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Abstract

We calculate the effective action for disordered elastic manifolds in the ground state (equi-
librium) up to 3-loop order. This yields the renormalziation-group β-function and the critical
exponents to third order in ε = 4 − d, in an expansion in the dimension d around the upper
critical dimension d = 4. The calculations are performed using exact RG, and several other
techniques, which allow us to treat the problems associated with the cusp of the renormalized
disorder. We also obtain the full 2-point function up to order ε2, and the correction-to-scaling
exponents.

1 Introduction

Disordered systems are notoriously difficult to treat, since simple perturbation theory leads to absurd
results, as exemplified by the phenomenon of dimensional reduction [1]. Two main paths out of
this dilemma have been pursued: Replica symmetry breaking [2], and the functional renormalization
group. The latter goes back to the work by Wilson [3] and Wegner and Houghton [4]. For disor-
dered systems these methods were first used by Daniel Fisher [5]. However it took until 1992 that
Narayan and Fisher [6, 7], shortly thereafter followed by Natterman, Stepanow, Tang and Leschhorn
[8], recognized that the disorder correlator, which plays the role of the coupling constant in the func-
tional renormalization group (FRG) treatment, has to assume a cuspy form. The physical origin of
this cusp lays in the metastability of the zero-temperature states which dominate the partition func-
tion, as recognized by Balents, Bouchaud and Mézard [9] in 1996. Only in 2006 this property was
given a precise meaning as an observable, which can be measured in a numerical simulation both
for the statics [10, 11], the driven dynamics [12, 13], and in an experiment [14]. This was important
conceptually, since the very existence of the cusp had in the early days questioned the validity of
the method. Once this question of principle was solved, it remained the problems of feasibility and
practicality: First, whether there is a controlled loop or ε-expansion, and second how to implement a
method which makes sense of the cusp in this loop expansion, and more particularly of the derivatives
at the cusp. The latter change sign, depending on whether the limit is taken for positive or negative
argument, not to mention the additional problems arising for a higher-dimensional field [15]. While
these problems were conceptually simple to solve for depinning [16], due to the Middleton-theorem
[17], for the statics the question is more delicate. A consistent solution has been given at 2-loop order,
based on renormalizability, recursive construction, or consistency schemes (the “sloop-algorithm” to
be discussed below) [18, 19], or exact RG [20, 21, 22]. In this article, we extend these methods to
3-loop order, employing both exact RG and self-consistent schemes. As an application, we calculate
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to 3-loop order the roughness exponent ζ for random-bond disorder, the universal amplitude for peri-
odic disorder, as well as the RG fixed-point functions and universal correction-to-scaling exponents.
We also give the complete functional form of the universal 2-point function up to 2-loop order.

Our results are relevant for a remarkably broad set of problems, from subsequences of random
permutations in mathematics [23], random matrices [24, 25] to growth models [26, 27, 28, 29, 30,
31, 32, 33, 34] and Burgers turbulence in physics [35, 36], as well as directed polymers [26, 37] and
optimization problems such as sequence alignment in biology [38, 39, 40]. Furthermore, they are
very useful for numerous experimental systems, each with its specific features in a variety of situ-
ations. Interfaces in magnets [41, 42] experience either short-range disorder (random bond RB), or
long range (random field RF). Charge density waves (CDW) [43] or the Bragg glass in superconduc-
tors [44, 45, 46, 47, 48] are periodic objects pinned by disorder. The contact line of a meniscus on a
rough substrate is governed by long-range elasticity [14, 49, 50, 51, 52]. All these systems can be pa-
rameterized by aN -component height or displacement field u(x), where x denotes the d-dimensional
internal coordinate of the elastic object. An interface in the 3D random field Ising model has d = 2,
N = 1, a vortex lattice d = 3, N = 2, a contact-line d = 1 and N = 1. The so-called directed
polymer (d = 1) subject to a short-range correlated disordered potential has been much studied [53]
as it maps onto the Kardar-Parisi-Zhang growth model [26, 34, 31] for any N , and yields an im-
portant check for the roughness exponent, defined below, ζeq,RB(d = 1, N = 1) = 2/3. Another
important field of applications are avalanches, in magnetic systems known as Barkhausen noise. For
applications and the necessary theory see e.g. [54, 55, 56, 57, 58, 59, 60, 61, 62, 63].

2 Model and basic definitions

The equilibrium problem is defined by the partition function Z :=
∫
D[u] exp(−H[u]/T ) associated

to the Hamiltonian (energy)

H[u] =

∫
ddx

1

2
[∇u(x)]2 +

m2

2
[u(x)− w]2 + V

(
u(x), x

)
. (2.1)

In order to simplify notations, we will often note∫
x

f(x) :=

∫
ddx f(x) , (2.2)

and in momentum space ∫
q

f̃(q) :=

∫
dqd

(2π)d
f̃(q) . (2.3)

The Hamiltonian (2.1) is the sum of the elastic energy
∫
x

1
2

[∇u(x)]2 plus the confining potential
m2

2

∫
x

[u(x)− w]2 which tends to suppress fluctuations away from the ordered state u(x) = w, and a
random potential V (u, x) which enhances them. w is, up to a factor of m2, an applied external force,
which is useful to measure the renormalized disorder [10, 11, 12, 13, 14, 63, 64], or properly define
avalanches [12, 13, 52, 65, 66, 67, 68]. The resulting roughness exponent ζ

〈[u(x)− u(x′)]2〉 ∼ |x− x′|2ζ (2.4)

is measured in experiments for systems at equilibrium (ζeq) or driven by a force f at zero temperature
(depinning, ζdep). Here and below 〈. . . 〉 denote thermal averages and (. . . ) disorder ones. In the
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zero-temperature limit, the partition function is dominated by the ground state, and we may drop
the explicit thermal averages. In some cases, long-range elasticity appears, e.g. for a contact line by
integrating out the bulk-degrees of freedom [51], corresponding to q2 → |q| in the elastic energy. The
random potential can without loss of generality [18, 19] be chosen Gaussian with second cumulant

V (u, x)V (u′, x′) =: R0(u− u′)δd(x− x′) . (2.5)

R0(u) takes various forms: Periodic systems are described by a periodic function R0(u), random-
bond disorder by a short-ranged function, and random-field disorder of variance σ by R(u) ' −σ|u|
at large u. Although this paper is devoted to equilibrium statics, some comparison with dynamics
will be made and it is thus useful to indicate the corresponding equation of motion. Adding a time
index to the field, u(x)→ u(x, t), the latter reads

η∂tu(x, t) = − δH[u]

δu(x, t)
= ∇2

xu(x, t) +m2[w − u(x, t)] + F (u(x, t), x) , (2.6)

with friction η. The (bare) pinning force is F (u, x) = −∂uV (u, x), with correlator

∆0(u) = −R′′0(u) . (2.7)

To average over disorder, we replicate the partition function n times, Zn =: e−S , which defines the
effective action S,

S[u] =
n∑
a=1

1

2T

∫
x

[∇uα(x)]2 +
m2

2T
ua(x)2 − 1

2T 2

∫
x

n∑
a,b=1

R0

(
ua(x)− ub(x)

)
(2.8)

We used the notations introduced in Eqs. (2.2) and (2.3). In presence of external sources ja, the
n-times replicated action becomes

Z[j] :=

∫ n∏
a=1

D[ua] exp

(
−S[u] +

∫
x

∑
a

ja(x)ua(x)

)
, (2.9)

from which all static observables can be obtained. a runs from 1 to n, and the limit of zero replicas
n = 0 is implicit everywhere.

3 Summary of main results

Here we summarize the main results. Their derivation is given in the following sections.

3.1 3-loop β-function

In generalization of Eq. (3.43) of [18, 19], we obtain the following functional renormalization group
equation for the renormalized, dimensionless disorder correlator R̃(u),

−m∂mR̃(u) = (ε− 4ζ)R̃(u) + ζuR̃′(u) + 1
2
R̃′′(u)

2 − R̃′′(u)R̃′′(0)

+
(

1
2

+ ε C1

) [
R̃′′(u)R̃′′′(u)

2 − R̃′′(0)R̃′′′(u)
2 − R̃′′(u)R̃′′′(0+)

2
]

+C2

[
R̃′′′(u)

4 − 2R̃′′′(u)
2
R̃′′′(0+)

2
]

+ C3

[
R̃′′(u)− R̃′′(0)

]2
R̃′′′′(u)

2

+C4

[
R̃′′(u)R̃′′′(u)

2
R̃′′′′(u)− R̃′′(0)R̃′′′(u)

2
R̃′′′′(u)− R̃′′(u)R̃′′′(0+)

2
R̃′′′′(0)

]
. (3.1)
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The coefficients are

C1 =
1

4
+
π2

9
−
ψ′(1

3
)

6
= −0.3359768096723647... (3.2)

C2 =
3

4
ζ(3) +

π2

18
−
ψ′(1

3
)

12
= 0.6085542725335131... (3.3)

C3 =
ψ′(1

3
)

6
− π2

9
= 0.5859768096723648... (3.4)

C4 = 2 +
π2

9
−
ψ′(1

3
)

6
= 1.4140231903276352... . (3.5)

The first line contains the rescaling and 1-loop terms, the second line the 2-loop terms, and the last
two lines the three 3-loop terms. Note that C1 = 1

4
− C3, and C4 = 2− C3 =

√
2− 0.000190372...

3.2 Fixed points and critical exponents

There are four generic distinct disorder classes, corresponding to random-bond, random-field, random-
periodic, and generic long-ranged disorder. While we will discuss the details in section 9, we give a
summary here.

3.2.1 Random-bond disorder

If the microscopic disorder potential is short-ranged, which corresponds to random-bond disorder in
magnetic systems, then the roughness exponent can be calculated in an ε = 4− d expansion:

ζ = εζ1 + ε2ζ2 + ε3ζ3 +O(ε4) (3.6)
ζ1 = 0.2082980628(7) (3.7)
ζ2 = 0.006857(8) (3.8)
ζ3 = −0.01075(2) . (3.9)

This series expansion has a rather large third-order coefficient. As we will discuss in the Conclusions,
this is a little surprising, since one might expect the expansion to converge, contrary to ϕ4-theory
which has a divergent, but Borel-summable series expansion.

One can use a Padé resummation to improve the expansion. Asking that all Padé coefficients are
positive singles out the (2,1)-approximant. It is given by

ζ(2,1) ≈
0.208298ε+ 0.333429ε2

1 + 1.56781ε
+O(ε4) . (3.10)

Adding a 4-loop term, and asking that in dimension one the exact result is reproduced, i.e. ζ(ε =
3) = 2/3, and choosing the Padé with positive coefficients only, leads to

ζ ≈ 0.0021794ε4 + 0.333429ε2 + 0.208298ε

1.56781ε+ 1
+O(ε4) . (3.11)

Details can be found in section 9.1.
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3.2.2 Random-field disorder

The roughness exponent is given

ζRF =
ε

3
, (3.12)

a result exact to all orders in ε. The amplitude of the 2-point function can be calculated analytically.
It is given by

〈ũ(q)ũ(q′)〉 = c̃(d)m−d−2ζRFFd(q/m) (3.13)
Fd(0) = 0 , Fd(z) ' B(d)z−d−2ζRF for z →∞ (3.14)

c̃(d) ≈ ε
1
3σ

2
3

0.283721 + 0.058367ε+ 0.064888ε2
+O(ε

10
3 ) (3.15)

B(d) ≈ 1 + 0.226789ε

1 + 0.560122ε
+O(ε3) . (3.16)

An analytical result is given in Eq. (8.27) ff. We have again given the Padé approximants with only
positive coefficients. Translating to position space yields

1

2
〈[u(x)− u(0)]2〉 =

−Γ(− ε
3
)c̃(d)B(d)

(4π)
d
2 Γ
(
d+8

6

) (x
2

)2ε
3 (3.17)

The renormalization-group fixed point function R(u) for the disorder can in this case be calculated
analytically to third order in ε. The result, together with details on the calculations is given in section
9.2.

3.2.3 Periodic disorder

For periodic disorder, the 2-point function is always a logarithm in position space, with universal
amplitude, corresponding to

ζRP = 0 . (3.18)

The scaling functions are defined as for RF disorder, and read

〈ũ(q)ũ(q′)〉 = c̃(d)m−dFd(q/m) (3.19)
Fd(0) = 0 , Fd(z) ' B(d)z−d for z →∞ (3.20)

c̃(d) ≈ 2.19325ε

1 + 0.310238ε+ 1.33465ε2
+O(ε4) (3.21)

B(d) ≈ 1 + 0.134567ε

1 + 1.13457ε
+O(ε3) . (3.22)

An analytical result is given in Eq. (8.28) ff. The Padé approximants are again given with only
positive coefficients. Translating to position space yields, with a microscopic cutoff a

1

2
〈[u(x)− u(0)]2〉 =

2c̃(d)B(d)

(4π)
d
2 Γ(d

2
)

ln |x/a| . (3.23)

Details are presented in sections 8.3 and 9.3.
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3.3 Correction-to-scaling exponent

The correction-to-scaling exponent ω quantifies how an observable O, or a critical exponent, ap-
proaches its value at the IR fixed point at length scale ` or at mass m

O −Ofix−point ∼ `−ω ∼ mω . (3.24)

For the fixed points studied above, the correction-to-scaling exponents are follows.
Random-Periodic fixed point:

ωRP = −ε+
2ε2

3
−
(

4ζ(3)

3
+

5

9

)
ε3 +O(ε4) = −ε

1 +
[
2ζ(3) + 1

6

]
ε

1 +
[
2ζ(3) + 5

6

]
ε

+O(ε4) . (3.25)

Random-Bond fixed point:

ωRB ≈ −ε+ 0.4108ε2 +O(ε3) = − ε

1 + 0.4108ε
+O(ε3) . (3.26)

Random-Field fixed point:

ωRF ≈ −ε+ 0.1346ε2 +O(ε3) = − ε

1 + 0.1346ε
+O(ε3) . (3.27)

Note that for the RP fixed point, we have given the solution up to 3-loop order. For the other fixed
points, we have not attempted to solve the RG equations at this order, as this problem can only be
tackled via shooting, which is already difficult at second order. Also, as the 2-loop result seems to be
quite reliable, whereas corrections for ζ are large at 3-loop order, we expect the same to be true for
ω, which justifies to stop the expansion at second order.

Finally, we can perform the same analysis at depinning, with results as follows:
Random-Field fixed point at depinning:

ωdepinning
RF ≈ −ε− 0.0186ε2 +O(ε3) = − ε

1− 0.0186ε
+O(ε3) . (3.28)

Random-Periodic fixed point at depinning:

ωdepinning
RP = −ε+

2ε2

3
+O(ε3) . (3.29)

Strangely, while the RP fixed point at depinning is different, the correction-to-scaling exponent ω
does not change, at least to second order.

3.4 Other results

A fixed-point function can also be constructed for generic long-ranged disorder, growing (or decay-
ing) at large distances as R(u) ' uα, with α = 1 being random-field disorder discussed above. The
idea is the same, in all cases the tail for large u does not get corrected.

Let us also mention that we have analytical results for the scaling function Fd(z), in an ε expan-
sion to second order.
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4 Lifting ambiguities in a non-analytic theory, summary

Ambiguities arise in a perturbative computation of the effective action if one uses a non-analytic
action. To resolve this issue, several methods have been designed, of which we list the most important
ones below. Some failed attempts at 2-loop order are described in Ref. [19]. In addition, the physics
of the problem requires the theory to be renormalizable, potential and without super-cusp, which
gives valuable checks on the values of the “anomalous” graphs.

1) Exact RG. The starting point of exact RG (ERG) methods are exact relations between function-
als, for reviews see [69, 22]. A systematic but straightforward expansion in ε combines the anomalous
terms from naive perturbation theory in a way that makes them automatically non-ambiguous. This
method and the corresponding derivation of the β-function is discussed in Section 5.

2) Elimination of sloops. The idea, which will be explained in detail in Section 6.1 below, is as
follows: Since the propagator 〈ũa(k)ũb(−k)〉 = Tδab/(k

2 + m2) is diagonal in replica space, each
contraction in a diagram reduces the number of free replica sums by at most one. Doing a contraction
which does not constrain the number of replicas further counts as a factor of T = 0, and can thus
be set to zero. Further contracting such diagrams generates a set of identities which, remarkably, is
sufficient to obtain unambiguously the 2-replica projection without any further assumption. In some
sense, it uses in a non-trivial way the constraint that we are working with a true T = 0 theory.

3) Recursive construction: An efficient method is to construct diagrams recursively. The idea is
to identify in a first step parts of the diagram, which can be computed without ambiguity. This is e.g.
the 1-loop chain-diagram discussed in Section 6.1. In a second step, one treats the already calculated
sub-diagrams as effective vertices. In general, these vertices have the same analyticity properties,
namely are derivable twice, and then have a cusp. (Compare R(u) with [R′′(u) − R′′(0)]R′′′(u)2 −
R′′(u)R′′′(0+)2, which is a contribution to the β-function at 2-loop order). By construction, this
method ensures renormalizability, at least as long as there is only one possible path. However it is
not more general than the demand of renormalizability diagram by diagram, discussed below.

4) Renormalizability diagram by diagram: Renormalizability diagram by diagram is the key
to all proofs of perturbative renormalizability in field-theory, see e.g. [70, 71, 72, 73, 74, 75, 76, 77].
These methods define a subtraction operator R. Graphically it can be constructed by drawing a box
around each sub-divergence, which leads to a forest or nest of sub-diagrams (the counter-terms in
the usual language), which have to be subtracted, rendering the diagram finite. The advantage of
this procedure is that it explicitly assigns all counter-terms to a given diagram, which finally yields a
proof of perturbative renormalizability. If we demand that this proof goes through for the functional
renormalization group, the counter-terms must necessarily have the same functional dependence on
R(u) as the diagram itself. In general, the counter-terms are less ambiguous, and this procedure
can thus be used to lift ambiguities in the calculation of the diagram itself. By construction this
procedure is very similar to the recursive construction discussed under point 3, and it is build in to
the ERG approach.

