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Abstract

We derive the exact actions of the Q-state Potts model valid on any graph, first for the spin
degrees of freedom, and second for the Fortuin-Kasteleyn clusters. In both cases the field is a
traceless Q-component scalar field Φα. For the Ising model (Q = 2), the field theory for the
spins has upper critical dimension dspinc = 4, whereas for the clusters it has dclusterc = 6. As a
consequence, the probability for three points to be in the same cluster is not given by mean-field
theory theory for d within 4 < d < 6. We estimate the associated universal structure constant
as C =

√
6− d + O(6 − d)3/2. This shows that some observables in the Ising model have an

upper critical dimension of 4, while others have an upper critical dimension of 6. Combining
perturbative results from the ϵ = 6 − d expansion with a non-perturbative treatment close to
dimension d = 4 allows us to locate the shape of the critical domain of the Potts model in the
whole (Q, d) plane.

1 Introduction
The Ising and Q-state Potts models have a long history [1]. Let us denote by s⃗x the state variable,
allowed to takeQ different values. The energy of the Potts-model on a graph G = (V , E) with vertices
V and edges E is defined by

HPotts
Q [s⃗; h⃗] = −

∑
(x,y)∈E

Jδs⃗x,s⃗y −
∑
x∈V

h⃗xs⃗x, (1)

where the first term is −J if s⃗x and s⃗y are in the same state and zero otherwise. The last term evaluates
to hα if the spin is in state α. The Ising model is the special case with Q = 2. While the Potts model
is originally defined for integer Q, it can be extended to any Q ∈ C via the Fortuin-Kasteleyn cluster
expansion [2], see section 3. A natural question to ask is whether these two expansions lead to the
same field theory. While for the spin degrees of freedom, the latter was derived in the classical work
by Golner [3], Zia and Wallace [4], Amit [5], and Priest and Lubensky [6, 7], a field theory for the
cluster expansion is lacking. This comes with the pressing question of whether the leading non-
Gaussian term is cubic as in [5, 6, 7, 8], or quartic as in [4]. This is relevant as the upper critical
dimension is six for a cubic interaction, and four for a quartic one.

On Fig. 1 we show critical values of Qc(d) beyond which the critical point disappears, or equiv-
alently dc(Q) beyond which this happens: Values found in the literature, are dc(Q = 1) = 6 for
percolation [5, 9, 6, 7], dc(Q = 2) = 4 for the Ising model [10], dc(Q = 3) ≈ 2.5 from the numerical
conformal bootstrap [11], and dc(Q = 4) = 2 [12, 13]. The situation in d = 3 seems debated, with
values for the critical value of Q ranging from 2.2 to 2.6: Qc ≈ 2.2 via an Ornstein-Zernicke approx-
imation [14], Qc = 2.35(5) via MC [13], Qc = 2.2 via real-space RG [15], Qc = 2.11(7) via NPRG
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Figure 1: The various critical dimensions present in the Potts model, as explained in the main text.
The yellow shaded region marked as “first order” is the area without a real critical CFT. The upper
boundary is obtained via NPRG/Wilson. The left upper branch for Q < Qc and d > 4 is numerically
very robust. The upper right branch for Q > Qc and d > 4 is delicate, and may change (probably
further reduce) in higher orders. The lower bound has been studied in the literature; here we use
the polynomial fit from Eq. (3), with two additional powers added, adjusted such that Qc(d = 6) =
10/3 and Qc(d = 4) = 4. Points on the boundary are critical. The point Q = 5 in d = 2 has
complex couplings. The domain denoted as “imaginary CFT” (in pink) represents a critical theory
if all couplings are real after rotation of ϕ → iϕ, i.e. odd couplings purely imaginary, and even
couplings real. For Q→ ∞, perturbatively it gives Q decoupled Lee-Yang theories (see section 5.3.2
for a caveat). If one starts with real couplings, as in a simulation, this region is first order.

[16], Qc = 2.1 as well as Qc = 2.45(1) [17] and Qc = 2.620(5) [18], both via MC. The most precise
value seems to be from Ref. [13]. In d = 2 the critical value is Qc(d = 2) = 4 [19, 20, 21].

The green dashed curve is our result derived in section 4.7,

dc = 6− 729

1480
(Q−Qc)

2 +O(Q−Qc)
3. (2)

In blue dot-dashed is shown the result in the LPA′-approximation of the NPRG [22, 23], used for
Potts in [24, 16]. In this scheme, we find in agreement with [16]

Qc − 2 ≈ 0.10(4− d)2 +O(4− d)3. (3)

There is an older estimation [25], obtained via the numerical solution of eleven coupled RG equations
in the Wilson scheme, which reads

Qc − 2 ≈ 0.153(4− d)2 +O(4− d)3. (4)

We could not reproduce this result, see section 5. Finally, Refs. [26, 25] state that Qc = 2 for d > 4.
This is incompatible with the expansion (2). On the other hand, both expansions make sense if we use
Eq. (4) or (3) also in dimension d > 4: As a glance at Fig. 1 shows, the expansions in Eqs. (2) and (4)
or (2) and (3) are compatible, and taken together allow for a rather precise delimination of the critical
region for d > 4 andQ ≤ 10/3. This can be obtained within various non-perturbative renormalization
schemes (see section 5). For Q > 10/3 and d → 6 a region (pink in Fig. 1) appears with a purely
imaginary coupling. As we discuss in section 4.7, this may be an artifact of the expansion. If we start
with real couplings, the yellow first-order region covers this region as well.
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In the argumentation above we equated an RG flow to strong coupling with a first-order transition,
as is implicitly (i.e. without proof) commonly done in the literature. We cannot exclude that the flow
which apparently goes to strong coupling is towards a critical fixed point not accessible in any of our
schemes. In this scenario, the boundary of the critical regime remains unchanged, but the interior of
the “first-order” region may become second-order, or split in a first-order and a second-order regime.

To complement our introduction, let us mention field-theory results for the cubic [8, 27, 28, 29],
quartic [27] and quintic theories [30], which each are consistent below their respective upper critical
dimensions, and which we expect to be (higher critical) conformal field theories (CFT). Expansions
as in Eqs. (4) or (3) also appear in [31].

In this work, we first derive the exact field-theoretical action in the spin formulation (section
2), followed by the exact action of the cluster expansion (section 3). By exact we mean that on an
arbitrary graph the field theory produces the partition function and all correlation functions, without
any approximation.

When evaluating these exact actions for regular lattices, e.g. the cubic lattice in d dimensions,
and taking a continuum limit, the action expanded in the fields contains an infinity of interactions.
In order to set up an efficient RG scheme, we follow the standard procedure to retain solely the
most relevant terms. The result of this procedure is different in the spin and cluster expansions: In
the cluster expansion, the leading interaction is cubic for all Q, leading to dclusterc (Q) = 6. In the
spin formulation, the Ising model is special, since its symmetry under a reversal of the field (the
magnetization) excludes a cubic vertex, leading to an upper critical dimension dspinc (Q = 2) = 4.
This suggests that for the Ising model spin-correlation functions are given by mean-field theory in
dimensions between four and six. However, the probability that three sites are in the same cluster is
given by the non-trivial cubic theory. The latter predicts to leading order in 6− d that

C :=
P(x, y, z)√

P(x, y)P(y, z),P(z, x)
=

√
6− d+O(6− d)3/2, (5)

where P(x, y, z) is the probability that x, y, and z are in the same cluster, and likewise for the terms in
the denominator. While the functional form of P(x, y, z) is imposed by global conformal invariance
[32] as written, the amplitude is non-trivial, and measurable in a numerical simulation. We report
below in Eq. (89) a similar result for other values of Q.

The article is organized as follows: In section 2, we derive the field theory for the spin expansion,
followed by the field theory for the cluster expansion in section 3. Section 4 treats the ensuing field
theories perturbatively, and calculates the structure constant. In section 5 we treat the Q-state Potts
model via the non-perturbative renormalization group, which allows us to draw the phase diagram in
the whole (Q, d) plane. In section 6 we conclude. Some technical details on the Potts algebra are
relegated to appendix A.

