Hyperuniformity in the Manna Model, Conserved Directed Percolation and Depinning

Kay Jorg Wiese
CNRS-Laboratoire de Physique de I’Ecole Normale Supérieure, PSL Research University,
Sorbonne Université, Université Paris Cité, 24 rue Lhomond, 75005 Paris, France.

Hyperuniformity is an emergent property, whereby the structure factor of the density n scales as S(g) ~ ¢,
with @ > 0. We show that for the conserved directed percolation (CDP) class, to which the Manna model
belongs, there is an exact mapping between the density n in CDP, and the interface position u at depinning,
n(z) = no + V>u(z), where no is the conserved particle density. As a consequence, the hyperuniformity
exponent equals « = 4 — d — 2¢, with ¢ the roughness exponent at depinning, and d the dimension. Ind = 1,
a = 1/2, while 0.6 > « > 0 for other d. Our results fit well simulations in the literature, except in d = 1,
where we perform our own to confirm this result. Such an exact relation between two seemingly different fields
is surprising, and paves new paths to think about hyperuniformity and depinning. As corollaries, we get results
of unprecedented precision in all dimensions, exact in d = 1. This corrects earlier work on hyperuniformity in

CDP.

Context. Hyperuniform (HU) structures have vanishing
long-wavelength density fluctuations similar to crystals, but
no long-range order [1-3]. The structure factor of the Fourier-
transformed particle density, S, := (ngn_4) vanishes for
small ¢, as S; ~ |¢|* with @ > 0. HU is observed in nu-
merous systems [2, 3], ranging from sandpile models [4-9],
over sheared colloids [10], to densest packings [11]. All the
above systems have a critical state recognized to be in the con-
served directed percolation (CDP) class. This attribution usu-
ally relies on a comparison of numerically measured critical
exponents, especially the hyperuniformity exponnent c. In
this situation it is highly desirable to have an analytical under-
standing of the underlying mechanism for hyperuniformity,
and to know the relevant ritical exponents with precision. In
this letter, we provide an exact mapping from CDP to depin-
ning of an elastic manifold [12]. This mapping allows us to
express the hyperuniformity exponent « in terms of the di-
mension d and the roughness exponent ¢ at depinning,

a=4—d—2C. 6]

Using ¢ from for depinning gives « with higher precision than
in most sandpile simulations, see Fig. 1.

This letter is organized as follows: we first review the con-
cept of hyperuniformity, before introducing the Manna sand-
pile, the simplest and most prominent model in the CDP class.
We then discuss further models in this class, and present the
mapping. We finish with numerical evidence, and a discussion
of relevant work in the literature.

Hyperuniformity. Consider a particle system of size L,
where the total number Ny, of particles is conserved. We ask
how many particles Ny are in a part of the system of radius
R < L. If the system is translationally invariant, then

Ntot

(Ng) = — 7 R". )
How does Ny fluctuate? We expect that
var(Ng) = (N%) — (Ng)* ~ R". (3)

One can show [13] that (except for fine-tuned models [14])

d—1<r<d. 4)

A Poisson process has k = d, a regular lattice x = d — 1.
When k < d the system is said to be hyperuniform. This
terminology was introduced in [1] for K = d — 1, and is now
used for any k < d [8, 15, 16]. Alternatively, one can consider
the structure factor of the Fourier transform 7, of the density
n(x). Its small-¢q behavior is

S(q) = (ngn_gq) ~ ¢, K+ a=d. (5)

We are interested in class-III HU systems [2], which corre-
spond to 0 < o < 1. Larger values of « are possible [2, 17],
K then freezes at its lower bound Kk = d — 1.

The Manna sandpile and conserved directed percolation.
The Manna sandpile [18] is defined as follows: Consider a
d-dimensional lattice, e.g. the checker board in d = 2. Each
site  has n(x) grains. If n(x) > 2, with rate 1 move two of
the grains, each to a randomly chosen neighbor. This dynam-
ics conserves the total number N := > n(x) of particles.
Denote the fraction of ¢ times occupied sites as a;. Then (for
each site 2 and time t) ).~ a; = 1, the number of particles
is Y72, ia; = n, and the activity > .-, (i — 1) a; = p. The
last definition, introduced in [19], gives a higher toppling rate
to triple and higher occupied sites than the standard definition.
Since we are interested in densities close to the transition, this
does not matter [19]. The benefit of this definition is the exis-
tence of the exact sum rule

n—pte=1, ©)

where e := ag is the fraction of empty sites.