It has some limitations though. Indeed, if one applies this procedure to the 3-loop calculation,
one finds that it renders unique all but one ambiguous diagram, namely

, (4.1)

which has no subdivergence. Thus there are no counter-terms which could lift the ambiguities. This
diagram must therefore be computed directly and we found that it can be obtained unambiguously by

7



the sloop elimination method. We will not give a detailed explanation of this method here, since we
will not need it, and it is well documented, see section VD of [19].

5) Reparametrization invariance: From standard field theory, one knows that RG functions are
not unique, but depend on the renormalization scheme. Only critical exponents are unique. This is
reflected in the freedom to reparametrize the coupling constant g according to g −→ g̃(g) where g̃(g)
is a smooth function, which has to be invertible in the domain of validity of the RG β-function.

Here we have chosen a scheme, namely defining R(u) from the exact zero momentum effective
action, using dimensional regularization, and a mass. One can explore the freedom in performing
reparametrizations. In the functional RG framework, reparameterizations are also functional, of the
form

R(u) −→ R̂(u) = R̂[R](u) . (4.2)

Of course the new function R̂(u) does not have the same meaning as R(u). Perturbatively this reads

R(u) −→ R̂(u) = R(u) +B(R,R)(u) +O(R3) , (4.3)

where B(R,R) is a functional of R. For consistency, one has to demand that B(R,R) has the same
analyticity properties as R, at least at the fixed point R̃ = R̃∗, i.e. B(R,R) should as R be twice
differentiable and then have a cusp. Details can be found in Section 7.

As far as applicable, all methods, who are are genuinely different, give consistent results. This is
strong evidence that the problem has a unique field theory, which we identify in this paper to 3-loop
order. In particular, the ambiguities which arise in perturbation theory due to the cusp turn out to be
superficial and are absent in our treatment. Let us now turn to actual calculations using these methods.
We start with the ERG approach. We will then use renormalized field theory and a combination of
the above-mentioned methods. Let us stress that these two calculations were done independently by
the two authors, which serves as a non-trivial check of the RG β-function such obtained.

5 Calculation via the Exact Renormalization Group

In this section we derive the 3-loop flow equations by means of the exact renormalization group
(ERG). In condensed matter this RG is sometimes called “functional RG” because it is based on exact
flow equations formulated for thermodynamic functionals. To avoid possible confusions, we will use
the term “functional RG” only in the sense of perturbative field theory, i.e. as a loop expansion.

5.1 Set-up of ERG equation

For each realization of the random potential V , let ZV be the partition function. By the standard
replica trick we average the logarithm of ZV over disorder

lnZV = lim
n→0

1

n

(
Zn
V − 1

)
(5.1)

by introducing replicas of the field. The replicated partition function is written as a functional integral

eW [j] = N0

∫ ∏
x

n∏
a=1

dua(x) e−S[u]+(j,u) . (5.2)
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It depends on an external replica-dependent field ja(x) with a = 1 . . . n. We choose N0 = (Zn
V )−1

such that eW [0] = 1. We denote (j, u) =
∑

a

∫
ddx ja(x)ua(x) and the replicated action is given by

S[u] =
1

2T

∑
a

∫
ddx
[
(∇xua)

2 +m2ua(x)2
]
− 1

2T 2

∑
a,b

∫
ddx R0

(
ua(x)− ub(x)

)
. (5.3)

Correlation functions and other observables averaged over disorder can be calculated from replica
averages obtained from a polynomial expansion of W [j], see Ref. [22] for details. For example, the
connected 2-point correlation function is given by

〈u(x)u(y)〉V − 〈u(x)〉V 〈u(y)〉V = lim
n→0

[
〈u1(x)u1(y)〉rep − 〈u1(x)u2(y)〉rep

]
, (5.4)

where 〈ua(x)ub(y)〉rep = δ2

δja(x)δjb(y) |j=0
W [j]. Note that 〈ua(x)〉rep = δ

δja(x) |j=0
W [j] = 0 since S[u] =

S[−u].
The mass m2 > 0 provides an infrared regularization, and we are interested in the limit m2 → 0.

The ERG is set up by successively lowering the parameter m2, which we call RG scale. Since the
action S[u] depends on m only via its quadratic part in the fields, the scale derivative of W [j] can be
expressed by a Polchinski-type equation

Ẇ [j] =
d

dm
W [j] = −1

2

(
δW

δj
, q̇
δW

δj

)
− 1

2
Tr
[
q̇
δ2W

δj2

]
. (5.5)

Here qab(p) = T−1(p2 +m2)δab denotes the bare inverse thermal propagator of the action.
The second term in S[u] is invariant under a shift with a replica independent field. This is ex-

pressed by the so called statistical tilt symmetry (STS)

W [j + j̃] = W [j] +
1

2
(j̃, gj̃) + (j, gj̃) , (5.6)

where j̃ is a replica-independent field and gab(q) = qab(q)
−1. It follows that the thermal propagator

lim
n→0

∑
a

δ2W

δja(x)δjb(y)
∣∣j=0

= lim
n→0

∑
a

gab(x, y) (5.7)

is not renormalized.
A Legendre transform of W [j] allows a more convenient expansion in loops. For this we define a

functional map ua 7→ Ja[u] such that δ
δja(x)

W [j]
∣∣∣
ja=Ja[u]

= ua(x). This map exists, since the second

functional derivative of W is positive for m > 0 at j = 0. The Legendre transform is defined as

Γ[u] = −W [J [u]] + (J [u], u) (5.8)

and is called the effective action. Therefore δ
δua(x)

Γ[u] = Ja[u](x) and δ2Γ
δu2

=

(
δ2W
δj2

∣∣∣
j=J [u]

)−1

is the

inverse full propagator.
The Legendre transformed version of the statistical tilt symmetry reads

Γ[u+ ũ] = Γ[u] +
1

2
(ũ, qũ) + (u, qũ) (5.9)

9



with the field ũ again being replica-independent. Because there is no thermal self-energy we write
Γ[u] = 1

2
(u, g−1u)− Γ̂[u]. The flow equation for Γ̂ follows from Γ̇ = −Ẇ and reads

˙̂
Γ[u] =

1

2
Tr

gq̇(1− g δ
2Γ̂

δu2

)−1
 . (5.10)

In the limit m→∞ the effective action becomes the bare action without regularization

lim
m→∞

Γ[u] = S[u]
∣∣
m=0

. (5.11)

5.2 Replica expansion hierarchy

We expand the effective action in the number of replica sums

Γ[u] =
1

2
(u, g−1u)− 1

2T 2

∑
a,b

R[uab]−
∑
n≥3

1

n!T n

∑
a1,...an

S(n)[ua1 , . . . uan ] (5.12)

where we use the shorthand notation uab(x) = ua(x) − ub(x). Due to STS the one-replica term is
given by the bare inverse thermal propagator. The two-replica term is a scale-dependent functional
that depends on uab(x) only. The initial condition for R is local and given by the bare disorder
distribution function

lim
m→∞

R[u] =

∫
ddx R0(u(x)) . (5.13)

Higher replica terms are not present in the bare action but they are generated by the RG flow. STS
implies that

S(n)[ua1 , . . . uan ] = S(n)[ua1 + v, . . . uan + v] (5.14)

for any field v(x). It follows that the two-replica term S(2)[ua, ub] = R[uab] is a functional of only
one field. Because of the sum over all replica indices, we assume all n-replica terms or Γ-cumulants
to be symmetric under permutation of the replica fields.

We use the following compressed notation for functional derivatives of n-replica terms to denote
p1 derivatives with respect to field ua1 and similarly pi derivatives with respect to field uai for i =
1, ...n

S(n)
p1...pn

[ua1...an ](x1, . . . xpmax) = δ
δua1 (x1)

. . . δ
δua1 (xp1 )

δ
δua2 (xp1+1)

. . . δ
δuan (xpmax )

S(n)[ua1...an ] (5.15)

with the total number of derivatives pmax =
∑n

i=1 pi and the short-hand notation
S(n)[ua1...an ] = S(n)[ua1 . . . uan ]. For example, using permutation symmetry, the second functional
derivative of Γ is given by

δ2Γ̂

δua(x)δub(x)
=
∞∑
n=2

1

(n− 1)!T n

∑
a2...an

[
S

(n)
20...0[ua, ua2 , . . . uan ](x, y)δab

+
1

T
S

(n+1)
110...0[ua, ub, ua2 , . . . uan ](x, y)

]
+

1

T 2
S

(2)
11 [ua, ub](x, y) . (5.16)
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Symmetrization over fields is denoted by curly brackets, that is, {. . .} is the symmetrization of . . .
over all its variables. Differentiating Eq. (5.14) and using permutation symmetry implies that

0 =
δ2

δv(x)δv(y)

∣∣∣∣
v=0

S(n)[ua1 + v, . . . uan + v] (5.17)

= n{S20...0[ua1 . . . uan ](x, y)}+ 2n(n− 1){S110...0[ua1 . . . uan ](x, y)} .

Because we are interested in the limit of the number of replica indices n→ 0 , we are free to add any
function that depends on k < n replicas to a n-th cumulant. This “gauge invariance” will be used
later to get rid of constant terms in the cumulants.

Via Legendre transformation there is a one-to-one correspondence of Γ-cumulants to cumulants
obtained from a replica expansion of W [j], see Ref. [22]. Therefore, the Γ-cumulants can be used to
calculate observables. In particular, the exact 2-point correlation function averaged over disorder is
given by

〈u(p)u(−p)〉V = lim
n→0

(
δ2Γ

δua(p)δub(−p)

∣∣∣∣
u=0

)−1

a=b

=
T

m2 + p2
− 1[

m2 + p2
]2 δ2R[u]

δu(p)δu(−p)

∣∣∣∣
u=0

,

(5.18)

where, compared to leading-order perturbation theory, the second derivative of the bare function
R0(u) is replaced by the second derivative of the renormalized functional R[u].

In order to obtain RG equations for each Γ-cumulant, we expand the inverse in Eq. (5.10) in a
geometric series

˙̂
Γ[u] =

1

2

∑
l≥0

Tr

g q̇(g δ2Γ̂

δu2

)l
 , (5.19)

insert Eq. (5.16), and count the number of replica sums. The propagators g and gq̇g = −ġ are
diagonal in replica space. Replica sums arise from second derivatives of Γ̂, their matrix products,
and one additional sum from the trace. Therefore, in order to calculate the flow equation of the n-th
cumulant, the geometric series in Eq. (5.19) does not contribute for l > n. On the other hand, a term
in the geometric series of l-th order contributes to cumulants to all order n ≥ l. That is, for any initial
action the RG flow generates cumulants to all orders.

The term l = 0 and the one-replica term in l = 1 in Eq. (5.19) are constants and can therefore be
neglected due to gauge invariance. Evaluating the two-replica contributions in the l = 1 and l = 2
terms give the flow equation

Ṙ[u] =

∫
x1,x2

ġ(x1, x2)
[
TR′′[u](x2, x1) + S

(3)
110[0, 0,−u]

]
(5.20)

+
1

2

∫
x1,...,x4

[
d

dm
g(x1, x2)g(x3, x4)

]
R′′[u](x2, x3)R′′[u](x4, x1)

where R′′[u] = R′′[u] − R′′[0]. The evaluation at zero field arises in terms of coinciding replica
indices. We note that Eq. (5.20) is a non-linear integro-differential equation for a functional. Similar
equations can be obtained for higher cumulants, Ṡ(3) and Ṡ(4); they are given in Appendix B.1. Due to
the l = 1 term in Eq. (5.19) there is a contribution from S(m+1) to Ṡ(m). Therefore, in order to obtain
exact solutions for the Γ-cumulants, one has to consider the full, infinitly large hierarchy. Note that,
formally, up to now no approximations were made; in particular, we do not encounter ambiguities
when a cusp in the second derivative of the local disorder distribution function develops.
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5.3 ε-expansion for T = 0

Since we cannot treat an infinite hierarchy, we perform an additional expansion in ε = 4− d. To this
aim we split the disorder distribution functional R[u] into a local and a non-local part

R[u] =

∫
ddx R(u(x)) + R̂[u] . (5.21)

If u(x) = u0 is a constant field, then R̂[u0] = 0, so that only the local part contributes, R[u0] =
LdR(u0), where Ld =

∫
ddx is the volume of the system. Note that R[u] and R̂[u] are functionals,

whereas R(u) is a function. For m → ∞ the disorder-distribution function has only a local part,
which we assume to be small. That is, R0(u) and all its derivatives are uniformly bound by a small
constant1. We also assume that the local part R(u) of the renormalized disorder distribution function
remains small. Then the ε-expansion can be obtained by expanding the replica expansion hierarchy
inR(u). From now on we set the temperature to T = 0. Because the rescaled temperature T becomes
small for small m, the ε-expansion can also be obtained for T > 0 by a composite expansion in T
and R(u).

Suppose that R(u) ∼ O(ε). Since for T = 0, Eq. (5.20) is quadratic in R′′, the non-local part
of the renormalized disorder distribution function will be R̂[u] ∼ O(ε2). A similar argument for the
higher Γ-cumulants gives S(n) ∼ O(εn) for n ≥ 3. The assumption that also all derivatives of the
cumulants remain of the same order has to be checked; we will do so up to order ε4, that is, 3-loop
order. With this method the 2-loop order was already obtained in Ref. [22] before.

The 1-loop equation can be obtained by an expansion to second order in ε and can directly be
read off from Eq. (5.20). We use that

R′′[u](x1, x2) = R′′
(
u(x1)

)
δ(x1 − x2) + R̂′′[u](x1, x2) , (5.22)

where the second term is already O(ε2) and does not contribute to Eq. (5.20) at 1-loop order. We
therefore find

Ṙ[u] =
1

2

∫
x1,x2

[
d

dm
g(x1, x2)2

]
R′′
(
u(x1)

)
R′′
(
u(x2)

)
+O(ε3) , (5.23)

whereR′′(u) := R′′(u)−R′′(0). The local part is obtained by inserting the constant field u(x) = u0

and dividing by Ld

Ṙ(u0) =
1

2
İ1R′′(u0)2 +O(ε3) (5.24)

where after Fourier transformation I1 =
∫
p
g(p)2 ∼ O(m

−ε

ε
), and so İ1 ∼ O(1). The diagram I1

is evaluated in Eq. (A.6). In order to have the simplist possible formulas, we will absorb a factor
of εI1|m=1 into the renormalized disorder, see Eq. (6.43). This effectively sets I1 to m−ε/ε. For an
n-loop integral In we will have to evaluate the ratio In/In1 . We believe this to be the most convenient
convention for obtaining standardized expressions.

1Due to the formation of a cusp, this consideration does not apply to derivatives at the cusp, which become infinite.
We will discuss this later.
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Up to rescaling Eq. (5.24) is the standard 1-loop FRG equation. The solution of this flow equation
corrects R0(u) ∼ O(ε) to the renormalized R(u) to order ε2. The non-local part in terms of this
renormalized disorder-distribution function is given by

R̂[u] =
1

2

∫
x1,x2

g(x1, x2)2R′′(u(x1))R′′(u(x2))− 1

2
I1

∫
x

R′′(u(x))2 +O(ε3) (5.25)

Superficially, the ε-expansion seems to work. However, we assumed that R̂[u] is of order ε2 and
likewise all derivatives of R̂[u]. In fact, the existence of the cusp in R′′(u) of the 1-loop solution
appearing at a finite scale destroys our assumptions. Due to this cusp, R′′(u) is not differentiable at
u = 0. The left- and right-sided limits of R′′′ exist but do not coincide R′′′(0+) = −R′′′(0−). The
fourth derivative R′′′′(u) is uniformly bound for u 6= 0 but it is infinity at u = 0.

If we would only need up to two derivatives of R, the ε-expansion would work without caveats.
However, even the computation of the 2-point correlation function in Eq. (5.18) requires a second
derivative of the non-local part of R[u], that is, a second derivative of Eq. (5.25) at zero field. There
enters a third and fourth derivative of R(u(x)) that have to be evaluated at u(x) = 0. Furthermore, in
the derivation of higher orders in ε, that is, higher orders in the expansion of the replica hierarchy in
R(u), one encounters higher derivatives as well.

For the calculation of observables via analytic continuation it suffices to evaluate derivatives of
R(u) at u = 0±, if the left- and right-sided limits give the same result for the observable. For example,
the ambiguity is avoided if odd derivatives of R(u) enter the equations only squared. However, we
work with fluctuating fields u(x) and, for example, the second derivative of Eq. (5.25) contains a
term R′′′(u(x1))R′′′(u(x2)). While this is a square term we have to ensure that either u(x) → 0+ or
u(x) → 0− uniformly for all x. That is, ambiguities can be avoided if we restrict to non-crossing
configurations.

From now on, the limit of two fields ua(x) and ub(x) being equal in a Γ-cumulant is understood
as

lim
ub→ua

S(n)[ua, ub, . . .] := lim
u0→0+

S(n)[ua, ua + u0, . . .] (5.26)

where u0 is a constant field. That is, all fields are assumed to be close to a uniform configuration. We
demonstrate in the next two subsections that in this weak limit the 3-loop β-function can be derived
consistently. That is, it does not matter if the right limit u0 → 0+ or left limit u0 → 0− are taken in
Eq. (5.26).