2 Spin expansion
We start with a reminder or the spin expansion for the Potts model. Consider the Q-state Potts model.
Following [3, 4], we represent each state α = 1, ..., Q as a vector1

s⃗x ∈ {e⃗1, ..., e⃗Q},
1While this representation is heuristically appealing, and allows one to coarse-grain spin degrees of freedom, it may

be but one of various distinct possibilities. We will see a systematic procedure for the cluster expansion in section 3.
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of length
√

1− 1
Q

, and a scalar-product of −1/Q between distinct vectors,∑
α

e⃗α = 0 (6)

e⃗α · e⃗β :=
∑
i

eiαe
i
β = δαβ −

1

Q
(7)

ei ◦ ej :=
∑
α

eiαe
j
α = δij. (8)

The normalizations are chosen for convenience. As an example, for Q = 2 we have e⃗1 = −e⃗2 =
1/
√
2, while for Q = 3 the three vectors lie in the plane with an angle of 2π/3 between them. We

refer to appendix A for details on this construction.
The energy of the Potts-model in this spin representation, in the presence of a magnetic field h⃗x is

H[s⃗; h⃗] = −
∑

(x,y)∈E

Jδs⃗x,s⃗y −
∑
x∈V

h⃗xs⃗x. (9)

According to Eq. (7),

s⃗x · s⃗y +
1

Q
=

{
1 if s⃗x = s⃗y

0 else
. (10)

With the help of this identity, Eq. (9) can be rewritten as

H[s⃗; h⃗] = −
∑

(x,y)∈E

J

[
s⃗x · s⃗y +

1

Q

]
−
∑
x∈V

h⃗xs⃗x

=
J

2

∑
(x,y)∈E

{
[s⃗x − s⃗y]

2 − 2
}
−
∑
x∈V

h⃗xs⃗x. (11)

To obtain the effective action, we follow the standard procedure [33]: introduce an auxiliary field
to decouple the interaction, sum over the spins, and finally perform a Legendre transform w.r.t. the
auxiliary field. We start with

Z [⃗h] ≡ e−W [⃗h] =
〈
e−

1
2

∑
x,y∈V s⃗xKxy s⃗y+

∑
x∈V h⃗xs⃗x

〉⃗
s
. (12)

As s⃗2x = 1 − 1
Q

, the matrix element Kxx can be chosen to our liking, allowing us to ensure that the
inverse kerne K−1

xy exists. The double sum over x, y runs over all vertices, x ∈ V and y ∈ V , but
Kxy = 0 if (x, y) ̸∈ E . To reduce clutter, we drop the notation that x, y ∈ V for the remainder of this
section.

We now decouple the interaction,

e−W [⃗h] =
〈
e−

1
2

∑
x,y s⃗xKxy s⃗y+

∑
x h⃗xs⃗x

〉⃗
s

=N
∫ ∏

x

dϕx e
1
2

∑
x,y ϕ⃗xK

−1
xy ϕ⃗y

〈
e
∑

x(ϕ⃗x+h⃗x)s⃗x
〉⃗
s
. (13)

Note that in order for the path integral to converge, ϕ⃗ is chosen imaginary. Summing over spins yields
(for each site x, dropping the index)∑

s⃗∈{e⃗α}

e(ϕ⃗+h⃗)s⃗ = e−V (ϕ⃗+h⃗), (14)

V (ϕ⃗) = − ln

 ∞∑
n=0

1

n!

∑
s⃗∈{e⃗α}

(s⃗ · ϕ⃗)n
 = − ln

(
∞∑
n=0

1

n!

Q∑
α=1

(ϕα)
n

)
, (15)

4



where we defined
ϕα :=

∑
i

ϕieiα ≡ ϕ⃗ · e⃗α. (16)

By construction
∑

α ϕα = 0. This allows us to write

e−W [⃗h] =N
∫ ∏

x

dϕxe
1
2

∑
x,y ϕ⃗xK

−1
xy ϕ⃗ye−V

(
ϕ⃗x+h⃗x

)
=N

∫ ∏
x

dϕxe
1
2

∑
x,y [ϕ⃗x−h⃗x]K

−1
xy [ϕ⃗y−h⃗x]e−V

(
ϕ⃗x

)
=N ′e

1
2

∑
x,y h⃗xK

−1
xy h⃗y

∫ ∏
x

dψxe
1
2

∑
x,y ψ⃗xKxyψ⃗y−ψ⃗xh⃗y−

∑
x V
(∑

yKxyψ⃗y

)
. (17)

From the first to the second line we shifted ϕ⃗x → ϕ⃗x − h⃗x, and finally replaced ϕ⃗x by ψ⃗x :=∑
yK

−1
xy ϕ⃗y. The change in measure is reflected by a new normalization constant N ′. The last line is

e−W [⃗h] = N ′e
1
2

∑
x,y h⃗xK

−1
xy h⃗y

〈
e
∑

x h⃗xψ⃗x

〉
H

(18)

with the action (signs: e−S[ψ])

S[ψ⃗] = −1

2

∑
x,y

ψ⃗xKxyψ⃗y +
∑
x

1

2
U(
∑
y

Kxyψ⃗y). (19)

We note that V (ϕ⃗ = 0⃗) = 0 and ∇ϕV (ϕ⃗)|ϕ⃗=0 = 0. We can therefore write

U(ϕ⃗) = λ2ϕ⃗
2 + λ3

∑
α

(ϕα)3 + λ4
∑
α

(ϕα)4 + λ2,2

(∑
α

(ϕα)2

)2

+ ... (20)

We now construct Γ[ϕ⃗], the Legendre transform of W [⃗h]. The result, keeping only the most relevant
terms, is

Γ[ϕ⃗] =
1

2

∑
x,y

∑
α

ϕαx [Kxy + λ2δxy]ϕ
α
y

+
1

2

∑
x

λ3∑
α

(ϕαx)
3 + λ4

∑
α

(ϕαx)
4 + λ2,2

(∑
α

(ϕαx)
2

)2

+ ...


+loop corrections. (21)

3 Fortuin-Kasteleyn cluster expansion

3.1 Basics of the cluster expansion
The Fortuin-Kasteleyn (FK) cluster expansion for the Hamiltonian (9) is [2]

Z [⃗h] =
∑
{s⃗x}

eJ
∑

(x,y)∈E δs⃗xs⃗y+
∑

x∈V h⃗xs⃗x

=
∑
{s⃗x}

∏
(x,y)∈E

[
1 + (eJ−1)δs⃗xs⃗y

]
e
∑

x∈V h⃗xs⃗x

=
∑
{s⃗x}

∑
C

∏
(x,y)∈C

(eJ−1)δs⃗xs⃗ye
∑

x∈V h⃗xs⃗x , (22)
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where C runs over all possibilities to use the term δs⃗xs⃗y , i.e. over all subsets of edges (x, y) ∈ E . Each
cluster C is the disjoint union of connected components Ci,

C = ∪̇iCi. (23)

We now interchange the two sums [2],

Z [⃗h] =
∑
C

∑
{s⃗x}

∏
(x,y)∈C

(eJ−1)δs⃗xs⃗ye
∑

x∈V h⃗xs⃗x

=
∑
C

(eJ − 1)|C|
∏

Ci|∪̇iCi=C

∑
s⃗

e
∑

x∈Ci
h⃗xs⃗. (24)

The state s⃗x = s⃗ is constant on each connected component Ci, and is independent on two different
components. If h⃗x = 0⃗, then ∑

s⃗

e
∑

x∈Ci
h⃗xs⃗ = Q. (25)

If h⃗x = (h, 0, ...) independent of x, then∑
s⃗

e
∑

x∈Ci
h⃗xs⃗ = Q+ eh|Ci| − 1

≈ Q e
h
Q
|Ci|+h2(Q−1)

2Q2 |Ci|2+O(h3)
. (26)

Thus for h⃗x = (h, 0, ...) and h small

Z [⃗h] =
∑
C

(eJ − 1)|C|Q||C||e
h
Q
|V | exp

 ∑
Ci|∪̇iCi=C

h2(Q− 1)

2Q2
|Ci|2 +O(h3)

 . (27)

where

|C| = number of edges in C (28)
||C|| = number of connected components in C (29)
|V| = number of vertices in the graph. (30)

3.2 Sampling cluster configurations from spin configurations
According to the arguments given above, cluster configurations can be sampled from spin configura-
tions:

(i) sample a spin configuration with the weight e−HPotts
Q [s⃗;⃗h],

(ii) identify regions of equal spin as a spin domain. We consider a bond between two equal spins
to belong to this spin domain.

(ii) for each such bond inside a spin domain, remove it with probability e−J .

(iv) each spin domain is by this construction decomposed into one, or several, clusters (i.e. con-
nected components) of the FK expansion.

