is at
negative φ, on the analytic continuation of the branch for
φ � 0, outside its physically relevant domain. A numerical
check for n = 100 is shown in Fig. 2. The relative error for
Z (n)

FRG(0) is 10−4, which can systematically be improved by
further 1/n corrections. The latter are relevant for resurgence
[23].

When changing the microscopic disorder from �(φ) =
e−φ to �(φ) = e−φ−aφ2

, there is a critical ac ≈ 0.0649 beyond
which the real saddle point at w = 0 disappears. It is replaced
by an infinity of pairs of complex saddle points, corresponding
to a more intricate resurgent structure [23].

Borel transform. Define the Borel transform of Eqs. (7)–(9)
as

ZB
FRG(w, t ) :=

∞∑
n=0

(2n)!

(n!)2

t n

2π i

∮
dφ

φ
gw(φ)n. (15)

Exchanging sum and integration, Eq. (4) yields

ZB
FRG(w, t ) =

∮
dφ

2π iφ

1√
1 − 4tgw(φ)

. (16)

While Eq. (9) is valid for any contour circling the origin, in
order to avoid the branch cut induced by the denominator in
Eq. (16), one needs to make the contour in Eq. (16) large
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FIG. 3. Different solutions for �̃(w), all rescaled to �̃(0) =
|�̃′(0)| = 1. From top to bottom: driven particle (DPM) in Gaussian
disorder (blue), Eq. (85) of Ref. [24], Eq. (25) (red, dashed), Sinai
model, Eq. (202) of Ref. [15] (black, dotted-dashed), and the one-
loop random-field fixed point, Eq. (88) of Ref. [15] (green, solid).

enough (see Fig. 1). One can then shrink the contour until
it hugs the branch cut. Evaluating the discontinuity across the
cut, we can rewrite Eq. (16) as

ZB
FRG(w, t ) = 1

π

∫ φ1

φ0

dφ
1√

4t[1 − �(w + φ)] − φ2
, (17)

where φ0 � 0 < φ1 are the two zeros of the denominator, and
the sign inside the square root is reversed between Eqs. (16)
and (17). For w = 0, φ0 = 0. One could extend this integral
from −∞ to ∞, if one keeps only the real part of the inte-
grand. A numerical check of Eqs. (16) and (17) is presented
in Fig. 4 of the Appendix.

Inverse Borel transform. Using Eq. (5), the inverse Borel
transform (from t to λ) of the integrand in Eq. (16) is [noting

FIG. 4. ZB
FRG(w = 0, λ), evaluated in four different ways: (i) ex-

plicit sum from derivatives as given in Eqs. (7) and (8) (blue solid
line). The vertical blue-dashed lines indicate its radius of conver-
gence estimated from Eq. (14). (ii) the contour integral (16) (red
dots), (iii) the cut integral (17) (green dashed), and (iv) a diagonal
Padé resummation of the original series (black crosses). Both integral
representations work for λ larger than the radius of convergence of
the series (but are as expected problematic for negative λ).

FIG. 5. The function �̃′′
FRG(w, λ) := 1 − ZFRG(w

√
λ, λ) for λ =

10, evaluated via Padé-Borel (black crosses) on the combinatorial se-
ries at order 100. (Some glitches appear, and Padé-Borel breaks down
for larger λ; each Padé is constructed at fixed w.) Evaluation of the
integral (21) (cyan, solid), indistinguishable form an implementation
which keeps the erfc of Eq. (19) (red, dashed). In blue dashed the
asymptotic form (24).

g := gw(φ)]

∫ ∞

0

e−t

√
1 − 4λgt

dt =
√

πe− 1
4λg

2

erfc
(

1
2
√−λg

)
√−λg

=
√

πe− 1
4λg

2

⎡
⎣ 1√−λg

+
∑
n∈N

an

(gλ)n

⎤
⎦.