5.4 ε-expansion to 2-loop order

As an instructive example we review the 2-loop ERG calculation done in Refs. [20, 22]. In order to
obtain Eq. (5.20) to order ε3 we have to compute S(3)

110[0, 0,−u] and R′′[u](x2, x3)R′′[u](x4, x1) to
this order. We first concentrate on the second term. Note that we expand in the renormalized disorder
distribution function R(u). This gives

R′′[u](x, y) = R′′(u(x))δ(x− y) + R̂′′[u](x, y)− R̂′′[0+](x, y) . (5.27)
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R′′(u(x)) is of order ε and we have to expand the non-local part R̂′′ to second order in R(u), that is,
we have to insert the second derivative of Eq. (5.25)

R̂′′[u](z1, z2) = δd(z1 − z2)

[ ∫
x

g(z1, x)2R′′′′(u(z1))R′′(u(x))− I1R
′′′(u(z1))2 (5.28)

− I1R
′′′′(u(z1))R′′(u(z1))

]
+ g(z1, z2)2R′′′(u(z1))R′′′(u(z2)) +O(ε3)

As described above, in order to calculate R̂′′[0+](z1, z2) we first insert a constant field u0 and then
take the limit u0 → 0+ to obtain

R̂′′[0+](z1, z2) =
[
g(z1, z2)− δd(z1 − z2)I1

]
R′′′(0+)2 +O(ε3) . (5.29)

It is important to note that in this “weak limit” we obtain no ambiguities since R′′′(0+)2 = R′′′(0−)2

has a straightforward analytic continuation.
The feedback from S(3) is calculated by retaining only terms of order ε3. The calculation is

relegated to appendix B.1. The result from Eq. (B.1) is

Ṡ(3)[uabc] =

∫
x1,...,x6

[
d

dm
g(x1, x2)g(x3, x4)g(x5, x6)

]
× (5.30)

×
(

3R′′[uab](x2, x3)R′′[uac](x4, x5)R′′[uac](x6, x1)

−R′′[uab](x2, x3)R′′[ubc](x4, x5)R′′[uac](x6, x1)
)

+O(ε4) .

To this order it integrates to

S(3)[uabc] =
{

3 tr
[
gR′′abgR′′abgR′′ac

]
− tr

[
gR′′abgR′′bcgR′′ac

]}
+O(ε4) , (5.31)

where Rab = R[uab]. Here the trace is over real space. The symmetrization over fields {. . .} can be
written as S(3)[uabc] = 1

2
(A1 + A2 + A3) +O(ε4) with

A1 = tr
[
gR′′abgR′′abg(R′′ac +R′′bc)

]
(5.32)

A2 = tr
[
gR′′abg(R′′ac −R′′bc)g(R′′ac −R′′bc)

]
A3 = 1

3
tr
[
g(R′′ac +R′′bc)g(R′′ac +R′′bc)g(R′′ac +R′′bc)

]
.

In a next step we take the functional derivatives of these terms with respect to ua(x) and ub(y). Then
the limit b → a is performed by first replacing ub(y) by ua(x) + u0 and then sending u0 → 0+.
The remaining fields ua(x) only occur in the combination ua(x) − uc(x) and can directly be set to
zero. When taking the functional derivatives of Eqs. (5.32), it is helpful to remember that we set
b = a afterwards. Therefore A2 does not contribute to S(3)

110[0, 0,−v] and A1 contributes only if the
derivatives act on the first two Rab in the trace. Finally, the term A3 is a symmetric functional in uac
and ubc and can be symmetrically expanded in uab as outlined in the appendices of Refs. [22, 78].
Setting uc(x) = u(x), we obtain

S
(3)
110[0, 0,−u](x1, x2) = 2

[
R′′′(x1)R′′′(x2)−R′′′(0+)2

]
g(x1, x2)

∫
y

g(x1, y)g(y, x2)R′′(y)

+O(ε4) . (5.33)
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In the above equation and from now on we use the shorthand notation R′′(x) := R′′(u(x)) (and
similar for higher derivatives expect for x = 0+ and x = u). Inserting Eqs. (5.28), (5.29), and (5.33)
into Eq. (5.20) we arrive at the 2-loop result

Ṙ[u] =

∫
x1,...,x3

[
d

dm
g(x1, x2)g(x1, x3)

] [
g(x2, x3)2 − δ(x2 − x3)

]
R′′(x1) (5.34)

×
[
R′′′(x2)R′′′(x3)−R′′′(0+)2

]
+

∫
x1,...,x3

[
d

dm
g(x1, x2)2

] [
g(x2, x3)2 − δ(x2 − x3)

]
R′′(x1)R′′′′(x2)R′′(x3)

+

∫
x1,...,x3

[
d

dm
g(x1, x2)2

]
g(x1, x2)g(x1, x3)R′′(x1)

[
R′′′(x2)R′′′(x3)−R′′′(0+)2

]
The 2-loop β-function known from FRG calculations [18, 19] is the local contribution and is obtained
by inserting a constant field and dividing by Ld

Ṙ(u) =
1

2
İ1R′′(u)2 + (İA − I1İ1)R′′(u)

[
R′′′(u)2 −R′′′(0+)2

]
+O(ε4) (5.35)

where

IA =

∫
p1,p2

g(p1)g(p2)g(p1 + p2)2 ∼ m−2ε

ε2
(5.36)

The O(1
ε
) term in İA is cancelled by I1İ1, ensuring a finite β-function. The non-local part integrates

to

R̂[u] = A[u] +

∫
x

B(u(x)) +O(ε4) (5.37)

with contributions

A[u] =
1

2

∫
x1,x2

g(x1, x2)2 R′′(x1)R′′(x2) +
1

2

∫
y1,y2,z

g(y1, z)
2g(y2, z)

2 R′′(y1)R′′(y2)R′′′′(z)

+

∫
x1,x2,y

g(x1, x2)2g(x1, y)g(x2, y)
[
R′′′(x1)R′′′(x2)−R′′′(0+)2

]
R′′(y)

− I1

∫
x1,x2

g(x1, x2) R′′(x1)
[
R′′′(x2)2 −R′′′(0+)2 +R′′(x2)R′′′′(x2)

]
(5.38)

and

B(u) = −1

2
I1R′′(u)2 + (I2

1 − IA)R′′(u)
[
R′′′(u)2 −R′′′(0+)2

]
+

1

2
I2

1R′′(u)2R′′′′(u) (5.39)
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5.5 ε-expansion to 3-loop order

In 3-loop order we have to compute S(3)
110[0, 0,−u] and R′′[u](x2, x3)R′′[u](x4, x1) in Eq. (5.20) to

order ε4. The flow equation for the three-replica cumulant at T = 0, see Eq. (B.1), is given by

Ṡ(3)[uabc] =

∫
x1,x2

ġ(x1, x2)
{

3
2
S

(4)
1100[uaabc](x1, x2)

}
(5.40)

+

∫
x1,...,x4

[
d

dm
g(x1, x2)g(x3, x4)

]
×
{

3R′′[uab](x2, x3)
[
S

(3)
110[uaac](x4, x1)− S(3)

110[uabc](x4, x1)
]}

+

∫
x1,...,x6

[
d

dm
g(x1, x2)g(x3, x4)g(x5, x6)

]
×
{

3R′′[uab](x2, x3)R′′[uac](x4, x5)R′′[uac](x6, x1)

−R′′[uab](x2, x3)R′′[ubc](x4, x5)R′′[uac](x6, x1)
}
.

Because there is a feeding term from the fourth Γ-cumulant S(4) we have to calculate S(4) to order
ε4. The only contribution in Eq. (B.2) is S(4)

4 that integrates in this order to

S(4)[uabcd] = 3
{

4 tr
[
gR′′abgR′′acgR′′adgR′′ad

]
+ 2 tr

[
gR′′abgR′′acgR′′cdgR′′ac

]
(5.41)

− 4 tr
[
gR′′abgR′′acgR′′cdgR′′ad

]
+ tr

[
gR′′abgR′′bcgR′′cdgR′′ad

]}
+O(ε5) ,

where again R′′ab(x, y) = R′′[uab](x, y). In order to obtain S(4)
1100[uaabc] the equation has to be sym-

metrized over replica fields and two functional derivatives have to be taken. This lengthy but straight-
forward calculation is not reproduced here. The limit of identical replica fields in the first and second
entry again has to be taken in the weak limit.

For brevity we introduce the symbol d̃
dmg

that formally denotes a scale derivative that acts only
on the propagators g that were differentiated in the initial 1PI flow equations, see Eqs. (5.20), (B.1),
and (B.2). These formal “derivatives” do not act on cumulants nor on g’s that arise otherwise. In this
sense the 2-loop contribution to Ṡ(3), see Eq. (5.30), can be written as

d̃

dmg

1

2

[
A1 + A2 + A3

]
(5.42)

where A1, A2, and A3 are given in Eq. (5.32). This term was easily integrated in 2-loop order since a
scale derivative acting on R gives an additional order of ε, that is, d̃

dmg
could be replaced by d

dm
. Here

we also need the next order, so we have to calculate(
d

dm
− d̃

dmg

)
1

2

[
A1 + A2 + A3

]
(5.43)

and reinsert the 1-loop result for Ṙ[u] from Eq. (5.23) to obtain this expression to order ε4. It is
sufficient to insert the local part of R into A1, A2, and A3.

Apart from the feeding from S
(4)
1100[uaabc], there are two more 3-loop contributions to the flow of

S(3). One arises by inserting also non-local contributions to 1-loop order from Eq. (5.25) into A1,
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A2, and A3. And, finally, there is a cross term R × S(3) from the third line of Eq. (5.40). Here we
can insert the 2-loop solution S(3) = 1

2
(A1 + A2 + A3) with local R’s into the right-hand-side of

the flow equation to obtain the complete result at 3-loop order. These 3-loop contributions are easily
integrated since scale derivatives acting on cumulants would introduce additional loops. The details
of this calculation and the resulting functional S(3)[uabc] to 3-loop order are given in Appendix B.2.
In order to obtain S(3)

110[0, 0,−u] it is again convenient to use a symmetric replica expansion. Setting
ua = ub again requires the weak limit; in addition to potentially problematic terms ∼ R′′′(0+)2 we
also encounter R′′′(0+)R(5)(0+).

Now we turn to the term R′′[u](x2, x3)R′′[u](x4, x1) in Eq. (5.20). In 3-loop order we have to
insert

R′′[u](x, y) = R′′(u(x))δ(x− y) + R̂′′[u](x, y)− R̂′′[0+](x, y) (5.44)

where R̂ is the non-local contribution of the 2-loop solution Eq. (5.37). Taking two functional
derivatives and taking the weak limit with non-crossing configurations produces anomalous terms
R′′′(0+)2, R′′′(0+)R(5)(0+), R′′(0+)R′′′′(0+), and R′′(0+)R(6)(0+). Inserting the obtained expres-
sions for R′′[u](x2, x3)R′′[u](x4, x1) and S(3)

110[0, 0,−u] in Eq. (5.20) allows to rearrange terms such
that they are total derivatives acting on the propagators g only. In summary we obtain to 3-loop order

Ṙ[u] = β1loop[u] + β2loop[u] + β3loop[u] (5.45)

with 1- and 2-loop contributions β1loop[u] + β2loop[u] given by Eq. (5.34) and the 3-loop contribution

β3loop[u] =

∫
x1,x2,y,z

[
d

dm
g2
x1x2

gx1zgx2zg
2
yz

] [
R′′′x1R

′′′
x2
−R′′′(0+)2

]
R′′yR′′′′z (5.46)

− 2I1

∫
x1,x2,y

[
d

dm
g2
x1x2

gx1ygx2y
]
R′′y
(

3
[
R′′′x1R

′′′
x2
R′′′′x2 −R

′′′(0+)2R′′′′(0+)
]

+R′′′x1R
′′
x2
R(5)
x2

)
− I1

∫
x,y,z

[
d

dm
g2
xzg

2
yz

] [
R′′′x

2 −R′′′(0+)2 +R′′xR′′′′x
]
R′′xR′′′′z

+ 1
2

∫
x1,x2,y1,y2

[
d

dm
g2
x1x2

g2
x1y1

g2
x2y2

]
R′′′′x1R

′′′′
x2
R′′(y1)R′′(y2)

+ 1
2
I2

1

∫
x1,x2

[
d

dm
g2
x1x2

] [
R′′′x1

2 −R′′′(0+)2 +R′′x1R
′′′′
x1

][
R′′′x2

2 −R′′′(0+)2 +R′′x2R
′′′′
x2

]
− I1

∫
x1,x2,y

[
d

dm
g2
x1x2

gx1ygx2y
] [
R′′′x1R

′′′
x2
−R′′′(0+)2

][
R′′′y

2 −R′′′(0+)2 +R′′xR′′′′x
]

+ 1
2

∫
x1,x2,y1,y2

[
d

dm
g2
x1x2

g2
y1y2

gx1y1gx2y2
] [
R′′′x1R

′′′
x2
−R′′′(0+)2

][
R′′′y1R

′′′
y2
−R′′′(0+)2

]
+ 4

∫
x1,x2,y,z

[
d

dm
gx1x2gyzgx1zg

2
x2z
g(x1y)

] [
R′′′x1R

′′′
x2
R′′′′z −R′′′(0+)2R′′′′(0+)

]
R′′x
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+

∫
x1,x2,y,z

[
d

dm
g2
x1z
g2
x2z
gx1ygx2y

] [
R′′′x1R

′′′
x2
R′′′′z −R′′′(0+)2R′′′′(0+)

]
(5.47)

+ 2

∫
x,y1,y2,z

[
d

dm
g2
xzg

2
y1z
gy2zgy2x

]
R′′′xR′′y1R

′′
y2
R(5)
z

− 1
2
I1

∫
y1,y2,z

[
d

dm
g2
y1z
g2
y2z

]
R′′y1R

′′
y2

[
3R′′′′z

2
+ 4R′′′z R

(5)
z +R′′zR(6)

z

]
+ 1

6

∫
y1,y2,y3,z

[
d

dm
g2
y1z
g2
y2z
g2
y3z

]
R′′y1R

′′
y2
R′′y3R

(6)
z

+

∫
x1,x2,y1,y2

[
d

dm
g2
x1x2

gx1y1gx1y2gx2y1gx2y2
]
R′′′′x1R

′′′′
x2
R′′y1R

′′
y2

+ 1
2

∫
x1,x2,x3,x4

[
d

dm
gx1x2gx3x4gx1x3gx1x4gx2x3gx2x4

]
×
{[
R′′′x1R

′′′
x2
−R′′′(0+)2

][
R′′′x3R

′′′
x4
−R′′′(0+)2

]
−R′′′(0+)4

}
+

∫
x,y

[
d

dm
g2
xy

]
R′′x
{

(I2
1 − IA)R′′′′x

[
R′′′x

2 −R′′′(0+)2
]

+ (5I2
1 − 4IA)

[
R′′′x

2
R′′′′x −R′′′(0+)2R′′′(0+)

]
+ (3I2

1 − 2IA)R′′xR′′′′x
2

+ (4I2
1 − 2IA)R′′xR′′′x R(5)

x + 1
2
I2

1R′′x
2
R(6)
x

}
Here we once again introduced shorthand notations gxy := g(x, y) andRx = R(x) = R(u(x)) except
for x = 0+ and likewise for derivatives of R.

Inserting a constant field and dividing by Ld gives the 3-loop contribution to the β-function

β3loop(u) =
(
4İl + İm − 6I1İA + (5I2

1 − 4IA)İ1

)[
R′′′(u)2R′′′′(u)−R′′′(0+)2R′′′′(0+)

]
R′′(u)

+
[
İj − 2IAİ1

)]
R′′′′(u)2R′′(u)2 (5.48)

+
1

2

(
I2

1 İ1 − 2I1İA + İm + İi

) [
R′′′(u)2 −R′′′(0+)2

]2

− 1

2
İiR

′′′(0+)4 +O(ε5)

with the following integrals

I1 =

∫
p

g(p)2 (5.49)

IA =

∫
p1,p2

g(p1)g(p2)g(p1 + p2)2

Im =

∫
p1,p2,p3

g(p1)g(p2)g(p1 + p2 + p3)g(p3)g(p1 + p2)2

Il =

∫
p1,p2,p3

g(p1)G(p2)g(p1 + p2)g(p3)g(p1 + p2 + p3)2

Ij =

∫
p1,p2,p3

g(p1)g(p2)g(p3)2g(p1 + p2 + p3)2

Ii =

∫
p1,p2,p3

g(p1)g(p2)g(p3)g(p1 + p3)g(p2 + p3)g(p1 − p2)
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which are calculated in appendix A. It turns out that the combinations occurring in Eq. (5.48) are
finite for ε→ 0, so our counting of orders in ε is consistent, and the theory is 3-loop renormalizable.
Due to gauge invariance we can add any scale-dependent function to R(u) that does not dependent
on the fields. In this way we can drop all constants from the β-function. The constants in Eq. (5.48)
arise directly from Eq. (5.46). In the derivation of the latter we neglected gauge terms in S(3) and
S(4), so these constants are arbitrary.

Assuming non-crossing configurations, that is, using Eq. (5.26) for taking limits ua − ub → 0,
allows to derive all anomalous terms in the β-function without ambiguities. With this assumption,
the ε-expansion is a straightforward expansion of the exact hierarchy of flow equations for the Γ-
cumulants in powers of the effective local disorder distribution function R(u). Presumably, this will
work to all orders in ε.

Crossing configurations could not be treated and are an open problem. It is doubtful that the
standard ε-expansion can be applied. This is because R(u) and all its derivatives are not a small
parameter suitable for an expansion if u = 0 cannot be avoided.