An important result of this construction is that the clusters of the FK expansion live inside the spin
domains.
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3.3 An exact lattice action for the cluster expansion
Let us start from Eq. (22),

Z [⃗h] =
∑
{s⃗x}

∑
C

∏
(x,y)∈C

(eJ−1)δs⃗x,s⃗ye
∑

x h⃗xs⃗x , (31)

which we rewrite as
Z [⃗h] =

∑
{s⃗x}

∑
C

∏
x

eh⃗xs⃗x
∏
y

βxyδs⃗x,s⃗y , (32)

Here

βxy = βyx =

{
(eJ−1) for (x, y) ∈ C

0 else
. (33)

We claim that Eq. (31) is produced by the path integral over all Y α
x and Ỹ α

x , with action (weight)

e−S =
∏
x

{
e−

∑
α Ỹ

α
x Y

α
x

[∑
α

eh
α
x+Y

α
x

]}∏
x,y

√
1 +

∑
α

βxyỸ α
x Ỹ

α
y . (34)

Proof: The first term in the action is a term
∑

α Ỹ
α
x Y

α
x for each site x. This term is introduced to have

a Gaussian measure on each site, with expectation values〈
Ỹ α
x Y

β
y

〉
0
= δαβδxy,

〈
Ỹ α
x

〉
0
= ⟨Y α

x ⟩0 =
〈
Ỹ α
x Ỹ

β
y

〉
0
=
〈
Y α
x Y

β
y

〉
0
= 0. (35)

The last term gives a factor of 1 +
∑

α βxyỸ
α
x Ỹ

α
y per edge. The square root in Eq. (34) corrects for

the fact that the product contains both the terms (x, y) and (y, x). Expanding at x in powers of βxy
generates all possible terms in the cluster expansion, and each bond in the cluster expansion appears
with a factor of βxy. (Note that the coupling J on bond (x, y) may differ from bond to bond, and our
derivation remains valid for random-bond models).

The next thing to achieve is to contract the Ỹ α
x fields, for a given term in the cluster expansion.

Due to the rules (35), the only available contractions are with the term
∑

α e
hαx+Y

α
x . Writing down Ỹ α

x

for each factor of βxy, we need to evaluate∑
α

〈
eh

α
x+Y

α
x Ỹ β

x Ỹ
γ
x . . . Ỹ

δ
x

〉
=
∑
α

eh
α
x δαβδαγ . . . δαδ. (36)

Thus whenever the cluster-expansion contains the term βxy, our action forces the Y α and Ỹ α fields to
have the same index α. This gives a factor of

∑
α e

∑
x∈C h

α
x per cluster C. This completes the proof.

For the most interesting case of vanishing magnetic field, h = 0, this reduces to
∑

α = Q.

3.4 Expansion of the cluster action in the fields
We can expand Eq. (34) in powers of the field. This will be relevant to access the critical theory in
d = 6− ϵ dimensions. With this in mind, we expand the action up to third order, putting hαx → 0. We
start with the auxiliary formula∑

α

eY
α
x = Q+

∑
α

Y α
x +

1

2

∑
α

(Y α
x )

2 +
1

3!

∑
α

(Y α
x )

3 + ... (37)
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This implies that the corresponding contribution to the action S from Eq. (34) reads

− ln

(∑
α

eY
α
x

)
= − lnQ− 1

Q

∑
α

Y α
x

+
1

2

[ 1
Q

∑
α

Y α
x

]2
− 1

2Q

∑
α

(Y α
x )

2

−1

3

[ 1
Q

∑
α

Y α
x

]3
+

1

2

[ 1
Q

∑
α

(Y α
x )

2
][ 1
Q

∑
α

Y α
x

]
− 1

6Q

∑
α

(Y α
x )

3 +O(Y 4). (38)

The next contribution to S from Eq. (34) reads

− ln
∏
y

√
1 +

∑
α

βxyỸ α
x Ỹ

α
y = −1

2

∑
y

∑
α

βxyỸ
α
x Ỹ

α
y + ...

=
1

4

∑
y

∑
α

βxy

[(
Ỹ α
x − Ỹ α

y

)2
− (Ỹ α

x )
2 − (Ỹ α

y )
2

]
+ ...

=
1

4

∑
α

∑
y

βxy

(
Ỹ α
x − Ỹ α

y

)2
− 1

2

(∑
y

βxy

)∑
α

(Ỹ α
x )

2 + ..., (39)

where we used that βxy = βyx and this contribution is summed over x. Therefore, up to a constant,

S[Ỹ , Y ] =
∑
x

{∑
α

Ỹ α
x Y

α
x − 1

Q

∑
α

Y α
x

+
1

2

[ 1
Q

∑
α

Y α
x

]2
− 1

2Q

∑
α

(Y α
x )

2

−1

3

[ 1
Q

∑
α

Y α
x

]3
+

1

2

[ 1
Q

∑
α

(Y α
x )

2
][ 1
Q

∑
α

Y α
x

]
− 1

6Q

∑
α

(Y α
x )

3 +O(Y 4)

+
1

4

∑
α

∑
y

βxy

[
Ỹ α
x − Ỹ α

y

]2
− 1

2

[∑
y

βxy

]∑
α

(Ỹ α
x )

2 +O(Ỹ )4
}

3.5 Integrating out Ỹ α

Since Ỹ α
x only appears quadratically in the action (40), we can integrate it out. (Higher-order terms

have to be dealt with when including terms of order Ỹ 4.) To do so, we take the saddle point

0 =
dS[Ỹ , Y ]

dỸ α
x

= Y α
x −

∑
y

βxy

[
Ỹ α
y − Ỹ α

x

]
−
[∑

y

βxy

]
Ỹ α
x , (40)

where again we used βxy = βyx. This can be rewritten as

Y α
x = ∇2

βỸ
α
x +MỸ α

x (41)

where
∇2
βỸ

α
x :=

∑
y

βxy

[
Ỹ α
y − Ỹ α

x

]
(42)

is the lattice Laplacian. There is a mass term m2 =M ,

M :=
∑
y

βxy = (eJ − 1)coord, (43)

8



where coord is the coordination number, i.e. the number of nearest neighbors. (The signs are for
J > 0, i.e. ferromagnetic couplings.) Then Eq. (41) can be inverted,

Ỹ α
x =

1

M +∇2
β

Y α
x ≈

[
1

M
−

∇2
β

M2
+ ...

]
Y α
x . (44)

This gives

S[Y ] =
∑
x

{∑
α

1

2M
(Y α

x )
2 +

1

4M2

∑
α

∑
y

βxy

[
Y α
x − Y α

y

]2
− 1

Q

∑
α

Y α
x

+
1

2

[ 1
Q

∑
α

Y α
x

]2
− 1

2Q

∑
α

(Y α
x )

2

−1

3

[ 1
Q

∑
α

Y α
x

]3
+

1

2

[ 1
Q

∑
α

(Y α
x )

2
][ 1
Q

∑
α

Y α
x

]
− 1

6Q

∑
α

(Y α
x )

3 +O(Y 4)

}
. (45)

Note that the contribution from the determinant in the integration over Ỹ is independent of Y , thus a
constant which can be neglected.

3.6 Decomposition into scalar and traceless parts
The next step is to decompose Yα into irreducible representations of the symmetric group (which
exchanges the flavours of the Potts spin), see e.g. [34, 35, 31],

Y α
x = Φα

x + Sx,
∑
α

Φα
x = 0. (46)

Φα is the vector representation with Young tableau [Q − 1, 1] and dimension Q − 1, while S is the
scalar representation with Young tableau [Q] and dimension 1. Both are irreducible for Q > 1. This
gives for the action

S[S,Φ] =
∑
x

{∑
α

1

2M
(Φα

x)
2 +

1

4M2

∑
α

∑
y

βxy
(
Φα
x − Φα

y

)2
+
Q

2M
S2
x +

Q

4M2

∑
y

βxy
(
Sx − Sy

)2 − Sx

− 1

2Q

∑
α

(Φα
x)

2 − 1

6Q

∑
α

(Φα
x)

3 +O(Φ4
α)

}
. (47)

Note that the terms non-linear in Sx which come from
∑

α e
Y α
x have all canceled. This property is

exact and holds to all orders. It can be traced back to

ln
(∑

α

eY
α
x

)
= ln

(∑
α

eΦ
α
x+Sx

)
≡ ln

(
eSx
∑
α

eΦ
α
x

)
≡ Sx + ln

(∑
α

eΦ
α
x

)
. (48)

Thus there are no non-linear terms in Sx from the vertex! The only terms of order larger than two that
may appear are from the quartic term

∑
xy

∑
α(βxyỸ

α
x Ỹ

α
y )

2 (or higher).
Let us write the action with these simplifications. The mode Sx is massive with squared mass

Q/M (second line of Eq. (47)), and expectation

⟨Sx⟩ =
M

Q
. (49)
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However Sx decouples inEq. (47). The remaining action for Φα
x reads

S[Φ] =
∑
x

{∑
α

(
1

M
− 1

Q

)
1

2
(Φα

x)
2 +

1

4M2

∑
α

∑
y

βxy
(
Φα
x − Φα

y

)2 − 1

6Q

∑
α

(Φα
x)

3 +O(Φ4
α)

}
.

(50)
This is a cubic field theory, for any value of Q ̸= 0.

The modes Φα have a bare mass

m2
0 =

1

M
− 1

Q
=⇒ Φα is massless in the bare theory for M ≡

∑
y

βxy ≡ (eJ−1)coord = Q.