The next step is to write effective stochastic equations of
motion for n, p and e. Due to the constraint (6) there are
two independent equations, usually written in terms of particle
density n(x, t), and activity p(x,t) (for a derivation see [19]),

atp(xa t) = V2p(x, t) + [27’1(1}, t)_l} p(l‘, t) - Qp(.'II, t)2

+v2p(x, ) n(x, t), @)

on(z,t) = Vp(x,t). (8)

Here &(z,t) is a standard white noise

(n(x,tyn(a’ 1)) = 6%z — 2/)o(t — t'). 9)



Sheared colloids. The same effective model works for pe-
riodically sheared colloids close to the reversible/irreversible
transition. The connection can be understood via the Ran-
dom Organization (RO) model [10]: track the particle dis-
placements after a full shear cycle of given amplitude. These
displacements are replaced by random ones of observed am-
plitude, for the active particles, i.e. those which collided dur-
ing the cycle. This results again in the set of Egs. (7)-(8). The
Biased Random Organization (BRO) model [11] is a variant,
where colliding particles receive an additional displacement
moving them apart. In [10, 11] the authors claim that RO
and BRO both belong to the CDP class. Furthermore, BRO is
claimed to account for the statistics of random close packings
(RCP) [11], where other authors claim RCP to be mean field
in all dimensions [20].

Mapping CDP to depinning. We now map the CDP equa-
tions (7)-(8) onto depinning. Instead of writing coupled equa-
tions for n(z, t) and p(z, t), use the sum rule (6) to write cou-
pled equations for p(z,t) and e(x, t),

8t€($,t) = [1—26(x,t)]p(at,t) + 2p(l‘, t) n(xvt)a (10)
Qepl,t) = V2p(w,t) + Ore(x, 1), (11)

To show the equivalence to disordered elastic manifolds [21,
22], define

plx,t) = dwu(z,t)
e(z,t) = F(x,t)

Eq. (11) is the time derivative of the equation of motion of an
interface, subject to a random force F(z, t),

Opu(w,t) = Vu(z,t) + F(z,t). (14)

(the velocity of the interface), (12)
(the force acting on it). (13)

It remains to characterize the statistics of F. Since p(z,1)
is positive for each x, u(z,t) is monotonously increasing.
Instead of parameterizing F(z,t) by space = and time ¢, it
can be written as a function of space = and interface position
u(x,t). Setting F(x,t) — F(z,u(x,t)), Eq. (10) becomes
WF(x,t) = OF (z,u(z,t))
= 0uF (z,u(u, 1)) dyu(z,t)

= {1 - 2F(Jc, u(z, t))] Opu(x,t)
20uu(x, t)n(x, t). (15)

For each z, this is equivalent to an Ornstein-Uhlenbeck [23]
process F'(x,u), defined by

OuF (z,u) =1 —2F (z,u) + V2 &(z,u), (16)
(E(zwe(@’ u) = 0%z —a")o(u—u). (A7)
While the noise n(z, t) is uncorrelated in time, &(, u) is un-
correlated in the interface position u. Given x, F(x,u) is a

Gaussian Markovian process with mean (F'(z,u)) = 1/2, and
variance in the steady state of

<[F(x,u) —

5d(.’E _ x/)e—2|u—u'\ )

(18)
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FIG. 1. The exponent « of the structure factor S(q) ~ |¢| as a
function of dimension d for the Manna model. Blue solid line from
the e-expansion of [24], red dots (with error bars) simulations at de-
pinning [25, 26]. Simulations in green are from [27]. The dark green
data point is from Fig. 2. In gray are the different e-expansion re-
sults, @ = €/9 (dashed) [5], & = 2¢/9 (dotted)[28] and o = €¢/3
(dot-dashed) (leading term of Eq. (25)).

Writing the equation of motion (14) as

dpu(z,t) = Vu(z,t) + F(z,u(z,1)), (19)

it is the equation of motion of an interface with position
u(x,t), subject to a quenched disorder force F(x,u(z,t)).
The latter is d-correlated in the x-direction, and short-ranged
correlated in the u-direction: it is a disordered elastic manifold
subject to Random-Field (RF) disorder. As a consequence, re-
sults for disordered elastic manifolds can be used for CDP and
the Manna model.