(18)

On the second line is the large-λ expansion. The key obser-
vation is that the terms ∼an are analytic in φ around the
origin, and thus do not contribute to the integral (16). As a
consequence, the latter can be simplified to

ZFRG(w, λ) =
∮

dφ

2π iφ

√
πe− 1

4λgw (φ)

2
√−λgw(φ)

. (19)

In order for this equality to be valid, the contour is not allowed
to cross the cut which now extends to φ = ∞, and starts at
φ = −w. As in the derivation of Eq. (17), we can simplify
Eq. (19) by retaining only the discontinuity across the cut,

ZFRG(w, λ) = 1√
4πλ

∫ ∞

0
dφ

e
−(φ−w)2

4λ[1−�(φ)]

√
1 − �(φ)

. (20)

To arrive here, we moved the factor of 1/φ inside the square
root, evaluated its discontinuity, and finally shifted φ → φ +
w. This result is checked in Fig. 5 of the Appendix. Finally,
Eq. (20) can be derived from Eq. (6), if one choses for the
integration contours φ̃ ∈ iR, and φ � 0.

Strong-coupling behavior. Equation (20) allows us to ex-
tract the large-λ behavior. The key observation is that due to
the factor of 1/λ in the exponent, larger and larger values for
φ contribute. On these scales, �(φ) is negligible and can be
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dropped, leading to

ZFRG(w, λ) 	 1√
4πλ

∫ ∞

0
dφ e− (φ−w)2

4λ

= 1√
4π

∫ ∞

0
dφ e− (φ−w/

√
λ)2

4 . (21)

The second line shows that the limit Z∞
FRG(w) :=

limλ→∞ ZFRG(w
√

λ, λ) exists, and is given by

Z∞
FRG(w) = 1

2

[
1 + erf

(w

2

)]
. (22)

To derive this it is essential that the singularity in the denom-
inator of Eq. (20) is integrable. Numerically we checked the
passage from Eq. (20) to Eq. (21) for λ up to 1020.

Finally, Eqs. (7) and (8) imply that ZFRG(w, λ) = 1 −
λ�′′

FRG(w, λ). Therefore the dimensionless rescaled limit for
�′′

FRG reads

�̃′′
FRG(w) := lim

λ→∞
λ−1�′′

FRG(w
√

λ, λ) = 1

2
erfc

(w

2

)
. (23)

Integrating twice and using �̃FRG(∞) = 0 yields

�̃FRG(w) = w2 + 2

4
erfc

(w

2

)
− e− w2

4 w

2
√

π
. (24)

What is remarkable about Eq. (20) is that the final result,
given in Eq. (22), is largely independent of the microscopic
�(φ). What we used is that �(φ) is analytic, has a linear
cusp at the origin, and decays quickly. The cusp is a technical
requirement, necessary to transform the contour integral into a
cut integral. We believe that this is more a technical constraint
than a physical one: we could regularize the microscopic
disorder to obtain a linear cusp, and then remove the regu-
larization. We have studied this for �(φ) = e−φ2

. While we
clearly see that convergence is nonuniform and slow, we have
no indication that the process does not converge, or converges
against a different fixed point. On the practical side, when
applied to disordered systems, as the disorder usually lives on
a grid, we can well approximate it by a function with a linear
cusp.

What is reassuring about our findings is that while it
is believed that all microscopic disorders converge to the
same FRG fixed point, this has only be seen perturbatively
[17–22], in simulations [25–27] and in experiments [28–30].
The mechanism by which this happens here is nonperturba-
tive, and apparently robust.

Finally, let us compare the shape of �̃(w) as derived in
Eq. (24) to other analytical solutions (Fig. 3): A d = 0 so-
lution for depinning, the d = 0 solution in equilibrium with
random-field (RF) disorder (Sinai model), and the one-loop
solution in the RF universality class. While these solutions
are similar, they are distinct and allow one to determine the
universality class, as was done for magnetic domain walls
[29].