In order to make contact with the result obtained by an alternative method later in Section 6, we
rescale

R(u) =
1

εI1

m−4ζR̃(umζ) (5.50)

where ζ is the roughness exponent. The rescaled function R̃ still depends on the RG scale m and
satisfies the RG equation to 3-loop order given in Eq. (3.1).

6 Effective action and β-function via field theory

6.1 Calculation using the sloop elimination method

Here we discuss a different way to do the contractions, using “excluded replicas”, which will finally
lead to a rather efficient algorithm for calculating the anomalous terms.

We start by a 1-loop diagram involving two disorder vertices, after having done one Wick-
contraction. For simplicity of notation we are not writing space-indices and momentum integrals,
which are unimportant for the following discussion.

=
1

2T 3

∑
abc

R′(ua − ub)R′(ua − uc) . (6.1)

At the next step, the following contractions are possible (restoring the integral)

+ − −

=
1

2T 2

[∑
ab

R′′(ua − ub)2 +
∑
abc

R′′(ua − ub)R′′(ua − uc)− 2
∑
ab

R′′(0)R′′(ua − ub)

]
I1. (6.2)

The second term is a 3-replica contribution (contribution to the third cumulant of the disorder), thus
not of interest to us. The correction to the disorder at 1-loop order therefore consists of the first and
last term, equivalent to the first and last two diagrams,

δ(1)R(u) =

[
1

2
R′′(u)2 −R′′(u)R′′(0)

]
I1 . (6.3)
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This is equivalent to the result obtained in Eq. (5.24).
An alternative approach consists in remarking that in Eq. (6.1) the terms a = b, and a = c could

be dropped, since they are constants, thus will not be contracted in the next step. We thus start from

=
1

2T 3

∑
b6=a6=c

R′(ua − ub)R′(ua − uc) , (6.4)

which after one Wick-contraction leads to

+

=
1

2T 2

[∑
a6=b

R′′(ua − ub)2 +
∑
b6=a6=c

R′′(ua − ub)R′′(ua − uc)

]
I1

=
1

2T 2

[∑
ab

R′′(ua − ub)2(1− δab) +
∑
abc

R′′(ua − ub)R′′(ua − uc)(1− δab)(1− δac)

]
I1

=
1

2T 2

[∑
ab

[
R′′(ua − ub)2 − 2R′′(ua − ub)R′′(0)

]
+
∑
abc

R′′(ua − ub)R′′(ua − uc)

]
I1 . (6.5)

The 2-replica term (the double sum) is, as expected, the same result as obtained in Eq. (6.2). While
the second line contains only excluded replica sums, there can not be any ambiguity. The latter may
only appear in the ensuing projection onto non-excluded replica sums. This is indeed the case for the
hat diagram ∼ R′′(u)R′′′(0+)2, as the reader is invited to check on his own, starting from∑

a,b

δ
(2)
A R(ua − ub)

=
[∑
a6=b

R′′(ua − ub)(R′′′(ua − ub))2 +
∑

a6=b,a 6=c

R′′(ua − ub)R′′′(ua − ub)R′′′(ua − uc)

−1

2

∑
a6=b,a 6=c,b 6=c

R′′(ua − ub)R′′′(ua − uc)R′′′(ub − uc) +
3

2

∑
a6=b,a 6=c

R′′(ua − ub)R′′′(ua − uc)2

+
1

2

∑
a6=b,a6=c,a6=d

R′′(ua − ub)R′′′(ua − uc)R′′′(ua − ud)
]
IA . (6.6)

We will therefore in the following present an improved projection method, which we have termed the
“sloop-elimination” method. (The name may be thought of as as “super”-partner of a normal loop,
thus sloop, which cancels part of it.)

The idea of the method is very simple. Let us consider the second term on the the second line of
Eq. (6.2). It is a three replica term proportional to the temperature. In a T = 0 theory such a diagram
should not appear, thus it can identically be set to zero:∑

abc

=
1

2T 2

∑
abc

R′′(ua − ub)R′′(ua − uc)I1 ≡ 0 . (6.7)

Projecting such terms to zero at any stage of further contractions is very natural in our present cal-
culation (and also e.g. in the exact RG approach, where terms are constructed recursively and such
forbidden terms must be projected out). It is valid only when (i) the summations over replicas are
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free (ii) the term inside the sum is non-ambiguous. These conditions are met for any diagram with
sloops, provided the vertices have at most two derivatives. (One can in fact start from vertices which
either have no derivative or exactly two.) Subtracting this term from Eq. (6.5) immediately yields the
result (6.3).

While this could also have been done directly, let us illustrate the power of the procedure on an
example. We want to contract the expression (6.7) with a third vertex R

0 =
∑
abc

∑
de

R(ud − ue) ≡
1

T 4

∑
a6=b,a 6=c,d6=e

R′′(ua − ub)R′′(ua − uc)R(ud − ue) . (6.8)

where we have already dropped constant terms which will disappear after the contractions. Also note
that implicitly here and in the following the vertices are at points x, y, z in that order. We will contract
the third vertex twice, once with the first and once with the second , i.e. look at the term proportional
to IA =

∫
x,y,z

g(x− y)2g(x− z)g(y − z).
Performing the first contraction between points x and z yields

1

T 3

[ ∑
a6=b,a 6=c,a6=e

R′′′(ua−ub)R′′(ua−uc)R′(ua−ue)−
∑

a6=b,a6=c,b 6=e

R′′′(ua−ub)R′′(ua−uc)R′(ub−ue)
]
≡ 0 .

(6.9)
Similarly, the second contraction yields (with the standard combinatrial factor of 1/2)

1

T 2

[1

2

∑
a6=b,a 6=c,a6=e

R′′′(ua − ub)R′′′(ua − uc)R′′(ua − ue)

+
∑

a6=b,a 6=c

R′′′(ua − ub)R′′′(ua − uc)R′′(ua − uc)

+
1

2

∑
a6=b,b 6=e

R′′′(ua − ub)R′′′(ua − ub)R′′(ua − ue)

−1

2

∑
a6=b,a 6=c,b 6=c

R′′′(ua − ub)R′′′(ua − uc)R′′(ua − uc)
]
IA ≡ 0 . (6.10)

This non-trivial identity tells us that the sum of all the terms (or diagrams) thus generated upon
contractions must vanish. Stated differently: A sloop, as (6.7) as well as the sum of all its descendents
vanishes. Note that this is not true for each single term, but only for the sum.

A property that we request from a proper p-replica term is that upon one self contraction it gives
a (p − 1)-replica term. It may also give T times a p-replica term (a sloop) but this is zero at T = 0,
so we can continue to contract. Thus we have generated several non-trivial projection identities. The
starting one is that the 2-replica part of (6.7) is zero, since (6.7) is a proper 3-replica term. This is
what is meant by the symbol “≡” above and the last identity is the one we now use.

Indeed compare (6.10) with (6.6). One notices that all terms apart from the first in (6.6) appear in
(6.10). They also have the same relative coefficients, apart from the third one of (6.6). Thus one can
use (6.10) to simplify (6.6):∑

a,b

δ
(2)
A R(ua−ub) =

[∑
a6=b

R′′(ua−ub)R′′′(ua−ub)2+
∑

a6=b,a 6=c

R′′(ua−ub)R′′′(ua−uc)2
]
IA . (6.11)

The function R′′′(u)2, which appears in the last term, is continuous at u = 0. It is thus obvious how
to rewrite this expression using free summations and extract the 2-replica part

δ
(2)
A R(u) =

[(
R′′(u)−R′′(0)

)
R′′′(u)2 −R′′′(0+)2R′′(u)

]
IA . (6.12)
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Figure 1: Diagrams at 3-loop order (without insertion of lower order counter-terms)

This coincides with the contribution of diagram A in the ERG approach, see the second term of
Eq. (5.35). We can write diagrammatically the subtraction that has been performed as

δ
(2)
A R = − , (6.13)

where the loop with the dashed line represents the sub-diagram with the sloop, i.e. the term (6.10)
(with in fact the same global coefficient). The idea is that subtracting sloops is allowed since they
vanish. The advantage of the method is that all intermediate results are uniquely defined.

There are other possible identities, which are descendants of other sloops. For instance a triangu-
lar sloop gives, by a similar calculation:

= R′′(0)
∑
a6=b

R′′′(ua − ub)2 +
∑

a6=b,a 6=c

R′′(0)R′′′(ua − ub)R′′′(ua − uc)

+
∑

a6=b,b 6=c

R′′(ub − uc)R′′′(ua − ub)2 +
∑

a6=c,b 6=c,c 6=d

R′′′(ua − uc)R′′′(ub − uc)R′′(uc − ud) .

(6.14)

This however does not prove useful to simplify δ(2)
A R.

Remains to calculate the 3-loop diagrams, shown on Fig 1. This is achieved in appendix C.
Since the above method generates a large number of identities, one can wonder whether they are all
compatible. We have checked that this is indeed so, but we have not attempted a general proof.

6.2 The effective action up to 3-loop order

Using the sloop elimination method exposed in the preceding section, we have calculated all diagrams
up to 3-loop order. They are presented graphically on figure 1, and given below. The expressions
intervening in the sloop-projection algorithm are collected in appendix C. Here we give the final
result for the effective action, before discussing how to obtain the β-function in the next section.

The effective dimensionfull renormalized disorder to 3-loop order reads

Reff(u) = R(u) + δ(1)R(u) + δ(2)R(u) + δ(3)R(u) + . . . (6.15)

The 1-loop term is, noting R′′u := R′′(u), R′′0 := R′′(0), R′′′0 := R′′′(0+) etc.

δ(1)R(u) =
1

2

[
R′′u

2 −R′′uR′′0
]
I1 . (6.16)
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The 2-loop term is

δ(2)R(u) =
[
R′′uR

′′′
u

2 −R′′0R′′′u 2 −R′′uR′′′0 2
]
IA +

1

2

[
(R′′u −R′′0)2R′′′′u

]
IB . (6.17)

The 3-loop terms read

δ(3)R(u) = (h) + (i) + (j) + (k) + (l) + (m) + (n) + (o) + (p) + (q) (6.18)

(h) =
1

2
(R′′u −R′′0)2R′′′′u

2
Ih (6.19)

(i) =
1

2

(
R′′′u

4 − 2R′′′u
2
R′′′0

2
)
Ii (6.20)

(j) = (R′′u −R′′0)2R′′′′u
2
Ij (6.21)

(k) = 0 (6.22)

(l) = 4
(
R′′uR

′′′
u

2
R′′′′u −R′′0R′′′u

2
R′′′′u −R′′uR′′′0

2
R′′′′0

)
Il (6.23)

(m) =
1

2

(
R′′′u

4 − 2R′′′u
2
R′′′0

2
)
Im (6.24)

(n) =
1

6
(R′′u −R′′0)

3
R(6)
u In (6.25)

(o) =
(
R′′uR

′′′′
u R

′′′
u

2 −R′′0R′′′′u R′′′u
2 −R′′uR′′′0

2
R′′′′0

)
Io (6.26)

(p) = 2(R′′u −R′′0)2R′′′uR
(5)
u Ip (6.27)

(q) = (R′′u −R′′0)R′′′′u

(
R′′′u

2 −R′′′0
2
)
Iq . (6.28)

6.3 Derivation of the RG-equation to 3-loop order

Let us now discuss in general the strategy to renormalize theories, whose interaction is not a single
coupling-constant, but a whole function, here the disorder-correlatorR(u). We denote byR0 the bare
disorder – this is the object in which perturbation theory is carried out – and by R the renormalized
disorder, i.e. the corresponding term in the effective action Γ.

We define the dimensionless bilinear 1-loop, trilinear 2-loop and quadrilinear 3-loop functions

δ(1)(R,R) := δ(1)R (6.29)
δ(2)(R,R,R) := δ(2)R (6.30)

δ(3)(R,R,R,R) := δ(3)R (6.31)

where if all arguments are the same, we only give this one argument, e.g. δ(1)(R) = δ(1)(R,R),
δ(2)(R) = δ(2)(R,R,R) and δ(3)(R) = δ(3)(R,R,R,R). For different arguments we use the multi-
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linear formulas

f(x, y) :=
1

2

[
f(x+ y)− f(x)− f(y)

]
(6.32)

g(x, y, z) :=
1

6

[
g(x+ y + z)− g(x+ y)− g(y + z)

−g(x+ z) + g(x) + g(y) + g(z))
]

(6.33)

h(w, x, y, z) :=
1

24

[
h(w + x+ y + z)− h(w + x+ y)− h(w + x+ z)− h(w + y + z)

−h(x+ y + z) + h(w + x) + h(w + y) + h(w + z) + h(x+ y) + h(x+ z)

+h(y + z)− h(w)− h(x)− h(y)− h(z)
]

(6.34)

Schematically, the renormalized disorder is

R = R0 + δ(1)R(R0) + δ(2)R(R0) + δ(3)R(R0) +O(R5
0) , (6.35)

calculated in the preceding section (where we had not explicitly written an index 0 to indicate the
bare disorder). The inversion of relation (6.35) is

R0 = R− δ(1)(R)− δ(2)(R) + 2δ(1)(R, δ(1)(R))

−δ(3)(R) + 3δ(2)(R,R, δ(1)(R)) + 2δ(1)(R, δ(2)(R))

−δ(1)(δ(1)(R))− 4δ(1)(R, δ(1)(R, δ(1)(R))) +O(R5) . (6.36)

Since an n-loop integral scales like m−nε the β-function is directly read off from (6.35),

−m∂mR
R0

= ε
[
δ(1)(R0) + 2δ(2)(R0) + 3δ(3)(R0)

]
+O(R5

0) . (6.37)

However, we need the β-function in terms of R, for which we replace R0 by R, using Eq. (6.36),

−m∂mR
R0

= ε
[
δ(1)(R) + 2δ(2)(R)− 2δ(1)(R, δ(1)(R))

+3δ(3)(R)− 6δ(2)(R,R, δ(1)(R))− 2δ(1)(R, δ(2)(R))

+δ(1)(δ(1)(R), δ(1)(R)) + 4δ(1)(R, δ(1)(R, δ(1)(R)))
]

+O(R5) . (6.38)

Using the results from Eqs. (6.16), (6.17) and (6.18), this is, printing one diagram and its counter-
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terms (as dictated by the renormalization group R-operation) per line:

−m∂mRu =
(

1
2
R′′u

2 −R′′uR′′0
)

(εI1)

+
(
R′′uR

′′′
u

2 −R′′0R′′′u
2 −R′′uR′′′0

2
)
ε
(
2IA − I2

1

)
+
(
(R′′u −R′′0)2R′′′′u

)
ε
(
IB − I2

1

)
+(R′′u −R′′0)2(R′′′′u )2ε

(
3
2
Ih − 6I1IB + 9

2
I3

1

)
+3

2

(
R′′′u

4 − 2R′′′u
2
R′′′0

2
)

(εIi)

+(R′′u −R′′0)2R′′′′u
2
ε (3Ij − 2IAI1)

+
(
R′′uR

′′′
u

2
R′′′′u −R′′0R′′′u

2
R′′′′u −R′′uR′′′0

2
R′′′′0

)
ε
(
12Il − 12I1IA + 4I3

1

)
+
(
R′′′u

4 − 2R′′′u
2
R′′′0

2
)
ε
(

3
2
Im + 1

2
I3

1 − 2I1IA
)

+ (R′′u −R′′0)
3
R(6)
u ε1

2
(In − 3I1IB + 2I3

1 )

+
(
R′′uR

′′′′
u R

′′′
u

2 −R′′0R′′′′u R′′′u
2 −R′′uR′′′0

2
R′′′′0

)
ε(3Io − 4I1IA + I1IB)

+(R′′u −R′′0)2R′′′uR
(5)
u ε6(Ip − I1IA − I1IB + I3

1 )

+(R′′u −R′′0)R′′′′u

(
R′′′u

2 −R′′′0
2
)
ε(3Iq − 3I1IA − 2I1IB + 2I3

1 ) (6.39)

On this form, one can explicitly check renormalizability. Since we kept the amplitudes of sub-
divergences, as for instance that of the 2-loop bubble-chain diagram, one can exactly see, where
these terms come from. Actually the form given above is unique, even though several diagrams have
the same functional dependence on R.