Hyperuniformity in the Manna model. The roughness ex-
ponent ( for the random manifold is defined via

<[U(IE, t) - ’U,(y, t)]2>
Eq. (12) implies that p is not HU,

(p(x,t)p(y, 1))

where z is the dynamical critical exponent [12]. As a new
result, let us calculate the particle-density correlation func-
tion. We have to identify n(x, t) with the appropriate random-
manifold field. Using Egs. (8) and (12), we find d;n(z,t) =
V20,u(z,t), or after integration over time

~ o -yl (20)

T Q1)

n(z,t) = V2u(x,t) + no. (22)

Here ng is the conserved mean density of particles, i.e. the
conserved total number of particles divided by the volume.
Taking the derivatives implied by Eq. (22) yields

(n(@, t)n(y,1))" ~ |

In Fourier space this implies our result (1),

Sq = <nqn,q> ~ g%,

—y|? 4 (23)

a=4—-d—-2(. (24)
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FIG. 2. Left: the compensated structure factor Sqq’l/ 2
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in a In-In plot for a periodic system of size L = 105, with 8 x 107 samples. The red

dashed line with slope 0 indicates the behavior Sq ~ /g, the cyan curves power laws with an exponent deviating by +0.05, indicating our
interval of confidence. The middle plot shows the Laplace-transform £z—1 o S(t) defined in Eq. (32). The fit by the red dashed line has slope

—(1 4+ «) = —3/2. Subtracting this fit gives the plot shown to the right.

Denoting ¢ = 4 — d, and using for ( its € expansion { =
£+ Goe? + (3%, see [29, 30] (2-loop) and [24] (3-loop), «
becomes

o=e-2= 202G 1O @5

(o = 0.0477709715468230578... (26)
(3 = —0.0683544(2). Q7

To obtain predictions for « in the CDP class, we can use
Eq. (25) via Padé-Borel resummation supplemented by the
knowledge of (4—¢ = 2 [12], and (4—1 = 5/4 [8, 26]. This
leads to

b =172, off, =0.4964, obl, =0.2868. (28)

Alternatively, use the best simulation results (4o = 0.753 +
0.002 [25] and (4—3 = 0.355 £ 0.01 [25], to find

AN = 0.494(4), oY =0.29(2). (29)

As Fig. 1 shows, 0 < a < 1 in all dimensions, the signa-
ture given in Egs. (4)-(5) for a class-1II hyperuniform system.
The figure compares e-expansion, numerical simulations for
« [27] in the Manna model (see below), and predictions using
Eq. (24) with ¢ from simulations at depinning.

Active state. When disordered elastic manifolds are driven
at a finite velocity v, the force correlations become J-
correlated in time [12], and act like a thermal noise, leading to
a roughness exponent (moving = Qg—d. This gives the hyper-
uniformity exponent in the active phase,

Qactive — 4—d-— 2Cmoving = 2. (30)

This was observed in the active phase of the RO and Manna
models with center of mass conservation [31], as well as in
non-equilibrium hyperuniform fluids [17].

Stability of CDP, and relation to DP. There was a long de-
bate whether the Manna model, or the corresponding CDP
theory, are in the same universality class as disordered elas-
tic manifolds or whether they belong to a different universal-
ity class, the directed-percolation (DP) class. This question

was finally settled in [21] by the arguments presented above.
To understand how robust CDP is, replace in Eq. (7) the term
[2n — 1]p — A[2n — 1]p, while keeping n as a (possibly un-
observable) variable. The limit of A — 0 corresponds to DP.
This changes Eq. (16) for F'(z,u) to

OuF (x,u) = A[1—2F (2, u)] —2(1=\)p+V?2 &(z,u). (31)

Compared to Eq. (16), it has an additional noise proportional
to p, with both a mean and a variance. We expect that for given
x, as long as A > 0, the process F'(x, u) remains short-range
correlated with a correlation length { ~ 1/X. (This con-
clusion was reached via a different argument in [21].) While
the correlation length £ diverges for A — oo, we expect the
CDP class to be robust as long as A > 0, i.e. as long as there is
a conserved density n, and it appears via a term proportional
to np in the equation for d;p. It would be interesting to re-
peat simulations on sheared colloids [32], for which opposite
conclusions were reached.

Improved numerical checks. There is some tension between
simulation results a2 = 0.41(4) [27], the seemingly ac-
cepted value of°, ~ 0.45 [3, 10, 11], and our exact result
ag¥@t = 1/2. For this reason we performed numerical sim-
ulations for Manna with systems of size up to L = 10*. The
results of the latter compensated for the predicted behavior
are shown on the left of Fig. 2. There are strong finite-size
corrections which make understandable the relatively small
value given in [27]. However, in the relevant limit of small ¢,
the data are consistent with & = 0.5 (red dashed line), while
the cyan (bright) lines for & = 0.45 and o = 0.55 are the
confidence interval reported on Fig. 1. To reduce the statisti-
cal noise, we also show the results for a generalized Laplace-
transform,

LooS(t):=Y eld’ts, ~ 75" (32)
q
The value S = 1 is the standard Laplace-transform, and was

used e.g. in [33]. 5 = 2 is now popular under the name “dif-
fusion spreadability” [34]. Our data analysis shows = 1,
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FIG. 3. Left: fit (red dashed) of Sg (solid blue used for fit, green not
used) for L = 10° with S2 ~ 5.31-10°¢In(16111/g). Right: The
compensated correlation function C (x)m3/ 2 for even (blue squares)
and odd (red discs) distances x. In dashed weakly filtered data as
guide for the eye. One sees strong even/odd lattice effects, which
start to disappear at x ~ 30.