(51)

3.7 Local observables
A key information to know is which cluster site x belongs to. This can be achieved by dropping the
sum at site x. Formally, the operator which tells whether site x is in a cluster of color β is

Oβ
x :=

eY
β
x∑

α e
Y α
x
. (52)

The denominator takes out the corresponding term from the action (34), and replaces it by the same
term without the sum. As constructed, ∑

β

Oβ
x = 1. (53)

To access the probability that different sites are in the same cluster, we define its connected part,

Ôβ
x := Oβ

x −
〈
Oβ
x

〉
= Oβ

x −
1

Q
. (54)

Expressed in terms of Φα and S, this reads

Ôβ
x =

eS+Φβ
x∑

α e
S+Φα

x
− 1

Q
=

eΦ
β
x∑

α e
Φα

x
− 1

Q
=

Φβ
x

Q
+

1

2Q

[
(Φβ

x)
2 − 1

Q

∑
α

(Φα
x)

2

]
+O(Φα

x)
3 (55)

The probability that n sites x1 . . . xn are in the same cluster is proportional to〈
Ôβ
x1
Ôβ
x2
. . . Ôβ

xn

〉
=

1

Qn

〈
Φβ
x1
Φβ
x2
. . .Φβ

xn

〉
+ higher-order terms. (56)

4 Renormalization: 6− ϵ expansion
The renormalization group for the Q-state Potts model is usually performed in momentum space.
Here we present this standard calculation in position space. The advantage is that the 3-point function
encoding the structure function is then easily evaluated.

4.1 Relevant relations and normalizations
Using the definition of the Γ-function, one first shows that

1

|x|2a
=

∫ ∞

0

sa−1e−sx
2

Γ(a)
ds. (57)
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This allows us to Fourier transform power laws according to∫
ddx

eik⃗x⃗

|x|2a
= πd/2

∣∣∣∣k2
∣∣∣∣2a−d Γ

(
d
2
− a
)

Γ(a)
. (58)

Eq. (58) for a = (d− 2)/2 implies∫
ddx

eik⃗x⃗

|x|d−2
=

1

|k|2
4πd/2

Γ(d−2
2
)
=
Sd(d− 2)

k2
. (59)

In order to reduce as much as possible geometric factors, we introduced the d-dimensional volume
element

Sd :=
2πd/2

Γ(d/2)
. (60)

A useful relation is

1

Sd

∫
ddy

1

|y|2a|x− y|2b
=

Γ(d
2
)Γ
(
d
2
− a
)
Γ
(
d
2
− b
)
Γ
(
a+ b− d

2

)
2Γ(a)Γ(b)Γ(d− a− b)

|x|d−2(a+b). (61)

This is proven by going to momentum space w.r.t. to y and x − y, multiplying the two momentum
dependent functions, and transforming back.

Following CFT conventions, field theory is constructed with propagators normalized such that

⟨Φα(x)Φβ(y)⟩ = |x− y|2−d
(
δαβ −

1

Q

)
. (62)

The bare Lagrangian in these normalizations is

L =
1

(d− 2)Sd

∑
α

1

2

[
∇Φ0

α(x)
]2

+
1

Sd

g0
3!

∑
α

Φ0
α(x)

3. (63)

The index α is the field index, while the index 0 refers to bare quantities.

4.2 Renormalization scheme
Following the standard field-theoretic scheme [4, 36, 37, 5], renormalization is performed by intro-
ducing RG-factors,

L =
Z

(d− 2)Sd

∑
α

1

2
[∇Φα(x)]

2 +
1

Sd

gZgL
− ϵ

2

3!

∑
α

Φα(x)
3. (64)

Here all quantities are renormalized, contrary to Eq. (63), where they are bare. The relation between
bare and renormalized quantities is

g0 = gZgZ
− 3

2L− ϵ
2 , (65)

Φ0
α =

√
ZΦα. (66)

This yields the β function βg(g), full field dimension ∆, and anomalous exponent η as

βg(g) = L∂Lg =
ϵ

2

g

1 + g∂g ln(ZgZ−3/2)
, (67)

∆ =
d− 2

2
+ γϕ, (68)

η = 2γϕ = −L∂L ln(Z) = −βg(g)∂g ln(Z). (69)
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4.3 Vertex renormalization
There are two types of correction at 1-loop-order. The first is a correction to Γ(3), the vertex. Graphi-
cally, it can be written as

x y

z
= − 1

Q

[
+ +

]

+
1

Q2

[
+ +

]
− 1

Q3

=
(
1− 3

Q

)∑
α

Φ3
α. (70)

A thick solid line signifies the term δαβ in the propagator, whereas the dashed line does not force the
indices to be equal; the accompanging factor of 1/Q is written explicitly. The diagrams in the second
line vanish due to

∑
αΦα = 0, and are not reported in the final result. Including all combinatorial

factors, the perturbative result for the cubic vertex Γ(3) is

Γ(3) = g0

[
1 +

1

3!

(g0
3!

)2
× 33 × 4× 2×

(
1− 3

Q

)
ILϵ

]
= g0 + g30ILϵ

(
1− 3

Q

)
. (71)

The combinatorial factors are: 1/3! from the third-order expansion of the exponential function; a
factor of g0/3! for each additional vertex as written in the action (64); a factor of 3 per vertex for
choosing the uncontracted leg; a factor of 4 for contracting a first chosen leg; a factor of 2 for the
remaining contraction. The diagram having 3 propagators, one can for each of them choose the
contribution proportional to the δ-function for the indices, or in any of the three use the term without
a δ-function, for a total of (1 − 3/Q); using for two or three propagators the term without the δ-
function would break the connectedness of the diagram. The final factor is the integral. Regularized
at scale L it is

ILϵ = 1

S2
d

∫
x

∫
y

Θ(|x| < L)
(
|y||y − x||x|

)−2∆

=
Γ(d

2
)Γ
(
d
2
−∆

)2
Γ
(
2∆− d

2

)
2Γ(∆)2Γ(d− 2∆)

1

Sd

∫
x

Θ(|x| < L)|x|d−6∆. (72)

We used Eq. (61). Note that we could equivalently put a cutoff on both x and y, see [38, 39, 40]. The
remaining integral gives

1

Sd

∫
x

Θ(|x| < L)|x|d−6∆ =

∫ L

0

dx

x
x2d−6∆ =

∫ L

0

dx

x
x6−d =

Lϵ

ϵ
. (73)

Therefore with Γ(d/2) ≃ 2, and the remaining Γ’s evaluating to 1,

I =
1

ϵ
+O(ϵ0). (74)

This identifies

Zg = 1− g2

ϵ

(
1− 3

Q

)
+O(g4). (75)
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4.4 Renormalization of the elastic term
The second contribution is the renormalization of Γ(2), the elastic term (wave-function renormaliza-
tion). Similarly to what has been done in Eq. (70), the group-theoretical factor is

= − 2

Q
+

1

Q2
. (76)

Due to
∑

αΦα = 0, the last term does not contribute. Therefore, this relation can be simplified to

=
(
1− 2

Q

)
× . (77)

Writing explicitly the fields to keep track of the derivatives, the contribution to Γ(2) reads

δΓ(2) = −
(

g0
3!Sd

)2

× 1

2!
× 32 × 2×

(
1− 2

Q

)∫
y

∑
α

Φα(x)Φα(y)
1

|x− y|2(d−2)

= − g20
Sd

1

4

(
1− 2

Q

)
1

Sd

∫
y

∑
α

Φα(x)
{
Φα(x) + (y − x)∇Φα(x) +

1

2
[(y − x)∇]2Φα(x) + ...

}
× 1

|x− y|2(d−2)

= − g20
Sd

1

4

(
1− 2

Q

)
1

Sd

∫
y

Φα(x)
{
Φα(x) +

1

2d
(y − x)2∇2Φα(x) + ...