Let us now proceed to simplify the above equation. In order to do so, we have to choose a
renormalization-scheme. We calculate the 3 leading terms in the ε-expansion of each diagram, i.e.
up to order 1/ε for the 3-loop diagrams, up to order ε0 for the 2-loop diagrams and up to order ε
for the 1-loop diagram. In order to have the final result as simple as possible, we absorb a factor
of εI1 into R. This means that an n-loop integral has to be normalized by (εI1)n. It is with this
normalization that the amplitudes are given in appendix A. The advantage of this procedure is that
integrals take the most simple form, and there are no spurious terms like ψ(1) or ζ(2). By this way,
the 1-loop diagram is automatically subtracted completely and one never has to worry about its finite
parts. However, we have a choice of how to subtract diagrams at 2-loop order. The most common
choice is to subtract the divergent part only. The advantage of this procedure is that the 2-loop β-
function takes the simplest form, with the combination of ε(2IA − I2

1 ) in the second line of (6.39)
replaced by 1

2
. The disadvantage is that then diagrams like (q) do not vanish, but have an amplitude

proportional to (see last line of (6.39)) Iq − I1IA (since IB = I2
1 , and in our normalizations this is

exact in any subtraction scheme). Now if at second order, we only subtract the diverging part of IA
this combination becomes

Iq − I1 × diverging part of IA

= I1 × fintite part of IA = O

(
1

ε

)
. (6.40)

We therefore chose to always subtract the diagram exactly. At order 3 at which we are working here,
this means that we have to keep the finite part of IA. This is sufficient, since the 1-loop integral is
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normalized to have no finite part, and since from the 3-loop integrals one only needs the diverging
part anyway. Let us now use that

IB = I2
I

Ih = In = I3
1

Ip = Iq = I1IA (6.41)

to restate the β-function:

−m∂mRu =
(

1
2
R′′u

2 −R′′uR′′0
)

(εI1)

+
(
R′′uR

′′′
u

2 −R′′0R′′′u
2 −R′′uR′′′0

2
)
ε
(
2IA − I2

1

)
+3

2

(
R′′′u

4 − 2R′′′u
2
R′′′0

2
)

(εIi)

+(R′′u −R′′0)2R′′′′u
2
ε (3Ij − 2IAI1)

+
(
R′′uR

′′′
u

2
R′′′′u −R′′0R′′′u

2
R′′′′u −R′′uR′′′0

2
R′′′′0

)
ε
(
12Il − 12I1IA + 4I3

1

)
+
(
R′′′u

4 − 2R′′′u
2
R′′′0

2
)
ε
(

3
2
Im + 1

2
I3

1 − 2I1IA
)

+
(
R′′uR

′′′′
u R

′′′
u

2 −R′′0R′′′′u R′′′u
2 −R′′uR′′′0

2
R′′′′0

)
ε(3Io − 4I1IA + I3

1 ) . (6.42)

Finally, we go to the dimensionless renormalized disorder R̃, defined in Eq. (5.50) by

R(u) =:
m−4ζ

εI1

R̃(umζ) ≡ mε−4ζ

εĨ1

R̃(umζ) (6.43)

and group together alike terms. This yields our final expression for the 3-loop β-function given in Eq.
(3.1). The coefficients C1 to C4, already given in Eqs. (3.2)–(3.5) are constructed from the diagrams
via

C1 =
2IA

(εI1)2
− 1

ε2
− 1

2ε
=

9 + 4π2 − 6ψ′(1
3
)

36

= −0.3359768096723647 (6.44)

C2 = ε

(
3

2
I1 +

3

2
Im +

1

2
I3

1 − 2I1IA

)
(εI1)−3

=
3

4
ζ(3) +

π2

18
−
ψ′(1

3
)

12
= 0.6085542725335131 (6.45)

C3 = ε(3Ij − 2I1IA)(εI1)−3 =
ψ′(1

3
)

6
− π2

9
= 0.5859768096723648 (6.46)

C4 = ε
(
12Il − 16I1IA + 5I3

1 + 3Io
)

(εI1)−3

= 2 +
π2

9
−
ψ′(1

3
)

6
= 1.4140231903276352 . (6.47)

These constants are closely related to each other analytically.
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7 Reparametrization invariance

It is known in standard field theory, that one can perform a change of variables, and thus formally
change the β-function, while all observables remain unchanged. In the context of a functional RG,
this reparametrization invariance is much larger. The function R(u) can be changed into an arbitrary
functional of f [R]. The most useful such reparametrizations involve functionals f [R], which have
the same structure as corrections to R, obtained perturbatively. Especially, when the field u has
dimension ζ , and R times the 1-loop integral has dimension −4ζ , this means that on dimensional
grounds for each additional power of R in f [R], there should be 4 derivatives. Also we do not want
R(u) to have different analyticity properties, i.e. if R(u) has a r.h.s. Taylor-expansion with a missing
linear term (absence of a super-cusp) then f [R] should have the same properties. The most suggesting
such functional is the 1-loop contribution itself, which we study now.

The 2-loop RG-equation for the renamed disorder correlator R̃u reads

−m∂mR̃u ≡ β[R̃](u)

= (ε− 4ζ) R̃u + uζR̃′u +
1

2
R̃′′u

2 − R̃′′uR̃′′0 +
1

2

(
R̃′′uR̃

′′′
u

2 − R̃′′0R̃′′′u 2 − R̃′′uR̃′′′0 2
)
. (7.1)

Consider the following change of variables

R̃u ≡ f [R](u) = Ru − λ
(

1

2
R′′u

2 −R′′uR′′0
)

+O(R3) . (7.2)

Varying m yields

−m∂mR̃u = −m∂m
[
Ru − λ

(
1

2
R′′u

2 −R′′uR′′0
)]

. (7.3)

This is equivalent to stating that

β[R̃](u) = β[R](u)− λ
{
R′′(u)β[R]′′(u)−R′′(0)β[R]′′(u)−R′′(u)β[R]′′(0)

}
. (7.4)

Solving this equation perturbatively yields the β-function for Ru

β[R](u) = (ε− 4ζ)Ru + ζuR′u +

[
1

2
R′′u

2 −R′′uR′′0
]

(1 + λε) +
1

2

(
R′′uR̃

′′′
u

2 −R′′0R′′′u 2 −R′′uR′′′0 2
)

+O(ε4) (7.5)

This equations tells us nothing more than that adding a coefficient of order ε to the second-order term
does not change universal results at 2-loop order. (The reader may want to verify this surprising result
for the slope of the β-function at 2-loop order in a scalar field-theory.)

Suppose now that β[R](u) = 0. Then this also holds for its derivatives and multiples thereof.
Therefore, we can add terms of the form

R′′(u)β[R]′′(u)−R′′(0)β[R]′′(u)−R′′(u)β[R]′′(0) . (7.6)

Note that these are the same terms, which appeared in equation (7.4).
In the following, we chose ζ = 0, since this yields the simplest relations. We will comment on

the more general case later. Expression (7.6) then reads

ε
(
R′′u

2 − 2R′′uR
′′
0

)
+
(
R′′uR

′′′
u

2 −R′′0R′′′u 2 −R′′uR′′′0 2
)

+ (R′′u −R′′0)
2
R′′′′(u) . (7.7)
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Adding −1/2 times (7.7) to the β-function (7.5) and choosing there λ = −1/2 to eliminate the
additional 1-loop order term gives

0 = εRu +

[
1

2
R′′u

2 −R′′uR′′0
]
− 1

2
(R′′u −R′′0)

2
R′′′′(u) +O(ε4) . (7.8)

In this equation, we have traded the term proportional toR′′R′′′2 for a term of the formR′′′′R′′2. Since
the latter is uniquely defined, this allows again to fix the anomalous terms associated to R′′R′′′2.

It would be satisfactory, to have a similar result for the case ζ 6= 0. The above construction
however yields terms of the form

(ζuR′u)
′′
R′′u (7.9)

plus the respective anomalous terms. Although one can of course solve differential equations involv-
ing these terms, and thus e.g. check the numerical solution of the fixed point equation to be discussed
later, we have found no way to eliminate these terms, without generating even more “unusual” ones.
Our search comprised rescalings of Ru, of the field u, adding uβ[R]′(u) to both the variable transfor-
mation and the β-function itself, and adding multiples of the β-function. On the other hand, one can
first write the β-function without rescaling, then do the non-trivial transformations given above, and
finally perform the rescaling. This will simply give the standard rescaling terms.

Let us also comment on the power of reparametrization invariance at 3-loop order. While it
proves to be a powerful tool for many diagrams, it is at least not applicable to fix all anomalous
terms. This can be anticipated from the difference between diagrams (o) and (q) (see appendices
C.3.8 and C.3.10), which is proportional to

(o)− (q) ∼ R′′′0
2
(
R′′uR

(4)
u −R′′0R(4)

u −R′′uR
(4)
0

)
. (7.10)

While (o) and (q) have the same normal terms, their difference is proportional to R′′′(0+)2, thus the
anomalous terms are different.

8 2-point correlation function

As a prototype physical observable we calculate the 2-point correlation function to 2-loop order in an
ε-expansion. The Fourier transform of Eq. (5.18) reads

〈u(x)u(y)〉V = Tg(x, y)−
∫
z,z′

g(x, z)g(y, z′)R′′[0+](z, z′). (8.1)

Because of the limit n → 0 in Eq. (5.18), where n is the number of replica fields, this is an exact
expression; in particular, there are no contributions of three- or higher-replica terms to the 2-point
function. As in Sec. 5, the expression R′′[0+](z, z′) denotes the second functional derivative of R[u]
with respect to u(z) and u(z′) that is evaluated in a weak limit u(x) ≈ const. → 0. A precise
definition of the weak limit is given in Eq. (5.26).

8.1 2-loop expression

For the expansion in the renormalized local disorder function R(u) with a constant field u we again
use that

R′′[0+](z, z′) = R′′(0+)δ(z − z′) + R̃′′[0+](z, z′), (8.2)
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where the non-local part R̃′′[0+](z, z′) has to be expanded to 2-loop order, like in the derivation of the
3-loop β-function. Taking two derivatives of Eq. (5.37), evaluated at a constant field u, and sending
u→ 0+ we find

R̃′′[0+](z1, z2) = δz1z2

[
− I1R

′′′(0+)2 + (5I2
1 − 4IA)R′′′(0+)2R′′′′(0+)

]
(8.3)

+ g(z1, z2)2
[
R′′′(0+)2 − 6I1R

′′′(0+)2R′′′′(0+)
]

+ 2g(z1, z2)R′′′(0+)2R′′′′(0+)

∫
x

g(x, z1)g(x, z2)
[
g(x, z1) + g(x, z2)

]
+R′′′(0+)2R′′′′(0+)

∫
x

g(x, z1)2g(x, z2)2.

Of course, the limit u → 0− would yield the same result. Inserting into Eq. (8.1) and taking the
Fourier transform gives at T = 0 yields

g(q)−2〈u(q)u(−q)〉V = −R′′(0+) +R′′′(0+)2
[
I1 − I1(q)

]
(8.4)

−R′′′(0+)2R′′′′(0+)
[
(I1 − I1(q))2 + 4Φ2,ε(q)

]
.

As before I1 = I1(0), IA = IA(0), and Φ2,ε(q) = IA(q)− IA + I2
1 − I1I1(q) with

I1(q) =
q−→−− −→−− =

∫
p

g(p)g(p+ q) (8.5)

IA(q) = q−→−−

−→−−
=

∫
p1,p2

g(p1)g(p2)g(p1 + p2)g(p1 + q). (8.6)

The first line in Eq. (8.4) is the tree and 1-loop contribution, already calculated in [19]. The second
line is the 2-loop contribution, again with a non-vanishing limit R′′′(0+)2. Note that the momentum
could go through the non-trivial 2-loop diagram IA in two different ways, but only the one in Eq. (8.6)
contributes to the 2-point function.

8.2 Integrals

Let us start out with the normalization factors used throughout this work. Consider the 1-loop integral

Ĩ1 =
∣∣∣
m=1

=

∫
k

g(k)2
∣∣∣
m=1

=

∫
ddk

(2π)d
1

(k2 + 1)2
(8.7)

Using a Feynman-representation for the propagator yields

Ĩ1 =

∫
ddk

(2π)d

∫ ∞
0

dαα e−α(k2+1) =

∫
ddk

(2π)d
e−k

2 ×
∫ ∞

0

dαα1−d/2 e−α (8.8)

Let us note, with d = 4− ε

N :=

∫
ddk

(2π)d
e−k

2

=
1

(4π)
d
2

, (8.9)∫ ∞
0

dαα1−d/2 e−α = Γ(2− d
2
) = Γ( ε

2
) =

2

ε
Γ(1 + ε

2
) (8.10)
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This yields

εĨ1 = N × 2Γ(1 + ε
2
) = N ×

[
2− γEε+

1

24
(6γ2

E + π2)ε2 +O(ε3)

]
. (8.11)

There are therefore two convenient choices for normalizations: Either we normalize everything by
εĨ1: then Ĩ1 will be effectively 1/ε, without higher loop corrections. Or we normalize by N , which
takes out the factor from the Gauss integration. We use whatever is more convenient.

We now turn to the evaluation of I1(q) and IA(q). The 1-loop integral in presence of an external
momentum can be parameterized by I1(q) = 1

mε
Ĩ1( q

m
) with

Ĩ1(z) = Ĩ1(0) 2F1(2− d/2, 1, 3/2,−z2/4) (8.12)

= Ĩ1(0)

1∫
0

dy
[
1 + y(1− y)z2

]− ε
2 . (8.13)

Using the series expansion of the hypergeometric function in Eq. (8.12) or an expansion in ε of the
integrand in Eq. (8.13), we find

Ĩ1(z) = Ĩ1(0)

{
1 + ε

(
1−
√

4 + z2

z
asinh(z/2)

)

+ ε2

[
1 +

√
4 + z2

4z

(
Li2
(

1
2
− z

2
√
z2+4

)
− Li2

(
1
2

+ z
2
√
z2+4

)
+
(
ln(z2+4)−4

)
asinh(z/2)

)]

+O(ε3)

}
(8.14)

All singular contributions of Ĩ1(z) are present for z = 0, where Ĩ1(0) = N [2
ε
− γE +O(ε)]. Thus, the

difference I1 − I1(q) is finite in the limit of ε→ 0. The asymptotics for large z is given by

Ĩ1(z) ' Ĩ1(0)

{
1 + ε

[
1− ln z +O(1

z
ln z)

]
+ ε2

[
1

2
(ln z)2 − ln(z) + 1− π2

24
+O(1

z
ln z)

]
+O(ε3)

}
(8.15)

The second term Φ2,ε(q) = 1
m2ε Φ̃2,ε(

q
m

) is more complicated and treated in App. D. It also has a finite
limit ε→ 0, which we can only state as an integral. A Taylor expansion for small z gives

Φ̃2,0(z) ≈ N 2
(
0.03821z2 + 0.00169z4 − 0.00039z6 + 0.00007z8 + . . .

)
(8.16)

For large z we find

Φ̃2,0(z) ' N 2
[
2(ln z)2 − 6 ln z + α0 +O(1

z
ln z)

]
. (8.17)

Thus the full 2-loop contribution to the 2-point function has the asymptotic form[
Ĩ1(z)− Ĩ1(0)

]2
+ 4Φ̃2,0(z) ' N 2

[
12(ln z)2 − 32 ln z + 4 + 4α0 +O(1

z
ln z) +O(ε)

]
. (8.18)

The constant α0 ≈ 6.17 was calculated numerically.
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8.3 Scaling function (for arbitrary ζ)

We parameterize the 2-point correlation function as

〈u(q)u(−q)〉 = m−d−2ζ c̃(d)Fd(
|q|
m

) (8.19)

with universal amplitude c̃(d) and scaling function Fd with Fd(0) = 1. At momentum zero the higher
loop terms do not contribute to the 2-point correlation function such that to all orders in ε

c̃(d) = md+2ζ〈u(0)u(0)〉 = − 1

εĨ1

R̃′′(0). (8.20)

Using Eq. (8.4) and the rescaled renormalized disorder R̃, defined in Eq. (5.50), the scaling function
is given by

Fd(z) =
−1

R̃′′(0)

1

(1 + z2)2

{
−R̃′′(0) + R̃′′′(0+)2 1

εĨ1

[
Ĩ1 − Ĩ1(z)

]
(8.21)

−R̃′′′(0+)2R̃′′′′(0+)
1

(εĨ1)2

[(
Ĩ1 − Ĩ1(z)

)2
+ 4Φ̃2,ε(z)

]
+O(ε4)

}
.

At a fix-point there are a number of consistency relations for the third and fourth derivatives of
the disorder distribution at u = 0+ in an ε-expansion. Taking two field-derivatives of the fix-point
equation, that is, evaluating 0 = ∂

∂m
R̃′′(0+) gives

0 = (ε− 2ζ)R̃′′(0+) + R̃′′′(0+)2 + 2R̃′′′(0+)2R̃′′′′(0+) +O(ε4). (8.22)

Similarly, 0 = ∂
∂m
R̃′′′(0+) gives the identity

0 = R′′′(0+)
[
− ζ + ε+ 3R′′′′(0+) +O(ε2)

]
. (8.23)

Regardless of the sign of the prefactor, the bracket has to vanish. Therefore, evaluation at u = 0−

would lead to the same result, namely R̃′′′′(0+) = − ε−ζ
3

+O(ε2), which can be inserted into Eq. (8.22)
to obtain

R̃′′′(0+)2 = −(ε− 2ζ)R̃′′(0+)
[
1 + 2

3
(ε− ζ)

]
+O(ε4) (8.24)

R̃′′′(0+)2R̃′′′′(0+) = 1
3
(ε− 2ζ)(ε− ζ)R̃′′(0+) +O(ε4). (8.25)

Substituting these expressions into Eq. (8.21) gives

Fd(z) =
1

(1 + z2)2

{
1 + (ε− 2ζ)

[
1 + 2

3
(ε− ζ)

] 1

εĨ1

(
Ĩ1 − Ĩ1(z)

)
(8.26)

+1
3
(ε− 2ζ)(ε− ζ)

1

(εĨ1)2

[(
Ĩ1 − Ĩ1(z)

)2

+ 4Φ̃2,ε(z)

]}
+O(ε3).