Field theory for disordered elastic systems. Let us connect
our findings to the field theory of disordered elastic sys-
tems. This is best done by comparing to the formulation of
Refs. [31,32] which uses Grassmanian variables (“supersym-
metry”) [33–36] to average over disorder. The relevant action
contains two physical replicas located at positions u1 and u2.

Denoting their center of mass by u, and their difference by φ,
only φ appears inside the disorder correlator �, and u decou-
ples. The corresponding action becomes (see the Appendix)

S =
∫

x
φ̃(x)(m2 − ∇2)[φ(x) − w]

+
2∑

a=1

ψ̄a(x)(m2 − ∇2)ψa(x)

+ φ̃(x)2[�(φ(x)) − �(0)]

+ φ̃(x)�′(φ(x))[ψ̄2(x)ψ2(x) + ψ̄1(x)ψ1(x)]

+ ψ̄2(x)ψ2(x)ψ̄1(x)ψ1(x)�′′(φ(x)). (25)

Here, φ̃ and φ are bosonic fields (complex numbers), while
ψ̄i and ψi are Grassmann variables [37]. To understand this
action, let us temporarily drop the fermionic fields. Taking di-
mension d → 0, and rescaling φ̃ → φ̃/m2, we get the model
of Eqs. (6)–(8),

ZFRG(w, λ) ≡ ZS
bos(w, λ)

∣∣
d=0 :=

∫
φ,φ̃

e−S|ψi→0 , (26)

λ ≡ m−4. (27)

Equation (27) implies that w ∼ √
λ = m−2, thus the scaling

exponent of the field φ, also referred to as the roughness
exponent ζ , is

ζ = 2, (28)

which also holds for the action (25). By construction, the
partition function of the latter over all bosonic and Grassmann
fields is 1,

ZS (w, λ) := 〈1〉S = 1, 〈O〉S :=
∫

φ,φ̃,ψ̄1,ψ1,ψ̄2,ψ2

e−SO.

(29)

The renormalized �(w) is given [15] by the connected expec-
tation of m4(φ − w)2/2,

�Susy(0, λ) − �Susy(w, λ) = m4

2

〈
(φ − w)2

〉c
S . (30)

This function has a limit,

�̃Susy(w) := lim
m→0

�Susy(wm−2, m−4). (31)

It is nontrivial to show that the functions defined in Eqs. (31)
and (24) agree (see the Appendix and Ref. [23]),

�̃Susy(w) = �̃FRG(w). (32)

Thus what we obtained for the simple model (6) also applies
to the disordered system defined by the action (25).

Applications. Our results agree up to one-loop order with
that for disordered elastic manifolds in equilibrium and at de-
pinning [17–22]. Beyond that, amplitudes are different in the
ε expansion, and there are additional anomalous terms which
are hard to recuperate [23]. While our model can formally be
derived from a field theory in equilibrium, we do not believe
�̃FRG(w) to be relevant for a specific physical situation, even
though the predicted roughness exponent is equal to that of
depinning, and the shape of �̃FRG(w) in Fig. 3 is between a
driven particle and Sinai’s model, both relevant in d = 0.
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Given these caveats, we turn to the strengths of our ap-
proach. Our model contains all ingredients of functional
renormalization: it shows that the perturbative series is Borel
summable, how the limit of strong coupling is reached, that
it cannot be inferred from the large-order behavior, and how
universality emerges. By connecting to a formulation via su-
perfields, we establish the connection to field theory. The
zero-dimensional limit is relevant for DNA unzipping [30] and
RNA/DNA peeling [28], providing a concrete physical appli-
cation. Since this limit retains all relevant physics, as, e.g.,
avalanches, and can be assessed in an expansion in ε = 4 − d ,
the model (7) and (8) is key in understanding FRG and its ε ex-
pansion; as a solution of the model (1), even though somehow
trivial, is key in understanding the ε expansion in φ4 theory.

Our work poses a solid framework for the strong-coupling
behavior in functional renormalization, constraining the large-
order and strong-coupling behavior in dimension d > 0. We
also saw that to define the path integral nonperturbatively,
one needs to specify the integration contours, and constrain
variables to part of their physically allowed domains. This
restricts theories in dimension d > 0.