} 1

|x− y|2(d−2)
. (78)

The first (−1) is due to the fact that we have e−
∫
L, the 1/2! is from the second order in g0, then

combinatorial factors, group factors, and the integral. In the third line we used rotational invariance
to discard the first-order term in ∇, and simplify the second term. Regrouping and dropping the
UV-relevant term gives

δΓ(2) =
g20
Sd

× 1

4d
×
(
1− 2

Q

)∑
α

1

2
[∇Φα(x)]

2 1

Sd

∫
y

|x− y|2

|x− y|2(d−2)

= g20
d− 2

4d

(
1− 2

Q

)
Lϵ

ϵ
× 1

2(d− 2)Sd

∑
α

[∇Φα(x)]
2 +O(ϵ0). (79)

The last term is the free Lagrangian density, yielding the field renormalization factor (for d→ 6)

Z = 1− g2

6

(
1− 2

Q

)
. (80)

4.5 RG functions
The β-function as defined in Eq. (67) is

βg(g) =
ϵ

2

g

1 + g∂g ln(ZgZ−3/2)
=
ϵ

2
g +

g3

2

[
3

2
− 5

Q

]
+O(g5). (81)

The fixed point is at

g2∗ =
−ϵ

3
2
− 5

Q

. (82)

Note that for Q < 10/3 the fixed point is real, while for larger Q it is imaginary. The latter situation
contains the Lee-Yang class, to which our RG equations reduce in the limit of Q → ∞. Intuitively
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this can be understood by remarking that for Q → ∞ the constraint
∑

αΦ
α = 0 becomes negligible,

and the Lagrangian (63) reduces to that of Q decoupled Lee-Yang field theories.
The renormalization-group η function defined in Eq. (69) reads

η(g) =
g2

6

(
1− 2

Q

)
+O(g4). (83)

Evaluated at the fixed point (82), the exponent η becomes

η(g∗) ≡ 2γϕ =
ϵ(Q− 2)

3(10− 3Q)
+O(ϵ2) . (84)

This agrees with standard treatments [5, 8].

4.6 3-point function and structure factor C
We now consider the 3-point function which forces all external indices to be in the same cluster,

C

(|x1 − x2||x1 − x3||x2 − x3|)∆
=

1

Sd

∫
y

g∗

(|x1 − y||x2 − y||x3 − y|)2∆

≃ g∗
Γ(d

2
)

2

[
Γ(∆

2
)

Γ(∆)

]3 ∣∣∣∣
|xi−xj |=1∀i ̸=j

, (85)

where we used the star-triangle identity. The latter reads

1

Sd

∫
ddx4

x2∆1
14 x2∆2

24 x2∆3
34

=
κ(∆1,∆2,∆3)

x
∆12,3

12 x
∆13,2

13 x
∆23,1

23

, (86)

κ(∆1,∆2,∆3) =
Γ(d

2
)Γ
(
∆1+∆2−∆3

2

)
Γ
(
∆1+∆3−∆2

2

)
Γ
(
∆2+∆3−∆1

2

)
2Γ(∆1)Γ(∆2)Γ(∆3)

≃ 1 . (87)

It holds whenever
∑

i∆i = d. Since the integral is convergent in d = 6, we can evaluate it there,
ensuring that the latter relation is valid. This gives the leading term in ϵ = 6− d,

C = g∗ +O(ϵ3/2). (88)

Using Eq. (82) yields

C =

√
6− d
5
Q
− 3

2

+O(ϵ3/2). (89)

We give the three most interesting values

C
∣∣∣
Q=1

=

√
2

7
(6− d) +O(ϵ3/2), (90)

C
∣∣∣
Q=2

=
√
6− d+O(ϵ3/2), (91)

C
∣∣∣
Lee−Yang

= C
∣∣∣
Q→∞

= i

√
2

3
(6− d) +O(ϵ3/2). (92)

Note that for the Lee-Yang class, the definition involves an imaginary coupling, so this agrees with
[41]. In dimension d = 2 this question has been solved analytically by relating [42] the structure
constant to the so-called DOZZ formula of imaginary Liouville conformal field theory [43], a result
which has been checked numerically [44] and also generalised to a larger class of operators [45]. The
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Q

5.2

5.4

5.6

5.8

6.0
d

Figure 2: The critical line bounding the second-order phase at 2-loop order. In blue: λc > 0, in red
λc < 0. In the yellow region there is a pair of complex conjugate fixed-points λc = ℜ(λc)± iℑ(λc)

structure constant is expressed in terms of the Barnes double gamma function, whose evaluations for
integer Q read [44]

C(Q = 1) = 1.0220, C(Q = 2) = 1.0524, C(Q = 3) = 1.0923. (93)

Our result is astonishingly precise for percolation in d = 2. We will see that already for the Ising
model this expansion can no longer be used below dimension d = 4, see section 5.4. Finally, it is
curious that all known values of C lie close to C = 1, a value natural in dimensions d = 0 and d = 1,
see appendix B.

4.7 The upper boundary of the non-critical domain
The β-function up to 2-loop order [8, 46], divided by the coupling to exclude the Gaussian fixed point,
reads after some rewriting

B(u) :=
β(g)

g

∣∣∣
g2=u

= ϵ+

(
3

2
− 5

Q

)
u+

Q(125Q− 794) + 1340

72Q2
u2 +O(u3) (94)

The necessary condition for having a non-Gaussian fixed point is B(u) = 0. As any quadratic equa-
tion, it has two solutions, of the schematic form u1,2 = a±

√
b. The solution relevant for us is the one

which vanishes for ϵ → 0. As Fig. 2 shows, as a function of Q and d, there is a domain with one real
positive solution (in blue), a domain with one negative real solution (in red), and a domain where no
real solution exists, but a pair of complex conjugate ones (in yellow). The boundary is given by the
line where b vanishes. To leading order in Q−Qc, this reads

dc = 6− 729

1480
(Q−Qc)

2 + ... (95)

This is the green dashed line in Fig. 2.
To go beyond leading order, we need a more systematic procedure. Consider Fig. 3, where for

visualization we plotted B(u) = ϵ − u + u2. The coefficients have the same signs as in Eq. (94),
and the qualitative analysis for Eq. (94) is the same. One sees that for ϵ small, there is a perturbative
solution u∗1 = O(ϵ), and a non-perturbative solution with u∗2 = O(1). The minimum of B(u) is
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u1
*=(ϵ)

ϵ=1/20 u2
*=(1)

ϵ=ϵc

0.2 0.4 0.6 0.8 1.0
u

-0.2

-0.1

0.1

0.2

0.3

0.4

B(u)

Figure 3: The function B(u) defined in Eq. (94) for varying values of ϵ. For ϵ ≪ 1 there is a
perturbative attractive solution u∗1 = O(ϵ), and a non-perturbative repulsive (tricritical) solution u∗2 =
O(1) (blue). Increasing ϵ the two solutions approach (gray, dot dashed) until they merge at ϵ = ϵc
(red, dashed), and no solution exists for ϵ > ϵc (green, long dashes).

between these two solutions, and B(u) is negative there. Up to ϵ = ϵc (ϵc = 1/4 in the plot), there
is still a solution for which both B(u∗) = B′(u∗) = 0. For larger values of ϵ > ϵc, no real solution
exists, but a pair of complex conjugate solutions.

Our strategy to continue is clear: We demand that

B(u∗) = B′(u∗) = 0. (96)

It is convenient to first write the latter equation,

0 = B′(u) =

(
3

2
− 5

Q

)
+
Q(125Q− 794) + 1340

36Q2
u+O(u2) (97)

Note that this equation is independent of ϵ, i.e. dimension. It is solved by making for u∗ an ansatz as
a power series in Q − Qc. Asking that B(u∗) = 0 than gives dc as a function of Q − 10

3
. Using the

5-loop series of [46], partially given in [29, 28] and to 3 loops in [8], we get

dc = 6− 0.492568
(
Q− 10

3

)2 − 1.49158
(
Q− 10

3

)3 − 14.9483
(
Q− 10

3

)4
−184.253

(
Q− 10

3

)5
+O

(
Q− 10

3

)6
. (98)

This series seems to be Borel-summable forQ < 10/3. We were unable to improve the plot on Fig. 2,
because even if Borel-summable, the radius of convergence seems to be very small2.

For Q > Qc = 10/3, all terms of the series are negative, which indicates that a branch cut
singularity starts there. We come back to this questions in our NPRG treatment, see section 5.3.2.

It is interesting to see what happens to the RG flow in the complex plane. This is done on Fig. 4.
For small ϵ (here ϵ = 0.01, top left plot) the critical fixed point lies close to the Gaussian one, while
a tricritical (bi-unstable) fixed point is at u ≈ 0.9. Increasing ϵ (top right), the critical and tricritical
fixed points approach, until they merge at ϵ = ϵc = 0.0027 (lower left plot). Up to this value of ϵ,
all fixed points lie on the real axes uy = 0. Increasing ϵ further, a pair of complex-conjugate fixed
points emerges. Since the critical fixed point for smaller ϵ is globally attractive and the flow at large
couplings is not rearranged, the pair of complex-conjugate fixed points is also globally attractive, with
the RG flow spiraling in (complex eigenvalues).