For large z = |q|
m

the asymptotic behavior of the scaling function is, with α0 given after Eq. (8.18),

Fd(z) ' 1

(1 + z2)2

{
1 + (ln z − 1)(ε− 2ζ) +

(
1

2
(ln z)2 − ln z

)
(ε− 2ζ)2 (8.27)

+(ε− 2ζ)

[(
α0 − 1

3
− 1 +

π2

24

)
ε− α0 − 1

3
ζ

]}
+O(ε3) +O(1

z
ln z).
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Assuming the following behavior for large z

Fd(z) '
[
1 + b1ε+ b2ε

2 +O(ε3)
]
zε−2ζ−4 (8.28)

the coefficients b1 and b2 are

b1 = −(1− 2ζ1) (8.29)

b2 = 2ζ2 + (1− 2ζ1)

[
α0 − 1

3
(1− ζ1)− 1 +

π2

24

]
(8.30)

In the massless limit, that is |q| � m, the amplitude of the 2-point correlation function is given by

〈u(q)u(−q)〉 ∼ |q|−(d+2ζ)c(d) (8.31)

with propagator
c(d) = [1 + b1ε+ b2ε

2 +O(ε3)]c̃(d). (8.32)

We also note that transforming to real space we have

1

2
〈[u(x)− u(0)]2〉 = c(d)

∫
ddq

(2π)d
(1− eiqx)|q|−d−2ζ

=
−Γ(−ζ)c(d)

(4π)
d
2 Γ
(
d
2

+ ζ
) (x

2

)2ζ
. (8.33)

This expression breaks down for ζ ≥ 1. Having in mind the RF fixed point in d = 1 which has ζ = 1,
we consider a finite system of size L and periodic boundary conditions,∫

dq

2π
(1− eiqx)|q|−3→ 2

L

∞∑
n=1

1− cos(2πnx
L

)

(2πn
L

)3

= − L2

8π3

[
Li3
(

e−
2iπx
L

)
+ Li3

(
e

2iπx
L

)
− 2ζR(3)

]
=
x2
[
3 + 2 log

(
L

2πx

)]
4π

+O(x3) . (8.34)

To avoid confusion, we have added an index R to the Riemann ζ-function. When ζ > 1, the cor-
relation function (8.33) will grow quadratically with the distance x, with an L-dependent prefactor
scaling as L2ζ−1, even though the Fourier-transform has a pure power-law.∫

dq

2π
(1− eiqx)|q|−1−2ζ → L2ζ+1

(2π)2(ζ+1)

[
2ζR(2ζ + 1)− Li2ζ+1

(
e−

2iπx
L

)
− Li2ζ+1

(
e

2iπx
L

)]
=

L2ζ−1

(2π)2ζ
ζR(2ζ − 1)x2 − x2ζ cos(πζ)Γ(−2ζ)

2π2
+ ... (8.35)

The best studied example is depinning, where ζ = 5
4

(possibly exactly [79]). As an example we
mention Fig. 1 of Ref. [80], where one sees that the structure factor, i.e. Fourier transform of the
2-point function, is a power-law over almost three decades.
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9 Fix-point analysis

Irrespective of the precise form of the initial disorder distribution function R0 in the bare action,
we identify different fix-point classes of the RG equation. Although our description may not be
complete, the analysis of fix-point solutions gives insight into possible physical realizations of our
simple model [Eq. (2.1)]. We study a universality class where R0 is periodic and in the non-periodic
case we distinguish whether R0 is short range (random bond disorder) or long range (random field
disorder). This chapter follows closely Ref. [19] but generalizes the results to 3-loop order.

In terms of the rescaled disorder distribution function

R̃(u) = (εĨ1)m−ε+4ζR(um−ζ) (9.1)

the β- function up to 3-loop order reads

−m ∂

∂m
R̃(u) = (ε− 4ζ)R̃(u) + uζR̃′(u) + 1

2
R̃′′(u)2 − R̃′′(u)R̃′′(0+) (9.2)

+ (1
2

+ C1ε)
[
R̃′′(u)

[
R̃′′′(u)2 − R̃′′′(0+)2

]
− R̃′′(0+)R̃′′′(u)2

]
+ C4

[
R̃′′(u)

[
R̃′′′(u)2R̃′′′′(u)− R̃′′′(0+)2R̃′′′′(0+)

]
− R̃′′(0+)R̃′′′(u)2R̃′′′′(u)

]
+ C3

[
R̃′′(u)− R̃′′(0+)

]2
R̃′′′′(u)2 + C2

[
R̃′′′(u)4 − 2R̃′′′(u)2R̃′′′(0+)2

]
.

with coefficients C1, . . . , C4 given in Eqs. (3.2) ff.

9.1 Random-bond disorder

In order to describe short-range disorder caused by random bonds we look for a fix-point solution that
decays exponentially fast for large fields u. To this end we numerically solve the fix-point equation

−m ∂

∂m
R̃(u) = 0 (9.3)

order by order in ε. We make the Ansatz

R̃(u) = εr1(u) + ε2r2(u) + ε3r3(u) +O(ε4) (9.4)

and assume that higher orders in ε do not contribute to field derivatives of lower orders. Also the
roughness exponent is expanded in ε

ζ = εζ1 + ε2ζ2 + ε3ζ3 +O(ε4) . (9.5)

If R̃(u) is a fix-point solution of Eq. (9.2) then ξ4R̃(u/ξ) is a fix-point solution as well for any ξ.
Thus, without loss of generality, it is possible to normalize R̃(0) = ε, that is, we set r1(0) = 1 and
r2(0) = r3(0) = 0.

Inserting the Ansatz into the fix-point equation we find to lowest, that is, second order in ε

0 = (1− 4ζ1)r1(u) + ζ1ur
′
1(u) +

1

2
r′′1(u)2 − r′′1(u)r′′1(0) . (9.6)

Together with r1(0) = 1 this differential equation has a solution for any ζ1. But for only one specific
value of ζ1 the solution does not change sign and decays exponentially fast for large u. Since R(u) =
R(−u) we only consider positive values of u.

33



Numerically, we adopt the following iterative procedure: First, we guess a value for ζ1 and com-
pute the corresponding r1(u). Then we evaluate r1 at a large value umax. This is repeated until
r1(umax) = 0. The guessing of ζ1 is improved by calculating r1(umax) for many values of ζ1 and
interpolating to zero. In order to circumvent numerical problems at small u we approximate r1(u) by
its Taylor expansion up to a finite order for |u| smaller than a gluing point uglue. We find

ζ1 = 0.2082980628(7) (9.7)

for umax = 25. Below uglue = 0.01 a Taylor expansion of order 30 was used. The result does not
depend on the order if high enough, also a reasonable variation of the glueing point uglue < 2 is within
error tolerances (that is, does not change the digits shown here). Of course, the result does depend on
umax, but choosing umax > 25 gives results within error tolerances (checked up to umax = 50).

For the higher loop contributions we also need derivatives of r1. Instead of solving the corre-
sponding differential equations we simply take numerical derivatives. This is possible since r1 is a
smooth function away from zero. Using the obtained ζ1, r1(u), and its derivatives, we can solve for
the 2-loop contribution

0 = r2(u)− 4ζ2r1(u)− 4ζ1r2(u) + uζ2r
′
1(u) + uζ1r

′
2(u) + r′′1(u)r′′2(u)− r′′1(0)r′′2(u) (9.8)

− r′′1(u)r′′2(0) +
1

2
(r′′1(u)− r′′1(0)) r′′′1 (u)2 − 1

2
r′′1(u)r′′′1 (0+)2

with r2(0) = 0. This equation is solved for r2(u) for different values of ζ2. With an analogous
iterative procedure we adjust ζ2 such that r2(u) decays exponentially. The best value is

ζ2 = 0.006857(8) (9.9)

as found in [19]. Again, derivatives of r2(u) are computed numerically and put into the 3-loop
contribution

0 = r3(u)− 4ζ3r1(u)− 4ζ2r2(u)− 4ζ1r3(u) + u
[
ζ3r
′
1(u) + ζ2r

′
2(u) + ζ1r

′
3(u)

]
(9.10)

− r′′2(0)r′′2(u) + 1
2
r′′2(u)2 − r′′1(u)r′′3(0)− r′′1(0)r′′3(u) + r′′1(u)r′′3(u)− C1r

′′
1(u)r′′′1 (0)2

− 1
2
r′′2(u)r′′′1 (0)2 − C1r

′′
1(0)r′′′1 (u)2 + C1r

′′
1(u)r′′′1 (u)2 − 1

2
r′′2(0)r′′′1 (u)2 + 1

2
r′′2(u)r′′′1 (u)2

− 2C2r
′′′
1 (0)2r′′′1 (u)2 + C2r

′′′
1 (u)4 − r′′1(u)r′′′1 (0)r′′′2 (0)− r′′1(0)r′′′1 (u)r′′′2 (u) + r′′1(u)r′′′1 (u)r′′′2 (u)

− C4r
′′
1(u)r′′′1 (0)2r′′′′1 (0)− C4r

′′
1(0)r′′′1 (u)2r′′′′1 (u) + C4r

′′
1(u)r′′′1 (u)2r′′′′1 (u) + C3r

′′
1(0)2r′′′′1 (u)2

− 2C3r
′′
1(0)r′′1(u)r′′′′1 (u)2 + C3r

′′
1(u)2r′′′′1 (u)2

with normalization r3(0) = 0. With the iterative procedure described above an approximate expo-
nential decay of r3(u) is found for

ζ3 = −0.01075(2) . (9.11)

The force correlator −R′′(u) of the fix-point is plotted on the left side in Fig. 2 for d = 3, that is,
ε = 1 in a one-, two-, and 3-loop approximation. There are further renormalizations of the cusp, in
particular, the 3-loop contribution seems to counteract the 2-loop contribution such that the 3-loop
results is close to the 1-loop result.

The dimensional dependence of the roughness exponent is shown in the right graph of Fig. 2.
The corrections in 3-loop order are substantial, for ε > 1 they are so large that the ε-expansion is
bound to fail. Correspondingly, while the 2-loop results seem to reproduce exact (d = 1) [81] and
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Figure 2: Comparison of results for random bond disorder in 1-loop (black, dashed), 2-loop (blue,
dotted), and 3-loop (red, solid) order. Left: Fix point disorder correlator for d = 3. Right: Di-
mensional dependence of the roughness exponent normalized with ε. The (2,1)-Padé approximant is
plotted in a green dash-dotted line.

ζeq one loop two loop three loop Padé-(2,1) simulation and exact
d = 3 0.208 0.215 0.204 0.211 0.22± 0.01 [82]
d = 2 0.417 0.444 0.358 0.423 0.41± 0.01 [82]
d = 1 0.625 0.687 0.396 0.636 2/3 [81]

Figure 3: Roughness exponent for random bond disorder obtained by an ε-expansion in comparison
with exact results and numerical simulations. In the fourth column is an estimate value using a
(2,1)-Padé approximant of the 3-loop result.

simulation results (d = 2, 3) [82], the 3-loop results are worse throughout in this comparison, see
Fig. 3. Surprisingly, the (2,1)-Padé-approximant of the 3-loop ε-expansion, which is given by

ζ(2,1) ≈
0.208298ε+ 0.333429ε2

1 + 1.56781ε
, (9.12)

is again very close to the 1-loop result but agrees even better with the reference data. Unfortunately,
the third order of a series does not allow to make statements of its asymptotic behavior.

9.2 Random-field disorder

We consider a class of long-range fix-point solutions with R̃(u) ∼ −σ|u| for large u. Due to the linear
behavior, second and higher derivatives of R̃ do not contribute in the limits u→ ±∞. Subsequently,
all loop corrections to the tail vanish and the reparameterisation terms give ζ = ε

3
for the roughness

exponent to all orders as a prerequisite for the existence of such a fix-point solution.
Following closely the 2-loop calculation [19], we consider y(u) = −3

ε
R̃′′(u) and normalize

y(0) = 1. Rewriting the fix-point equation in terms of y and integrating over the interval [0+, u]
gives (without loss of generality we consider u > 0)

0 = B1 +B2ε+B3ε
2 +O(ε4) (9.13)
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This is equivalent to taking one derivative of the β function (3.1), and expressing it in terms of y. The
coefficients are B1, B2 and B3 are the 1-, 2-, and 3-loop contributions, given by

B1 =uy + (1− y)y′, (9.14)

B2 =
1

6

[
y′2(y − 1)

]′
− 1

6
y′y′(0)2 (9.15)

and

B3 =
1

9
y′(0)2

[
(C4y

′′(0)− 3C1)y + 2C2y
′2
]′

+
1

9

[
− C2y

′4−C3(1− y)2y′′2 + (1− y)y′2(C4y
′′ − 3C1)

]′
. (9.16)

These equations can be solved analytically, expressing u as a function of y. For the 1-loop equation,
the solution reads

u2

2
= y − 1− ln y, (9.17)

which features the cusp. Higher-loop contributions are obtained by making an ansatz; to 3-loop order
we need

u2

2
= y − 1− ln y − ε

3
F2(y)− ε2

6
F3(y) +O(ε3) , u > 0 . (9.18)

The inverse function of u(y), u > 0, is y(u). We make use of the known 2-loop solution [19]

F2(y) = 2y − 1− 1

2
ln y +

y

1− y
ln y + Li2(1− y) (9.19)

with boundary conditions up to 2-loop order

y′(0) = −1− 2

9
ε+O(ε2) (9.20)

y′′(0) =
2

3
+

19

54
ε+O(ε2)

y′′′(0) = −1

6
− 71

360
ε+O(ε2).

Differentiating the ansatz (9.18), with respect to u gives an ε-expansion for y′(u)

y′(u) = − uy(u)

1− y(u)
− 1

3

y(u)y′(u)

1− y(u)

[
ε

d

dy
F2(y)

∣∣∣
y=y(u)

+
1

2
ε2 d

dy
F3(y)

∣∣∣
y=y(u)

]
+O(ε3). (9.21)

We now insert this expression into Eq. (9.13), replacing for the moment only B1 by its explicit form
(9.14). Then the fix-point condition reads

0 = ε

[
B2 −

1

3
y(u)y(u)′F ′2(y(u))

]
+ ε2

[
B3 −

1

6
y(u)y′(u)F ′3(y(u))

]
+O(ε3). (9.22)
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The two terms, each enclosed by square brackets, are dealt with separately. We integrate the first term
with respect to u and then again insert Eq. (9.21) to shift the occurrence of y′(u) to a higher order in
ε. Since F2 determines the 2-loop fixed point, the expression is of order ε∫ u

0+
du

[
B2 −

1

3
y(u)y(u)′F ′2(y(u))

]
=: u1(y(u), u)ε+O(ε2). (9.23)

The function F3 can now be determined by considering the ε2-contribution to Eq. (9.22),

B3 −
1

6
F ′3(y(u))y′(u)y(u) +

d

du
u1(y(u), u) = 0 (9.24)

and F3(1) = 0. Dividing by y(u) and integrating over u we find

F3(y(u)) = 6

∫ u

du
1

y(u)

[
B3 +

d

du
u1(y(u), u)

]
. (9.25)

(The lower bounds from the left and right-hand side cancel.) The integral on the right-hand-side is
evaluated by first integrating

Ψ(u) =

∫ u

du

[
B3 +

d

du
u1(y(u), u)

]
(9.26)

and then replacing y′(u) and y′′(u) by Eq. (9.21) and u2 by Eq. (9.18) to zeroth order in ε. The
remaining integral ∫

du
1

y(u)

d

du
Ψ(u) = F̃3(y(u)) (9.27)

can be evaluated with the help of Mathematica and is a function of y(u) only. We find

F3(y) = F̃3(y)− F̃3(1) = f0 + f1 ln y + f2(ln y)2 + f3 ln y ln(1− y), (9.28)

where

f0 =
4 + 4π2

9
− 2

3
γ 1

3
− 2ζ(3)

(1− y)2
− 48− π2 − 30ζ(3)

9(1− y)
− 1

18

[
6− 3γ 1

3
+ (57 + 8π2)ζ(3)

]
+ (1− y)

[
− 4

9
π2 +

2

3
+

2

3
γ 1

3
+ 4ζ(3)

]
+

2

3

(
4ζ(3)− 2− y

1− y

)
Li2(y)− 2

3
Li3(1− y) (9.29)

with γ 1
3

= ψ′(1
3
). Furthermore,

f1 =
23

18
− 38π2

81
+

19

27
γ 1

3
+

4

27

−2π2 + 3(9 + γ 1
3
− 15ζ(3))

1− y
− 2

27

180 + 4π2 − 6γ 1
3
− 117ζ(3)

(1− y)2

(9.30)

+
8 + 8π2

9
− 4

3
γ 1

3
− 4ζ(3)

(1− y)3
+ 2ζ(3)

f2 =
4 + 4π2

9
− 2

3
γ 1

3
− 2ζ(3)

(1− y)4
−

8 + 8π2

27
− 4

9
γ 1

3
− 16

3
ζ(3)

(1− y)3
+

4− 4π2

27
+ 2

9
γ 1

3
− 4ζ(3)

(1− y)2
+

2

3
ζ(3)

(9.31)

f3 = −2

3
−

2
3

1− y
+

8

3
ζ(3). (9.32)
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Figure 4: Fix-point solution y(u) = −3
ε
R̃′′(u) for ε = 1 in the case of random-field disorder. Com-

parison of 1-loop (dashed black), 2-loop (blue dotted), and 3-loop (red line).

The functions F2 and F3 correct the cusp without destroying it, since both have a finite Taylor expan-
sion around y = 1

F2(y) =
2

3
(1− y)2 +

13

36
(1− y)3 +

19

80
(1− y)4 +

13

75
(1− y)5 +

17

126
(1− y)6 +

43

392
(1− y)7

+
53

576
(1− y)8 +

32

405
(1− y)9 +

19

275
(1− y)10 +O(1− y)11 (9.33)

F3(y) = − 2.08216(1− y)2 − 0.949217(1− y)3 − 0.541283(1− y)4 − 0.350724(1− y)5

− 0.247215(1− y)6 − 0.185059(1− y)7 − 0.144938(1− y)8 − 0.117575(1− y)9

− 0.0980832(1− y)10 +O(1− y)11 (9.34)

Both Taylor-expansions seems to be convergent in the whole range of y. The 3-loop contribution has
the opposite sign as the 2-loop contribution. For ε = 1 the 3-loop result corrects the 1-loop result in a
different direction than the 2-loop result, see Fig. 4. The 3-loop contribution is larger than the 2-loop
contribution, and the 3-loop result is closer to the 1-loop result.