Acknowledgments. We are grateful to Andrei Fedorenko
for stimulating discussions and many deep questions. We
profited from exchanges with Costas Bachas and Edouard
Brézin, and feedback from the anonymous referees.

Appendix: Field theory and additional numerical checks.
Building on the Susy formulation of Ref. [38], Ref. [31]
introduces two physical copies located at u1 and u2, which are
subject to confining potentials displaced by w, such that their
difference φ := u1 − u2 has expectation 〈φ〉 = w; its center of
mass is u := (u1 + u2)/2. The field theory, given in Eq. (36)
of Ref. [31], reads

S =
∫

x
φ̃(x)(m2 − ∇2)[φ(x) − w] + ũ(x)(m2 − ∇2)u(x)

+
2∑

a=1

ψ̄a(x)(m2 − ∇2)ψa(x)

+ φ̃(x)2[�(φ(x)) − �(0)]

− 1

4
ũ(x)2[�(φ(x)) + �(0)]

+ 1

2
ũ(x)�′(φ(x))[ψ̄2(x)ψ2(x) − ψ̄1(x)ψ1(x)]

+ φ̃(x)�′(φ(x))[ψ̄2(x)ψ2(x) + ψ̄1(x)ψ1(x)]

+ ψ̄2(x)ψ2(x)ψ̄1(x)ψ1(x)�′′(φ(x)). (A1)

Here, ũ and φ̃ are the response fields for u and φ, while
ψi and ψ̄i are Grassmannian variables introduced to ensure
that the partition function equals 1. Integrating over u forces
ũ → 0, resulting in Eq. (26) of the main text. Let us next
take dimension d = 0 in action (26), and integrate over the
Grassmann variables. This gives the partition function

Z = 1

m4

∫
φ

∫
φ̃

{[φ̃�′(φ) + m2]2−�′′(φ)}

× exp(−[φ̃2(�(φ) − �(0))] − m2φ̃(φ − w)). (A2)
Integrating φ̃ over the imaginary axis yields

Z = 1

2m2
√

π

∫ ∞

0
dφ

{
m4 − �′′(φ) + m4(w − φ)2�′(φ)2

4[�(0) − �(φ)]2

− �′(φ)
[
�′(φ) + 2m4(w − φ)

]
2[�(0) − �(φ)]

}
e− m4 (w−φ)2

4[�(0)−�(φ)]

√
�(0) − �(φ)

.

(A3)

After Eq. (21) we stated that the latter can be derived from
Eq. (6) if φ̃ ∈ iR and φ > 0. We use the same prescription
to pass from Eq. (A2) to Eq. (A3), checking that Z = 1 in
Eq. (A3). We then evaluated Eqs. (31) and (32) perturbatively
and numerically, proving Eq. (32) (for details see Ref. [23]).

Finally, let us give some additional numerical checks: Fig-
ure 4 shows that for w = 0,

ZB
FRG(w) :=

∞∑
n=0

λn

n!
Z (n)

FRG(w), (A4)

with Z (n)
FRG(w) defined in Eq. (8), agrees with both Eqs. (17)

and (18) inside its radius of convergence, at least for λ > 0.
For λ > 0 and outside the radius of convergence, the latter two
agree with each other and a Padé resummation of Eq. (A4).

Figure 5 shows the rescaled �̃′′
FRG(w) for λ = 10, i.e., well

outside the range of convergence of the Borel transform. We
tested the integral (20) against a Padé-Borel approximation
of the original series. Deviations for some values of w are
visible due to the large value of λ, but are absent for smaller
λ (not shown). We also tested that there is no difference when
keeping the erfc in Eq. (19), instead of replacing it by 1, as
was done in the derivation of Eq. (20). Finally, the solution
approaches the asymptotic form (24). We checked this conver-
gence for λ up to 1020 using the cut integral (21) (not shown).
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