2We tried directly taking 3-loop to 5-loop predictions, Padé-Borel resum them, and to write the (two branches of the)
inverse series for Q− 10/3 as a function of

√
ϵ.
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Figure 4: The flow-diagram for the Q-state Potts model at 2-loop order in minimal subtraction at
Q = 3.1, ϵ = 0.01 (top left), ϵ = 0.0027 (top right), ϵ = 0.027613 (lower left) and ϵ = 0.028
(lower right). In blue are RG trajectories starting close to the fixed points. On the first two graphs, the
leftmost Gaussian FP has two repulsive directions, the non-trivial critical fixed point in the middle has
two attractive directions, whereas the tricritical FP to the right has two repulsive directions. While
the Gaussian fixed point remains completely repulsive, the pair of complex-conjugate FPs have a
complex eigenvalue with positive real part. As a result, all trajectories spiral in, except for the real
axis (uy = 0), which runs to strong coupling u→ ∞.

5 Non-perturbative renormalization

5.1 Flow equations
Mapping out the full phase diagram is impossible by relying solely on controlled expansions. Here we
study the full phase diagram using the different non-perturbative RG schemes, LPA, LPA′, LPA∗ and
Wilson’s original approach. For the Potts model, this line of research was pioneered in [25] (Wilson
scheme), and continued in [24, 16] (LPA′). The idea is to start from the action

S[Φ] =
∑
α

1

2
[∇Φα(x)]2 +

1

2
U(Φ), (99)
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where3

U(Φ) =

Q∑
α=1

λ2(Φ
α)2 + λ3(Φ

α)3 + λ4(Φ
α)4 + λ5(Φ

α)5 + λ6(Φ
α)6 + ...

+

Q∑
α=1

Q∑
β=1

λ22(Φ
α)2(Φβ)2 + λ23(Φ

α)2(Φβ)3 + λ24(Φ
α)2(Φβ)4 + λ33(Φ

α)3(Φβ)3 + ...

+

Q∑
α=1

Q∑
β=1

Q∑
γ=1

λ222(Φ
α)2(Φβ)2(Φγ)2 + ... (100)

The correction to the effective action in the Wilson scheme is obtained by integrating out the largest
wave-vector mode, here with Λ → 1. (The index structure is given later.)

δU(Φ)

2
= δS[Φ] = ln (S ′′[Φ]) + const = ln

(
S ′′[Φ]

S ′′[0]

)
= ln

(
1 + 1

2
U ′′(Φ)

1 + 1
2
U ′′(0)

)
= ln

(
1 +

1
2
[U ′′(Φ)− U ′′(0)]

1 + 1
2
U ′′(0)

)
=

∞∑
n=1

(−1)n+1

n

(
U ′′(Φ)− U ′′(0)

2(1 + λ2)

)n
. (101)

This leads to

δU(Φ) =
∞∑
n=1

(
−1

2

)n−1

n

(
U ′′(Φ)− U ′′(0)

1 + λ2

)n
. (102)

In contrast, in NPRG one has

δU(Φ)

2
= δS[Φ] = −1

1 + 1
2
U ′′(Φ)

=
−1

[1 + 1
2
U ′′(0)] + 1

2
[U ′′(Φ)− U ′′(0)]

=
∞∑
n=1

(
−1

2

)n
[U ′′(Φ)− U ′′(0)]n

(1 + λ2)n+1
. (103)

This gives

δU(Φ) =
∞∑
n=1

(
−1

2

)n−1
[U ′′(Φ)− U ′′(0)]n

(1 + λ2)n+1
. (104)

Note the power of 1+λ2 in the denominator, which is larger by one than in Wilson. The difference in
combinatorial factor can be rationalized as follows: The Wilson cutoff is a hard cutoff, which allows
one to integrate out the fastest mode, leading to ln(S ′′[Φ]). The cutoff used for the LPA is a soft
cutoff, the calculatorially easiest choice is the Litim cutoff [47]

Rk(p) = (k2 − p2)Θ(|p| < k). (105)

With this choice the IR flow reads

−k∂kS[Φ] = −1

2
k∂k

∫
p

ln

(
p2 +

1

2
U ′′(Φ) +Rk(p)

)
= −1

2

∫
p

k∂kRk(p)

p2 + 1
2
U ′′(ϕ) +Rk(p)

= −k2
∫
p

Θ(|p| < k)

k2 + 1
2
U ′′(ϕ)

=
Sd

d(2π)d
−kd+2

k2 + 1
2
U ′′(ϕ)

. (106)

Scaling k → 1 and absorbing the volume factor gives Eq. (103).

3In most of the current literature [24, 16] the expansion is written in terms of the unconstrained basis, see appendix A.
This is much more tedious to implement than in the constrained basis used here.
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Figure 5: Left: The phase diagram of Fig. 1 as given by LPA∗
6 (yellow, with orange borders), almost

indistinguishable from LPA′
6 (olive), and compared to LPA6 (brown) and LPA′

4 (dark blue). The blue
dot-dashed line is the expansion (3); dark red dotted is for Eq. (4). For the Wilson scheme we show
the boundary in the upper left quadrant (cyan). The green dashed line is the leading order of Eq. (98),
while the red dashed line is a weighted average of Padé and Padé-Borel resummations of the 5-loop
result [48]. The blue dots are results obtained by other methods, see Fig. 1. Right: Blow up of upper
left quadrant.

Finally, we need to rescale U and Φ, and add indices. This leads to the NPRG equation (IR flow)

∂ℓU(Φ) = dU(Φ)−d− 2 + η

2

∑
α

Φα
∂U(Φ)

∂ϕα
+

∞∑
n=1

Cnλ2

(
−1

2

)n−1

tr
(
[U′′(Φ)−U′′(0)] · P

1 + λ2

)n
. (107)

The first remark is that a global prefactor (the normalization of space) can be absorbed by a rescaling
of U , as this changes the rescaling terms which are linear in U(Φ), but not δU(Φ).

We have written explicitly the index structure of each term in the Potts model, with the matrix
U′′(Φ) and the projector P (with the same index structure as the propagator) defined as (see appendix
A)

U′′(Φ)αβ =
∂2U(Φ)

∂Φα∂Φβ

, Pαβ := e⃗α · e⃗β = δαβ −
1

Q
. (108)

The factor of Cnλ2 depends on the cutoff and λ2, and reads

Cnλ2 =

{
1

1+λ2
Litim-cutoff (LPA)

n−1 hard cutoff (Wilson)
. (109)

We added an anomalous dimension for the field, or exponent η. The latter is obtained from

η =
Cη

2(1 + λ2)4
tr
(
∂U′′(Φ)

δΦα

· P · ∂U
′′(Φ)

δΦα

· P
) ∣∣∣∣

Φ=0

=
9Cηλ23

(1 + λ2)4
Q− 2

Q
. (110)
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The global prefactor Cη is fixed s.t. for d→ 6 the β-function vanishes at Q = 10/3,

Cη =
{
1 Litim-cutoff (LPA)
1
3

hard cutoff (Wilson) . (111)

This is equivalent4 to Eq. (83) for η(g). When improving LPA, we call this scheme LPA∗, when
improving Wilson we call it Wilson∗. It is slightly different from what is used in the NPRG literature
[16], and termed LPA′: There is an additional factor of (1 − η

d+2
) multiplying the r.h.s. of Eq. (106).

The reader may wonder about the denominator 1/(1 + λ2)
4 in Eq. (110). A heuristic way to derive

this is to take one derivative w.r.t. the passing momentum p2, which is similar to a variation of the
squared mass λ2, increasing the number of factors in the denominator by 1.

All these subtleties are unimportant close to the upper critical dimension 6, and for lower di-
mensions everything we do here seems badly controlled: This is seen when comparing the different
approximation schemes in order to see how robust the results are. This is done later; we will see that
LPA′ and LPA∗ (at the same field order) are almost indistinguishable, but that for small d the results
strongly depend on the maximal number of fields allowed.

5.2 Implementation
We implement the above program by going up to order 6 in the fields, as suggested by Eq. (100).
We then calculate the corrections to U(Φ) up to order U7. This perturbative treatment, also used
in [24, 16] properly accounts for the algebraic structure of the Potts propagator5. We do not know
of a truly non-perturbative approach at non-integer Q, where U ′′(Φ) as a function appears in the
denominator.