If ∆̃(u) := −R̃′′(u) = ε
3
y(u) is a fix-point solution, then

∆̃(u) = −R̃′′(u) =
ε

3
ξ2y(u

ξ
) (9.35)

is a fix-point solution for any ξ as well. We choose ξ to set the normalization of the fix-point function
such that R̃(u) ∼ −σ̃|u| for large u, where σ̃ = (εĨ1)σ. This ensures R(u) = 1

εĨ1
mε−4ζR̃(umζ) ∼

−σ|u|, with ζ = ε
3

. The constant ξ is determined by

σ̃
!

= −
∫ ∞

0

du R̃′′(u) =
ε

3
ξ3

∫ ∞
0

du y(u) =
ε

3
ξ3

∫ 1

0

dy u(y) =
ε

3
ξ3Iy (9.36)

The (implicit) solution u(y) is given by the ansatz (9.18). Numerically, the integral is given by

Iy =

∫ 1

0

dy u(y) ≈ 0.775304− 0.139455ε+ 0.17420ε2 +O(ε3). (9.37)
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Figure 5: Dimensional dependence of the universal amplitude for random-field disorder. Comparison
of 1-loop (dashed black), 2-loop (blue dotted), and 3-loop (red line). The green dot-dashed line is the
(0,2)-Padé approximant of the 3-loop solution.

With this fix-point solution, we calculate the universal amplitude as

c̃(d) = md+2ζ〈u(0)u(0)〉 = − 1

εĨ1

R̃′′(0) =
1

(εĨ1)
1
3

(ε
3

) 1
3
σ

2
3Iy−

2
3 . (9.38)

Using formulas (8.9)–(8.11), we obtain

c̃(d) ≈ ε
1
3σ

2
3

[
3.52459− 0.72508ε− 0.65692ε2 +O(ε3)

]
. (9.39)

For ε < 0.5 the 3-loop solution is relatively close to the 2-loop contribution. For larger ε it deviates
substantially and even changes sign for ε ≈ 1.83, see Fig.5.

The comparison with the exact result in d = 0 dimensions [83] may be far fetched in an ε = 4−d
expansion. The 1- and 3-loop results are far off from the exact result, but the 2-loop result comes
surprisingly close, see Fig. 6. More convincingly and even closer to the exact result is the (0,2)-Padé
approximant of the 3-loop result, taking out the prefactor of ε1/3, which is the unique approximant
with only positive coefficients,

c̃(d)(0,2) ≈
ε

1
3σ

2
3

0.283721 + 0.058367ε+ 0.064888ε2
. (9.40)

9.3 Periodic systems

In order to allow for a periodic solution of the fix-point equation we set ζ = 0. Further we assume a
period one; we can use the reparametrization invariance in Eq. (9.35) to adjust to other periods. The
ansatz

R̃(u) = (a1ε+ a2ε
2 + a3ε

3 + . . .) + (b1ε+ b2ε
2 + b3ε

3 + . . .)u2(1− u)2 +O(ε4) (9.41)
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c̃(d)σ−
2
3 one loop two loop three loop Padé-(0,2) exact

d = 3 3.525 2.800 2.143 2.457
d = 2 4.441 2.614 -0.697 1.909
d = 1 5.083 1.946 -6.581 1.383
d = 0 5.595 0.991 -15.694 1.021 ≈ 1.054 [83]

Figure 6: Universal amplitude for random field disorder obtained by an ε-expansion in comparision
with the exact result. In the fourth column is the estimated value using a (0,2)-Padé approximant of
the 3-loop result.

works to all orders in ε. This can be seen from the following observations: Each further order in a
loop-expansion has one more factor of R(u), and 4 more derivatives. So the RG-equations close for
a polynomial up to order u4, and no higher-order terms in u are needed. This leaves us with 5 terms,
ui, with 0 ≤ i ≤ 4. The function must further be even under the transformation u → 1 − u. This
leaves space in Eq. (9.41) for one additional term, cu(1− u), where the constant c may depend on ε.
However, each term in the β-function except the first one εR(u) has at least 2 derivatives, so this term
would only appear in εR(u), and thus must vanish. (It can appear at depinning for different reasons,
see [16].)

This leads to the fix-point function

R̃∗(u) =
ε

2592
+

ε2

7776
+ ε3

(
− 1

46656
+

π2

23328
−
ψ′(1

3
)

15552
+

ζ(3)

15552

)
(9.42)

− (1− u)2u2

(
ε

72
+

ε2

108
+ ε3 9 + 2π2 − 3ψ′(1

3
)− 18ζ(3)

1944

)
+O(ε4)

With numerical coefficients, the function reads

R̃(u) ≈ 0.000385802ε+ 0.000128601ε2 − 0.000170212ε3

− (0.0138889ε+ 0.00925926ε2 − 0.0119262ε3)(1− u)2u2 +O(ε4) . (9.43)

Similarly to the case of random-field disorder we obtain the universal amplitude as

c̃(d) = − 1

εĨ1

R̃′′(0) ≈ 2.19325ε− 0.680427ε2 − 2.71612ε3 +O(ε4) . (9.44)

This is the 2-point correlation function at zero momentum. There is a large contribution in 3-loop
order with a larger coefficient than at 2-loop order. For ε > 0.72 the 3-loop expansion becomes
negative (as does the 2-loop expansion for ε > 3.22). This makes the ε-expansion questionable in
this case, although the (1,2)-Padé approximant remains positive,

c̃(d)(1,2) ≈
2.19325ε

1 + 0.310238ε+ 1.33465ε2
+O(ε4) (9.45)

The results from different truncations in the loop order and the (1,2)-Padé approximant are plotted in
Fig. 7. The propagator in the massless limit is given by

c(d) ≈ 2.19325ε− 2.87367ε2 + 0.45(1)ε3 +O(ε4) (9.46)
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Figure 7: Left: Dimensional dependence of the universal amplitude c̃(d) in the periodic case. Com-
parison of 1-loop (dashed black), 2-loop (blue dotted), and 3-loop (red line). The green line corre-
sponds to a (1,2)-Padé approximant of the 3-loop solution. Right: ibid for c(d).

with a 3-loop coefficient not as large as the 2-loop coefficient. Here, however, already the 2-loop
solution leads to negative values for ε > 0.76. The probably best extrapolations is obtained from the
(1,2)-Padé approximant

c(d)(1,2) ≈
2.19325ε

1 + 1.31024ε+ 1.510(6)ε2
+O(ε4) . (9.47)

10 The correction-to-scaling exponent ω

The correction-to-scaling exponent ω controls what happens when a fixed point, here a functional
fixed point, is perturbed. In particular, for a fixed point ∆∗(u) = −∂2

uR
∗(u) with β[∆∗] = 0 we

consider linear perturbations. Their eigenvalue ω is determined from the O(κ)-term in the equation

β[∆∗ + κz](u) = ωκ z(u) +O(κ2) . (10.1)

Since observables, and also scaling functions which determine the critical exponents, in general de-
pend analytically on the coupling constants, a deviation of a critical exponent from the fix-point value
scales linearly with the deviation of the coupling constant, or coupling function, from its value at the
critical point. In formulas, an observable O or exponent α scales with a length scale ` as

O −Ofix−point ∼ α− αfix−point ∼ R(u)−Rfix−point(u) ∼ `−ω (10.2)

This is important for numerical simulations, where ` is the system size.
For disordered elastic manifolds, this problem has been considered in Ref. [84]. There it was

concluded, that two cases have to be distinguished:

(a) There is the freedom to rescale the field u while at the same time rescaling the disorder corre-
lator. This includes the random-bond and random-field interface models.

(b) There is no such freedom, since the period is fixed by the microscopic disorder. This is the
case for a charge density wave (random periodic problem), but also for the random-field bulk
problem, in its treatment via a non-linear sigma model.

41



In case (a), the two leading eigenvalues and eigenfunctions to linear order in ε are [84]

zred(u) = u∆′(u)− 2∆(u) , ωred = 0 , (10.3)
z1(u) = ζu∆′(u) + (ε− 2ζ)∆(u) , ω1 = −ε . (10.4)

The first eigenvalue and eigenfunction zred(u) are a consequence of the reparametrization invariance
∆(u) → κ2∆(u/κ), and are therefore exact. zred(u) is a redundant operator. z1(u) and ω1 are the
dominant eigenfunction and eigenvalue entering into Eq. (10.2). Both eigenfunctions are given as
perturbations of the fixed point ∆(u) of the force-force correlator. At least for random-field disorder,
is was argued [84] that there cannot be any other eigenvalues and eigenfunctions.

In case (b) we can at 1-loop order identify two perturbations, written here as perturbations for the
potential-potential correlator R(u):

zred(u) = 1 , ωred = ε (10.5)
z1(u) = R(u) , ω1 = −ε (10.6)

10.1 The correction-to-scaling exponent ω to 2-loop order: General formulas

The 2-loop β-function is

−m∂m∆̃(u) = (ε− 2ζ)∆(u) + ζu∆′(u) + f1[∆,∆](u) + f2[∆,∆,∆](u) + ... (10.7)

Both f1[∆] ≡ f1[∆,∆] and f2[∆] ≡ f2[∆,∆,∆] are completely symmetric functionals acting locally
on the functions ∆(u)−∆(0). More explicitly, we have

f1[∆] = −1

2

[
(∆(u)−∆(0))2

]′′ (10.8)

f2[∆] =
1

2

[
(∆̃(u)− ∆̃(0))∆̃′(u)2

]′′
− 1

2
∆̃′(0+)2∆̃′′(u) (10.9)

For different arguments we use the multilinear formulas (6.32).
Consider now ∆̃∗(u), solution of Eq. (10.7) with −m∂m∆̃∗(u) = 0. Setting ∆̃(u) = ∆̃∗(u) +

κz(u), we study the flow of the term linear in κ. Its eigenmodes z(u) with eigenvalues ω describe the
behavior close to the critical point. The eigenvalue-equation to be solved is

o(u) :=
[
ε− 2ζ − ω

]
z(u) + ζuz′(u) + 2f1[z,∆](u) + 3f2[z,∆,∆](u) = 0 (10.10)

There are several possible simplifications. First note that if ∆(u) is a fixed point, also κ−2∆(κu) is a
fixed point. Varying in Eq. (10.7) the fixed-point condition −m∂m∆(u) = 0 around κ = 1 yields the
redundant or rescaling mode r(u),

r(u) = (ε− 2ζ) (u∆′(u)− 2∆(u)) + ζu (u∆′(u)− 2∆(u))
′

+2f1 (∆(u), u∆′(u)− 2∆(u)) + 3f2 (∆(u),∆(u), u∆′(u)− 2∆(u)) = 0 (10.11)

This equation, as well as a multiple of the vanishing β-function (10.7), can be added to Eq. (10.10).
This leaves some freedom to obtain a simpler equation.
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We now want to know how the physically relevant correction-to-scaling exponent ω = −ε
changes to 2-loop order. To this aim we do a loop expansion, starting from what we know,

∆(u) = ε∆1(u) + ε2∆2(u) + ... (10.12)
z(u) = εz1(u) + ε2z2(u) + ... (10.13)
z1(u) = ζ1u∆′1(u) + (1− 2ζ1)∆1(u) (10.14)

ζ = ζ1ε+ ζ2ε
2 + ... (10.15)

ω = −ε+ ω2ε
2 + ... (10.16)

The 1- and 2-loop orders of the β-function are given by β = εβ1 + ε2β2 +O(ε3) with

β1 = (1− 2ζ1)∆1(u) + ζ1u∆′1(u) + f1 (∆1) (u) = 0 (10.17)
β2 = (1− 2ζ1)∆2(u) + ζ1u∆′2(u)− 2ζ2∆1(u) + ζ2u∆′1(u) + 2f1(∆1,∆2) + f2(∆1)(u) (10.18)

There are many ways a relatively simple differential relation for δz2(u) can be written. We start with
the ansatz

z2(u) = cu∆′1(u) + d∆1(u) + eu∆′2(u) + f∆2(u) + δz2(u) , (10.19)

and consider the following combination

o(u)− β(u)(2 + ε(4b+ 2d))− r(u)(ζ1 + bε)− gβ2(u)ε3 = 0 . (10.20)

For
b = c =

2ζ2

1− 2ζ1

, d = −ω2 , e = ζ1 , f = 2− 2ζ1 , g = 1 , (10.21)

we get

2 (1− ζ1) δz2(u) + ζ1uδz
′
2(u) + 2f1 [∆1(u), δz2(u)]− ω2∆1(u) + ∆2(u) = 0 . (10.22)

This is the simplest equation we have been able to find.
At 3-loop order, the problem becomes more complicated. The best equation we found was

2f1

(
∆1(u), δz3(u)

)
+ 2f1

(
∆2(u), δz2(u)

)
+ 3f2

(
∆1(u),∆1(u), δz2(u)

)
+

(
4ζ2ω2

1− 2ζ1

− ω2
2 + ω3

)
f1

(
∆1(u),∆1(u)

)
+

(
4ζ2

1− 2ζ1

− 3ω2

)
∆2(u) + 2∆3(u)

− (2ζ2 + ω2) δz2(u) + ζ2uδz
′
2(u) + ζ1uδz

′
3(u)− 2(ζ1 − 1)δz3(u) = 0 (10.23)

For the lack of use in applications (the 3-loop order for the roughness exponent is rather large), we
did not try to solve this equation.

We now specify to the main cases of interest.

10.2 Correction to scaling exponent at the random-field fixed point

Using shooting, we find ω2 = 0.1346, thus

ω ≈ −ε+ 0.1346ε2 +O(ε3) = − ε

1 + 0.1346ε
+O(ε3) . (10.24)

The corresponding function δz2(u) and z(u) at ε = 3 are plotted on figure 8. In d = 1 this gives

ω = −1.97(20) , d = 1 . (10.25)

where the error-estimate comes from the deviation of the direct expansion as compared to the Padé
approximant.
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Figure 8: z1(u), z2(u) and z(u)ε=3 for RF, statics. Red (solid) is the numerical solution, blue (dashed)
the Taylor expansion around u = 0.
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Figure 9: z1(u), z2(u) and z(u)|ε=3 for RB, statics. Red (solid) is the numerical solution, blue
(dashed) Taylor expansion.

10.3 Correction to scaling exponent at the random-bond fixed point

We find via shooting

ω ≈ −ε+ 0.4108(1)ε2 +O(ε3) = − ε

1 + 0.4108(1)ε
+O(ε3) . (10.26)

In d = 1 this gives using the Padé approximant (the direct ε expansion is not monotonous)

ω ≈ −1.344 , d = 1 . (10.27)

We have checked that the numerical solutions, given on figure 9, integrate to 0 within numerical
accuracy, as necessary for a RB fixed point.

10.4 Correction to scaling exponent for charge-density waves (random-periodic
fixed point)

We find that the leading-order perturbation for the random-periodic fix-point (9.42) closes in the same
space spanned by 1 and [u(1− u)]2. The correction-to-scaling exponent becomes

ωRP = −ε+
2ε2

3
−
(

4ζ(3)

3
+

5

9

)
ε3 +O(ε4) = −ε

1 +
[
2ζ(3) + 1

6

]
ε

1 +
[
2ζ(3) + 5

6

]
ε

+O(ε4) . (10.28)

Curiously, all contributions proportional to π2 and ψ′(1/3), present in the coefficients C1, ..., C4 have
canceled. The corresponding eigenfunction, normalized to R(0) = 1 is

δR(u) = 1− 36[u(1− u)]2
[
1 +

ε

2
+ ε2 8− 30ζ(3) + 3ψ′(1

3
)− 2π2

18
+O(ε3)

]
(10.29)

Up to 2-loop order, the exponent ω is the same for depinning.
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Figure 10: z1(u), z2(u) and z(u)|ε=3 for RF, depinning. Red (solid) is the numerical solution, blue
(dashed) the Taylor expansion.

10.5 Correction to scaling exponent for depinning (random-field fixed point)

For completeness and usefulness in applications, we also give the correction to scaling exponent at
depinning, using the β-function of [16, 18]. Via shooting, we find ω2 = −0.0186, thus

ω ≈ −ε− 0.0186ε2 +O(ε3) = − ε

1− 0.0186ε
+O(ε3) . (10.30)

The corresponding function δz2(u) and z(u) at ε = 3 are plotted on figure 10. In d = 1 this gives

ω = −3.17(1) , d = 1 . (10.31)

where the error-estimate comes from the difference of the Padé approximant to the direct expansion.

11 Conclusions and open problems

In this article, we have obtained the functional renormalization-group flow equations for the equi-
librium properties of elastic manifolds in quenched disorder up to 3-loop order. This allowed us to
obtain several critical exponents, especially the roughness exponent, to 3-loop accuracy, for random-
bond, random-field, and periodic disorder. For an elastic string in a random-bond environment, for
which we know the exact value ζ = 2

3
, the corrections turn out to be quite large. This suggests

that convergence of the ε-expansion is plagued by the typical problem of renormalized field theory,
namely that the perturbation expansion in the coupling is not convergent, but only Borel-summable.
In ϕ4-theory the physical reason for a only Borel-summable series is that the theory with the oppo-
site sign of the coupling is unstable, thus the perturbative expansion cannot be convergent. For the
case at hand, this is not evident: Since averaging over disorder leads to attractive inter-replica inter-
actions, making the latter repulsive should make the problem even better defined: a self-attractive
polymer is unstable, whereas a self-repelling one has a well-defined fixed point, the self-avoiding
polymer fixed point. The second point which makes us doubt that the theory is only Borel-summable
is that when the interaction behaves as

∫
x
gϕ2α(x), then the standard instanton analysis yields that〈

exp(−
∫
x
gϕ2α(x))

〉
=
∑∞

n=0
(−g)n
n!