2 or 4 to be equivalent for all practical purposes. As Fig. 2
for 5 = 2 reveals, the noise is indeed reduced, but it is more
difficult to choose the proper domain to fit to. All fits give
a = 0.5=£0.05.

The reader may wonder where this problem in such a large
system comes from, and whether there might be systematic
corrections. While there is no proper theoretical motivation,
on a phenomenological level the deviations from a pure power
law are well fitted with a logarithm, as Fig. 3 attests. To pro-
ceed, it is instructive to plot the density correlations as a func-
tion of distance. For short even distances, we find positive cor-
relations, due to events where one grain is moved to the right,
and one to the left. These positive correlations become nega-
tive for x > §, but one has to wait to x ~ 30 until even and
odd correlations are comparable. This indicates that £ = 30 is
the minimal coarse graining size, taking out 1.5 decades from
the fitting range for S, certainly one reason for its slow con-
vergence. One may also wonder whether this is related to the
saturation of the apparent roughness exponent at depinning

dep(d =1) = 1[12, 35].

Relation to the literature. Our results contradict two works
from the literature: the phenomenological observation o =
€/9 [5] (we supplemented [5] with [p];, = ( — 2z as implied
by Eq. (21)) and a@ = 2¢/9 [28] obtained from RG within
the Doi-Peliti approach. None of these works uses functional
RG, which is crucial to account for the non-trivial structure
present at 2-loop [29, 30] and 3-loop [24] order at depinning.
Ref. [28] does this calculation in terms of active and passive
particles in a 2-species model. The density of the latter is a
linear combination of fields used here, n, = a; = n — 2p.
Since n — ng = V2w and p = O,u, the scaling dimensions
of the two terms differ by z — 2 = O(e). As aresult, n,, is
not a proper scaling field of the RG, a problem known in other
contexts [36]. As the two fields are degenerate at € = 0, their
respective O(¢) corrections are easily attributed to the O(e)
correction of their linear combination np.

A new feature of [28] is the introduction of a current
noise in their Eqs. (4) and (5). As additional terms have
to vanish in the absorbing state p = 0, we may add to
Eq. (10) the divergence of a current; the most relevant is
VJ(z,t) = VO, (x,t), with &,T (x,t) = /p(z, 0)ij(x, 1),
(n'(z, ) (2/,t")) = 6%z — a’)6(t — t')6%. Comparing
V2p ~ LE72 1o Vi/p(x, if(a,t) ~ LT 175 we
conclude that the latter is perturbativly irrelevant as long as
d + ¢ > 2, which is satisfied for all d > 0. It may be-
come relevant non-perturbatively: using the same techniques
as in the derivation of Eq. (18), I'*(z, t) has the statistics of a
random walk, ([['%(z,t) — I'%(z,0)]?) ~ |u(z,t)—u(z,0)]|.
Using results of the Brownian-force model [12] one gets
¢ = (grm — 1 = 3 — d. This would destroy HU in dimen-
sion d = 1, in contradiction to simulations. As the current
in the Manna model should not keep an infinite-time memory
as a random walk does, we propose to modify the equation
for T to an Ornstein-Uhlenbeck process in u, as in Egs. (10)
and (16): atf(xvt) = p(z, t)ij(x,t) — Iip(l‘,t)f(x,t),
x > 0. This takes into account that if two particles jump onto
the same neighbor, contributing to the current J, a toppling
will take place there, resulting (possibly after iteration) into
a counter-current. I'*(z,¢) then has correlations as Eq. (18),
and VO,I(x,t) is irrelevant. While the mapping from the
CDP equations (7)-(9) to depinning is exact, the additional
irrelevant current in Manna makes interfaces constructed as
u(zx,t) :== Zi:o p(x, 7) microscopically rough. This can be
seen in simulations.

Conclusions. 1In this letter, we have shown how hyper-
uniformity in CDP is related to depinning. This equivalence
yields precise theoretical predictions for the hyperuniformity
exponent in all dimensions, both close to the transition, and in
the active state. It would be interesting to extent these results
to other universality classes, as gKPZ [25, 37-39], and to see
whether the fascinating phenomenology in plastic depinning
[40] has an equivalence in sandpile models.
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