We then start somewhere below dimension d = 6, propose an initial condition with λ3 ̸= 0, and
try to evolve to a fixed point of the β-function (107). We have several routines to do so: The first tries
to integrate the flow-equation itself, in which we have reversed the flow for λ2, which is a relevant
coupling: it has an RG eigenvalue close to 2. The other algorithms we implemented are different
routines to find a nearby minimum of |β| (steepest descent, Newton iteration, Monte Carlo). Once
we find a solution, we can walk in the {Q, d} plane, following this solution under a change of Q or
d, until we reach the critical line. What happens there depends on where we start. Let us discuss the
different sectors. If not stated differently, we use the LPA∗ scheme where U is truncated at order Φ6,
and which we denote LPA∗

6. Results for LPA′
6 are almost indistinguishable.

5.3 Branches
5.3.1 Upper left sector (Q < 10/3, 4 < d < 6)

For 2 < Q < 10/3 fixed and d = 5.99, or d = 5.999 (close to Q = 10/3) we propose a solution with
λ3 = 0.2, and the remaining λi = 0. Using the β-function where the flow of λ2 is reversed, these
couplings converge to a critical point β⃗[λi] = 0 of the β-function. Linearizing the β-function around
this solution we find one relevant EV, while all remaining EVs are irrelevant. We then decrease d, and
follow the fixed point in question by again minimizing the β-function. At some point, the second-
largest EV becomes zero, at which point it merges with a tricritical fixed point. Further decreasing d
we loose this fixed point and as a consequence run to strong coupling; in practice, our algorithm no
longer succeeds to finds a solution, and blows up. We identify this dimension as dc(Q). If we worked
hard, we should be able to find a tricritical point, which merges with the former fixed point at dc(Q).

4For the Wilson scheme and λ2 → 0 this reduces to Eq. (83) noting that λ3 = g/3, and that there is an additional
explicit factor of 2 in Eq. (102) as compared to the field theory.

5This is possible at fixed Q, when restricting to the spin degrees of freedom. As an example, for Q = 3, there are two
independent fields, and the theory can be written in terms of

∑
α Φ2

α and
∑

α Φ3
α. For non-integer Q this is not possible.
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Figure 6: Left: Real part of eigenvalues for the β-function in varying dimension d, for Q = 2.01.
The program starts in d = 5.99, where one sees the operator content of the free theory: one relevant
eigenvalue 2 for λ2, the marginal eigenvalue for λ3, two quartic operators of dimension −2, two
quintic operators of dimension −4, and four order-6 operators. Arriving in dimension d = 4.2975, one
eigenvalue becomes marginal and we loose the critical fixed point. When two lines meet, they form
a complex conjugate pair, and we only see a single line continuing. Right: the coupling constants.
Nothing special seems to happen at dc(Q).

One observes that close to dc(Q) this eigenvalue behaves as a constant times
√
d− dc(Q). Close to

d = 4, Q = 2 the curvature of this curve is close to what is expected within the NPRG. We had
expected to see the expansion of Ref. [25] given in Eq. (4) to agree with our Wilson∗

6 approximation,
but this is not the case. As we do not have the equations of [25] to compare with, we cannot make
this comparison quantitative.

Finally, we could try to follow the fixed points into the complex plane. We did not pursue this
approach here since we would have to double the number of couplings passed to our routines.

5.3.2 Upper right sector (Q > 10/3, 4 < d < 6)

The scenario observed for Q < 10/3 is also observed for Q > 10/3, after multiplying the odd
couplings by a factor of i. However, close to Qc, we see a different behavior, for which an example
at Q = 3.45 is shown in Fig. 7. What we observe is that at a dimension d1 the third-largest EV
merges with the second largest one, and together they wander off in the complex plane. Decreasing
d further to d2, they both become relevant, albeit with a non-vanishing imaginary part. Below the
latter dimension, the RG equation runs to strong coupling, so dc ≥ d2. We suspect, however, that
the critical dimension is already reached at d1; otherwise the critical dimension as a function of Q
seemingly jumps at Q = 10/3, which we have a hard time believing. On the other hand, up to 5-loop
order the perturbative series for dc(Q) has only positive terms for Q > Qc = 10/3, whereas the series
alternates for Q < Qc. This may signal a non-analytic behavior for d(Q) for Q > Qc. Our results
indeed show a roughly linear dependence of dc(Q), on Q−Qc.

It is equally possible that the approximations used, either in the NPRG or its implementation,
are inadequate. There should not be a problem with the numerical evaluation of the zeros of the
β-function, which is done with 400 digits of precision (more than 10 times machine precision).

We finally note that within the NPRG in the limit of Q → ∞ the Q copies not necessarily de-
couple, as it is possible to have a fixed point with an inter-copy coupling (as λ23) persist when taking
Q → ∞, even though when starting with decoupled models at Q = ∞, these inter-copy interactions
are not generated. As a result, this limit may be as subtle as the large-N limit for Random-Field
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Figure 7: Left: real part of eigenvalues for the β-function in varying dimension d, for Q = 3.45. The
program starts in d = 5.999, where one sees the operator content of the free theory. Then the program
descends to d = 5.95, well below the upper critical dimension, defined by the dimension where the
real part of the subleading EV becomes positive. On the right we show the real part (in blue) and the
imaginary part (in red) of the second-largest EV. The dashed line denotes the dimensions d1 where
the imaginary part starts to be non-vanishing, and d2 where the real part becomes positive.

[49, 50].

5.3.3 Lower branches

The lower left branch is more difficult to reach, as generically most initial conditions either blow up
when evolving them with the “improved” β-function, or converge to multiply unstable (tricritical or
higher) fixed points. We also tried to walk down for Q < 2, which is possible, but then we failed to
cross the line Q = 2, where some of the operators decouple. Our successful strategy was to generate
random couplings 0 < λ3 < 1, −0.5 < λ4 < 0.5, and −0.5 < λ22 < 0.5, with λi = 0 for the rest. We
then used steepest descent for Q = 2.5 and d = 2.2 towards a fixed point, and stop when this fixed
point has one relevant direction. The successful trial for LPA∗

6 converged to

λ2 = −0.331907, λ3 = 0.139233, λ4 = 0.0481672, λ22 = 0.00200003, λ5 = 0.0119803,

λ23 = −0.00104314, λ6 = 0.00399691, λ24 = 0.000456486, λ33 = −0.000520252,

λ222 = 0.00010586. (112)

To proceed, we start at this point, and then walk in the (Q, d) plane until we hit the boundary of the
critical region. The result is shown in Fig. 5. It is reassuring to see that the various LPA approxima-
tions all have the same parabolic shape around d = 4, Q = 2. Depending on which approximation is
used, the critical line follows this parabola further, or less. The results of Ref. [16] (green points with
error bars closes to d = 3), which go up to order 9 in the field, are able to follow this parabola a little
further than we do, without noticeably deviating from it. When comparing the different schemes, one
observes that all schemes follow the critical parabola given in Eq. (3) for d < 4, and that including
more fields allows one to follow this parabola further. Including η also increases the range for which
this is possible, i.e. before dc(Q) grows again. There is only a minimal difference between LPA′ and
LPA∗. We were unable to find a value of the couplings to repeat this analysis in the Wilson scheme.
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Figure 8: Left: The couplings for the Ising model as a function of d. Right: The structure constant
C from the NPRG (red, solid), as compared to perturbation theory (blue dashed). The non-analytic
behavior at d = 4 is clearly visible, thus field theory in dimension d = 6 − ϵ will stop to work in
dimension d = 4.

ϵ

ϵ′

ϵ

ϵ′
2 3 4 5

d

-8

-6

-4

-2

2

EVs

Figure 9: Eigenvalues of the NPRG β function for the Ising model. The largest eigenvalue is 1/ν,
which equals 2 in dimensions 4 ≤ d ≤ 6, and has ϵ-expansion 1/ν = 2 − (4 − d)/3 below dimen-
sion d = 4. The exponent ω is the second largest eigenvalue. For the cubic coupling it has 1-loop
dimension −ω = d − 6 in ϵ = 6 − d (gray dotted), while (d − 6)/2 (gray dot-dashed) seems to be
a decent approximation down to d = 2. The quartic coupling has 1-loop eigenvalue −ω = d − 4
(black dashed). The NPRG flow respects these expansions. The black dots in d = 3 show the loca-
tion of scalar even-spin operators (ϵ, ϵ′...) in the numerical bootstrap, see table 2 of [51]. They do
not contain the eigenvalue for the cubic coupling. In d = 2 we use that the EVs = 2 − 2hr,s, with
hr,s = [(4r − 3s)2 − 1]/48, r = 2, s = 1 for ϵ, and r = 3, s = 1 for ϵ′; we also added r = 4, s = 1.
We conjecture that the leading odd operator with coupling λ3 evolves to the first irrelevant operator in
the magnetic series [52] 2− 2h1/2+n,0, n ∈ N0, which gives 2− 2h5/2,0 = −17/8, at n = 2 (red dot).

We conjecture that this parabola is close to the critical curve, and a slight deformation to pass through
d = 2, Q = 4 is a good approximation for the true critical curve. This is the rational behind Fig. 1.

Going back to Fig. 5, we observe that the critical curve dc(Q) becomes horizontal for large Q, and
by walking down we find a second curve as indicated in Fig. 5. While this may well be an artifact
of the scheme, it leaves open the intriguing possibility that in dimension d = 3 the Potts model has a
window of values for Q for which it becomes critical again.
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Figure 10: Eigenvalues and couplings when walking down at Q = 1 from d = 5.99.

5.4 Ising (Q = 2)
We succeeded to walk down at Q = 2 from d = 6 to d = 0. The result is shown on the left of Fig. 8,
using LPA: since η ∼ Q − 2 = 0, the schemes are identical, i.e. LPA = LPA′ = LPA∗. We can
then project onto the Ising spin variables, by writing down U(Φ) in terms of Φ1 and Φ2, then setting
Φ1 → ϕ, Φ2 → −ϕ. This gives the potential visible in the spin sector of the Ising model.

U(Φ) → u(ϕ) = 2λ2ϕ
2 + 2 (λ4 + 2λ22)ϕ

4 + 2 (λ6 + 2λ24 + 4λ222)ϕ
6 + .... (113)

As can be seen in Fig. 8, these couplings vanish in dimensions 4 ≤ d ≤ 6, even though λ4 itself is
non-vanishing there. This is the Gaussian fixed point for the spin-degrees of freedom in dimension
d > 4. Below dimension d = 4, the quartic coupling visible in the spin theory, see Eq. (113), becomes
non-vanishing. Descending below d ≈ 3 also the sextic couplings become visible, albeit small.

This plot leads to the conjecture that the structure constant C, at leading order proportional to
λ3, grows from dimension d = 6 to dimension d = 4, before descending again. Assuming that the
structure constant C is indeed proportional to λ3, and normalizing s.t. the ϵ-expansion is matched,
gives the plot on the right of Fig. 8. It shows clearly that the d = 6 − ϵ expansion for the structure
constant given in section 4.6 will break down in dimension d = 4.

There are some interesting tests we can perform, see Fig. 9: The largest eigenvalue in the stability
matrix of the β-function is 1/ν, which equals 2 in dimensions 4 ≤ d ≤ 6, and has ϵ-expansion
1/ν = 2 − (4 − d)/3 below dimension d = 4. This is well respected in the NPRG, see the topmost
curve on Fig. 9. The exponent ω is the second-largest eigenvalue. For the cubic coupling it has 1-
loop dimension −ω = d − 6 in ϵ = 6 − d (gray dotted in Fig. 9) which is valid for 5 ≪ d < 6,
while (d− 6)/2 (gray dot-dashed in Fig. 9) seems to be a decent approximation down to d = 2. The
quartic coupling has 1-loop eigenvalue −ω = d− 4. The NPRG flow respects these expansions. The
operator content seems rather sparse in dimension d = 3, and misses higher scalar operators known in
the bootstrap [51]. This should improve upon increasing the maximum field dimension in the NPRG.

5.5 Q < 2

We can also walk down from d = 6 for Q < 2. For Q = 3/2, this is possible down to dimension
d = 0. For Q = 1 the system of RG equations seem to become degenerate in dimension d = 5.013,
see Fig. 10. For Q = 1/2 this happens already in dimension d = 5.251. This may be a sign for a first-
order transition (which is unlikely given what we know about percolation), or a technical problem. In
the latter case it may indicate that the ϵ-expansion is valid only down to dimension d ≈ 5. Another
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degeneracy is observed when trying to walk in dimension d < 4 from Q < 2 to Q > 2. It would be
interesting to analyze this further.

6 Discussion and conclusion
We showed that there are two distinct field theories for the Q-state Potts model, one for the spin
degrees of freedom, and one for the cluster degrees of freedom. The latter is exact on any graph, and
does not impose the representation of the Q states as a vector in RQ−1. As a consequence of these
different representations, the Ising model has two distinct upper critical dimensions, dc = 4 for spin
observables, and dc = 6 for cluster properties. This allowed us to derive an explicit prediction for the
3-point function, equivalent to the structure constant of the underlying CFT. We hope that numerical
simulations will soon verify this prediction.

An interesting question is how this extends to other values of Q. Our analysis shows that for
Q > 2 the Potts model has a second-order transition only outside a non-critical region. Its boundary
is perturbatively controlled close to d = 6, with a parabola, open to the bottom in the (Q, d) plane,
emanating from Q = 10/3, d = 6, see Fig. 1. Another bounding parabola open to the right, emanates
from d = 4, Q = 2, with a coefficient which can be estimated within a non-perturbative approach. As
discussed in the introduction, there is ample numerical and analytical evidence that the lower bound
of the non-critical region exits as well, even though it is yet badly approximated by any RG scheme.
We are working on a d = 2 + ϵ expansion to remedy this. One should also be able to expand around
the point Qc = 4 and d = 2, similar to what was done in [53] (up to an unknown coefficient) for the
O(N) model (around N = d = 2), see also [54]. Going back to d ≈ 6 and Q = 10/3, we note that a
new critical theory emerges when rotating all odd couplings into the complex plane. Taking Q → ∞
this connects to the well-known Young-Lee universality class.

Since the clusters of the FK expansion live inside the spin clusters (see section 3.2), spin cor-
relations cannot fall off faster than cluster correlations. Written for the field-dimension ∆ϕ, or the
exponent η, this reads

∆spin
ϕ ≤ ∆cluster

ϕ ⇔ ηspin ≤ ηcluster. (114)

Eq. (84) shows that to 1-loop order, and for d < 6

ηcluster ≥ 0 for 2 < Q <
10

3
. (115)

This property persists to higher orders, and especially for d close to 4 (ϵ = 6− d ≈ 2). For the Ising
model ηcluster = ηspin = 0 for 4 ≤ d ≤ 6, and the bound is saturated.

Perturbative RG near dimension 6 gives a very clear picture of what happens when we enter the
“first-order” domain: allowing the couplings to become complex, the critical and an additional tricriti-
cal point merge, and then wander into the complex plane, forming a pair of complex conjugate critical
fixed points. In contrast, when starting with real couplings, the RG flow runs to strong coupling, a
sign (but no proof) that the phase transition in this domain is first order. We conjecture that this pair
of complex fixed points can be observed in the Q-states Potts model, either via numerical simulations
in d = 3, or via transfer matrix in d = 2. A CFT with couplings at a complex fixed point was indeed
proposed in d = 2 for Q > 4, with explicit predictions for Q = 5 [55, 56].
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A Algebraic objects
The construction for a basis of the Q-state Potts model works as follows: Chose vectors e⃗α ∈ Rn,
with

n := Q− 1 , (116)

s.t.
e⃗α · e⃗β :=

∑
i

eiαe
i
β = δαβ −

1

Q
. (117)

We use a dot for scalar products in i-space (roman indices, dimension n = Q − 1, unconstrained
basis); a circ “◦” denotes the scalar product in α-space (greek indices, dimension Q, constrained
basis). These vectors can be constructed recursively, see [3, 4], Eq. (2). They satisfy∑

α

eαi = 0. (118)

Proof: ∑
i

(∑
α

eiα

)2

=
∑
αβi

eiαe
i
β =

∑
αβ

(
δαβ −

1

Q

)
= 0.

The inverse relation is
ei ◦ ej =

∑
α

eiαe
j
α = δij. (119)

Proof: Since the ejβ form an over-complete basis, we can write an arbitrary vector as Aj =
∑

β a
βejβ;

applying the tensor in Eq. (119) to Aj yields∑
α

eiαe
j
αA

j =
∑
αjβ

eiαe
j
αa

βejβ =
∑
αβ

eiαa
β

(
δαβ −

1

Q

)
= Ai . (120)

To arrive at the last line we used Eq. (118). This proves (119).

B The structure factor C in dimensions 0 and 1

It is instructive to consider 3-point properties for the two solvable cases d = 0 and d = 1. In d = 0
there is only one cluster, so C becomes

Cd=0 =
P (all 3 points in the same cluster)
P (2 points in the same cluster)3/2

= 1. (121)

We can also ask that all of them are in cluster say 1, then

P (all 3 points in cluster 1)
P (2 points in cluster 1)3/2

=

1
Q

( 1
Q
)3/2

=
√
Q. (122)

In d = 1 we can order the three points (1,2,3), with distances x = (1, 2) > 0 and y = (2, 3) > 0.
Then

⟨Φ1Φ2Φ3⟩√
⟨Φ1Φ2⟩ ⟨Φ2Φ3⟩ ⟨Φ1Φ3⟩

=
P123√

P12P23P13

=
p(x+ y)√

p(x)p(y)p(x+ y)
=

√
p(x+ y)

p(x)p(y)
. (123)

where p(x) is the probability that two randomly chosen points at distance x are in the same cluster.
Now consider the cluster which contains point 1, and then advance to the right. The probability that
the next point is still in the same cluster is ρ ≤ 1, and so on, s.t. p(x) = ρx. This Markovian property
implies that

Cd=1 =
⟨Φ1Φ2Φ3⟩√

⟨Φ1Φ2⟩ ⟨Φ2Φ3⟩ ⟨Φ1Φ3⟩
= 1. (124)
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