〈[∫
x
ϕ2α(x)

]n〉, with
〈[∫

x
ϕ2α(x)

]n〉 ' (n!)α for a total of the
n-th order term being (n!)α−1. The exponent α in the last formula is extracted from the large ϕ be-
havior of the interaction. For the problem at hand, R(u) has a Gaussian tail, thus the perturbative
expansion should converge! This does however not say anything about the result at a given order,
here n = 3. It would be interesting to find an exact solution in some limit, which could shed light on
this issue. In some cases, large N (with N being the number of components) provides such a limit.
It has however been shown in [85, 86] that the β-function at leading order in 1/N is as obtained in
1-loop order. For the order 1/N -corrections [87], the same problem appears.
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Another interesting question is how the formalism derived here can be extended to N > 1 com-
ponents. It had been shown in Ref. [15] that there is an ambiguity in the 2-point function already at
1-loop order. This allowed the authors of [15] to still conclude on the β-function at 2-loop order. The
problem becomes more severe at 3-loop order, and despite considerable efforts in this direction we
have not been able to lift this ambiguity, present in some of the graphs.
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A Loop integrals for all diagrams up to 3 loops

A.1 General formulae, strategy of calculation, and conventions

We make use of the Schwinger parameterization

1

An
=

1

Γ(n)

∫ ∞
0

du un−1e−uA (A.1)

and the d-dimensional momentum integration∫
ddp

(2π)d
e−ap

2 ≡
∫
p

e−ap
2

=
1

ad/2

∫
p

e−p
2

=
1

ad/2
1

(4π)d/2
(A.2)

In order to avoid cumbersome appearances of factors like 1
(4π)d/2

, we will write explicitly the last
integral, and will only calculate ratios compared to the leading 1-loop diagram I1, given in the next
section.

We will frequently use the decomposition trick

1

k2 + 1
=

1

k2
− 1

k2(k2 + 1)
(A.3)

which works well for dimension d ≤ 4. The reason for the utility of this decomposition is that it
allows one to replace the massive propagator by a massless one, which is easier to integrate over, and
a term converging faster for large k, which finally renders the integration finite.

Special functions which appear are

ψ(x) :=
Γ′(x)

Γ(x)
(A.4)

ψ′(x) =
d

dx
ψ(x) (A.5)
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A.2 The 1-loop integral I1

The integral I1 is defined as

I1 := =

∫
k

1

(k2 +m2)2
, (A.6)

and is calculated as follows:

I1 =

∫
k

∫ ∞
0

dαα e−α(k2+m2)

=

(∫
k

e−k
2

)∫ ∞
0

dαα1− d
2 e−αm

2

=

(∫
k

e−k
2

)
m−εΓ

(ε
2

)
(A.7)

We will also denote the dimensionless integral

Ĩ1 = I1

∣∣∣
m=1

. (A.8)

This gives us the normalization-constant for higher-loop calculations

(εI1) = m−ε
(∫

k

e−k
2

)
εΓ
(ε

2

)
= m−ε

(∫
k

e−k
2

)
2 Γ
(

1 +
ε

2

)
(A.9)

A.3 2-loop diagram IA

The non-trivial 2-loop integral can be written as

IA = =

∫
p1,p2

G(p1)G(p2)2G(p1 + p2) =
Γ(ε)

m2ε
J̃A (A.10)

with

J̃A =

∫ ∞
0

dx dy fA(x, y) = J1 + J2 + J3 (A.11)

fA(x, y) =
y

(x+ y + xy)2− ε
2 (1 + x+ y)ε

(A.12)

J1 =

∫ 1

0

dy

∫ ∞
0

dxfA(x, y) (A.13)

J2 =

∫ ∞
1

dy

∫ ∞
0

dx
1

(1 + x)2− ε
2

1

y1+ ε
2

=
4

(2− ε)ε
(A.14)

J3 =

∫ ∞
1

dy

∫ ∞
0

dx

[
fA(x, y)− 1

(1 + x)2− ε
2

1

y1+ ε
2

]
(A.15)

The integrals J1 and I1 were solved by expanding the integrand in ε to order ε

IA
(εI1)2

=
1

2ε2
+

1

4ε
+

1

72

[
9 + 4π2 − 6ψ′(1

3
)
]

+O(ε) (A.16)

The result agrees with the one obtained by the subtraction method.
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A.4 2-loop integral IB

The trivial 2-loop diagram is

IB := = I2
1 (A.17)

A.5 Ii

Ii = (A.18)

Ii
(εI1)3

=
1

(εI1)3

∫
p1,p2,p3

G(p1)G(p2)G(p3)G(p1 + p3)G(p2 + p3)G(p1 − p2)

=
ζ(3)

2ε
+O(ε) (A.19)

A.6 Ij

Ij = (A.20)

Ij
(εI1)3

=
1

(εI1)3

∫
p1,p2,p3

G(p1)G(p2)G(p3)2G(p1 + p2 + p3)2 =
3∑
i=1

Iji (A.21)

Ij1 =
1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2

G(p3)2G(p1 + p2 + p3)2 =
1

3ε3
+

1

6ε2
+

1

12ε
+O(1) (A.22)

Ij2 = −2
1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2

G(p1)G(p3)2G(p1 + p2 + p3)2 = O(1) (A.23)

Ij3 =
1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2

G(p1)G(p2)G(p3)2G(p1 + p2 + p3)2 = O(1) (A.24)

A.7 Il

Il = (A.25)
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Il
(εI1)3

=
1

(εI1)3

∫
p1,p2,p3

G(p1)G(p2)G(p1 + p2)G(p3)G(p1 + p2 + p3)2 =
4∑
i=1

I li (A.26)

I l1 =
1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2(p1 + p2)2

G(p3)G(p1 + p2 + p3)2

=
1

6ε3
+

1

4ε2
+

7

24ε
+O(1) (A.27)

I l2 =
1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2(p1 + p2)2

G(p1 + p2)G(p3)G(p1 + p2 + p3)2

= −
4π2 + 3ψ′(1

3
)− 3ψ′(5

6
)

216ε
+O(1) = Im2 +O(1) (A.28)

I l3 =
1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2

G(p2)G(p1 + p2)G(p3)G(p1 + p2 + p3)2 = O(1) (A.29)

I l4 =
1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2

G(p1)G(p2)G(p1 + p2)G(p3)G(p1 + p2 + p3)2 = O(1) (A.30)

Il
(εI1)3

=
1

6ε3
+

1

4ε2
+

1

ε

[
−π

2

54
+

7

24
− 1

72

(
ψ′(1

3
)− ψ′(5

6
)
)]

(A.31)

A.8 Im

Im = (A.32)

Im
(εI1)3

=
1

(εI1)3

∫
p1,p2,p3

G(p1)G(p2)G(p1 + p2 + p3)G(p3)G(p1 + p2)2 =
4∑
i=1

Imi (A.33)

Im1 =
1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2(p1 + p2 + p3)2

G(p3)G(p1 + p2)2

= Im1,1 + Im1,2 (A.34)

Im1,1 =
1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2(p1 + p2 + p3)2

1

p2
3

G(p1 + p2)2 =
1

3ε3
+

1

3ε2
+

2 + π2

12ε
(A.35)

Im1,2 = − 1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2(p1 + p2 + p3)2

1

p2
3

G(p3)G(p1 + p2)2 = − π2

24ε
(A.36)

Im2 = − 1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2(p1 + p2 + p3)2

G(p1 + p2 + p3)G(p3)G(p1 + p2)2

= −
4π2 + 3ψ′(1

3
)− 3ψ′(5

6
)

216ε
+O(1) (A.37)

Im3 = −2
1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2

G(p2)G(p1 + p2 + p3)G(p3)G(p1 + p2)2 = − π2

12ε
+O(1) . (A.38)
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Finally,

Im4 =
1

(εI1)3

∫
p1,p2,p3

1

p2
1p

2
2

G(p1)G(p2)G(p1 + p2 + p3)G(p3)G(p1 + p2)2 = Im4,0 + Im4,1 (A.39)

Im4,0 = I1(0)
1

(εI1)3

∫
d2p

1

p2
1p

2
2

G(p1)G(p2)G(p1 + p2)2

=
5π2 − 3ψ′(1

3
) + 3ψ′(5

6
)

216ε
+O(1) (A.40)

Im4,1 =
1

(εI1)3

∫
d2p(I1(p1 + p2)− I1(0))

1

p2
1p

2
2

G(p1)G(p2)G(p1 + p2)2 = O(1) . (A.41)

All in all

Im
(εI1)3

=
1

3ε3
+

1

3ε2
−

4π2 − 18 + ψ′(1
3
)− ψ′(5

6
)

108ε
+O(1)

=
1

3ε3
+

1

3ε2
+

3 + 2π2 − 3ψ′(1
3
)

18ε
+O(1) (A.42)

where two PolyGamma-identities were used

ψ′(1
3
) + ψ′(5

6
) = 4ψ′(2

3
) (A.43)

ψ′(1
3
) + ψ′(2

3
) =

4π2

3
. (A.44)

B Complimentary Material for Section 5

B.1 Functional RG Equations for S(3) and S(4)

The flow equation of the third Γ-cumulant in the ERG hierachy is given by

Ṡ(3)[uabc] =

∫
d2x ġ(x1, x2)

{
−3TS

(3)
110[uabc](x1, x2) +

3

2
S

(4)
1100[uaabc](x1, x2)

}
+

∫
d4x

[
d

dm
g(x1, x2)g(x3, x4)

]{
3T

2
R′′[uab](x2, x3)R′′[uac](x4, x1)

+3R′′[uab](x2, x3)
[
S

(3)
110[uaac](x4, x1)− S(3)

110[uabc](x4, x1)
]}

+

∫
d6x

[
d

dm
g(x1, x2)g(x3, x4)g(x5, x6)

]
{3R′′[uab](x2, x3)R′′[uac](x4, x5)R′′[uac](x6, x1)

−R′′[uab](x2, x3)R′′[ubc](x4, x5)R′′[uac](x6, x1)} (B.1)

We split the flow equation for the fourth Γ-cumulant

Ṡ(4)[uabcd] = Ṡ
(4)
1 [uabcd] + Ṡ

(4)
2 [uabcd] + Ṡ

(4)
3 [uabcd] + Ṡ

(4)
4 [uabcd] (B.2)
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into four parts

S
(4)
1 [uabcd] = 2

∫
d2x ġ(x1, x2)

{
−3TS(4)[uabcd](x2, x1) + S(5)[uaabcd](x2, x1)

}
(B.3)

S
(4)
2 [uabcd] = 6T

∫
d4x

[
d

dm
g(x1, x2)g(x3, x4)

]{
R′′[uab](x2, x3)S

(3)
200[uacd](x4, x1)

}
+ 6

∫
d4x

[
d

dm
g(x1, x2)g(x3, x4)

]{
R′′[uab](x2, x3)S

(4)
1100[uaacd](x4, x1)

−R′′[uab](x2, x3)S
(4)
1100[uabcd](x4, x1)

+ S
(3)
200[uabc](x2, x3)S

(3)
110[uaad](x4, x1) + S

(3)
110[uabc](x2, x3)S

(3)
110[ubad](x4, x1)

}
(B.4)

S
(4)
3 [uabcd] = 4T

∫
d6x

[
d

dm
g(x1, x2)g(x3, x4)g(x5, x6)

]
{
R′′[uab](x2, x3)R′′[uac](x4, x5)R′′[uad](x6, x1)

}
+ 6

∫
d6x

[
d

dm
g(x1, x2)g(x3, x4)g(x5, x6)

]
{

2R′′[uab](x2, x3)R′′[uac](x4, x5)S
(3)
110[uaad](x6, x1)

− 2R′′[uab](x2, x3)R′′[uac](x4, x5)S
(3)
110[uacd](x6, x1)

− 2R′′[uac](x2, x3)R′′[uab](x4, x5)S
(3)
110[uacd](x6, x1)

+ 2R′′[ubc](x2, x3)R′′[uab](x4, x5)S
(3)
110[uacd](x6, x1)

+R′′[uab](x2, x3)R′′[uab](x4, x5)S
(3)
110[uacd](x6, x1)

}
(B.5)

S
(4)
4 [uabcd] = 3

∫
d8x

[
d

dm
g(x1, x2)g(x3, x4)g(x5, x6)g(x7, x8)

]
{

4R′′[uab](x2, x3)R′′[uac](x4, x5)R′′[uad](x6, x7)R′′[uad](x8, x1)

+ 2R′′[uab](x2, x3)R′′[uac](x4, x5)R′′[ucd](x6, x7)R′′[uac](x8, x1)

− 4R′′[uab](x2, x3)R′′[uac](x4, x5)R′′[ucd](x6, x7)R′′[uad](x8, x1)

+R′′[uab](x2, x3)R′′[ubc](x4, x5)R′′[ucd](x6, x7)R′′[uad](x8, x1)
}

(B.6)

B.2 Third Γ-cumulant S(3) to 3-loop order

In total there are four contributions to the flow of S(3) in 3-loop order

Ṡ(3)[uabc] =
d̃

dmg

4∑
i=1

ui[uabc] +O(ε5) (B.7)

where the first contribution is known from the the 2-loop calculation and reads

u1 =
1

2
(A1 + A2 + A3) ∼ O(ε3) (B.8)
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where only the local part of R[v] is inserted, so u1 is of order ε3. The second contribution comes
from inserting the non-local part of R[v] to second order, that is Eq. (5.25), into 1

2
(A1 + A2 + A3).

u2 = u2,1 + u2,2 + u2,3 ∼ O(ε4) (B.9)

where we split the contributions according to different types of integrals. This is not the shortest way
to write but better comprehensible. The same is done in the contributions from the RS(3) term

u3 = u3,1 + u3,2 ∼ O(ε4) (B.10)

where u1 was used for S(3) on the right hand side. Finally

u4 = u4,1 + u4,2 ∼ O(ε4) (B.11)

is the feeding term from S(4), where we insert Eq. (5.41).
Eq. (B.7) integrates to

S(3)[uabc] =
5∑
i=1

u(3),i[uabc] +O(ε5) (B.12)

with the 2-loop result u(3),1[uabc] = u1[uabc] and

u(3),2[uabc] =

∫ m

(u2,1 − T ) = −1

2
I1

∫
d3xg(x1, x2)g(x2, x3)g(x3, x1)

×

((
2R′′ab(x1)

[
R′′ac(x2) +R′′bc(x2)

]
+
[
R′′ac(x1)−R′′bc(x1)

][
R′′ac(x2)−R′′bc(x2)

])
×
[
R′′′′ab (x3)R′′ab(x3) +R′′′ab(x3)2 −R′′′(0+)2

]
+
(
R′′ab(x1)R′′ab(x2) +

[
R′′ac(x1) +R′′bc(x1)

][
R′′ac(x2) +R′′bc(x2)

])
×
[
R′′′′ac (x3)R′′ac(x3) +R′′′′bc (x3)R′′bc(x3) +R′′′ac(x3)2 +R′′′bc(x3)2 − 2R′′′(0+)2

]
+ 2R′′ab(x1)

[
R′′ac(x2)−R′′bc(x2)

][
R′′′′ac (x3)R′′ac(x3)−R′′′′bc (x3)R′′bc(x3)

+R′′′ac(x3)2 −R′′′bc(x3)2
])

(B.13)

u(3),3[uabc] =

∫ m

(u2,2 + u3,1) =
1

2

∫
d4xg(x1, x2)g(x1, x4)g(x2, x4)g(x3, x4)2

×

((
2R′′ab(x1)

[
R′′ac(x2) +R′′bc(x2)

]
+
[
R′′ac(x1)−R′′bc(x1)

][
R′′ac(x2)−R′′bc(x2)

])
×R′′ab(x3)R′′′′ab (x4)

+
(
R′′ab(x1)R′′ab(x2) +

[
R′′ac(x1) +R′′bc(x1)

][
R′′ac(x2) +R′′bc(x2)

])
×
[
R′′ac(x3)R′′′′ac (x4) +R′′bc(x3)R′′′′bc (x4)

]
+ 2R′′ab(x1)

[
R′′ac(x2)−R′′bc(x2)

][
R′′ac(x3)R′′′′ac (x4)−R′′bc(x3)R′′′′bc (x4)

])
(B.14)
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u(3),4[uabc] =

∫ m

(u2,3 + u4,2) =

∫
d2xd2y g(y1, y2)2g(x1, x2)g(x1, y1)g(x2, y2)

×

{{
R′′ab(x1)

[
R′′ac(x2) +R′′bc(x2)

]
+

1

2

[
R′′ac(x1)−R′′bc(x1)

][
R′′ac(x2)−R′′bc(x2)

]}
×
[
R′′′ab(y1)R′′′ab(y2)−R′′′(0+)2

]
+

1

2

{
R′′ab(x1)R′′ab(x2) +

[
R′′ac(x1) +R′′bc(x1)

][
R′′ac(x2) +R′′bc(x2)

]}
×
[
R′′′ac(y1)R′′′ac(y2) +R′′′bc(y1)R′′′bc(y2)− 2R′′′(0+)2

]
+R′′ab(x1)

[
R′′ac(x2)−R′′bc(x2)

][
R′′′ac(y1)R′′′ac(y2)−R′′′bc(y1)R′′′bc(y2)

]}
(B.15)

u(3),5[uabc] =

∫ m

(u3,2 + u4,1) =
1

2

∫
d2xd2y g(y1, y2)g(x1, y1)g(x1, y2)g(x2, y1)g(x2, y2)

×

{[
R′′ab(x1)R′′ab(x2) +R′′bc(x1)R′′bc(x2) +R′′ac(x1)R′′ac(x2)

]
×
[
R′′′ab(y1)R′′′ac(y2) +R′′′ac(y1)R′′′bc(y2)−R′′′ab(y1)R′′′bc(y2)

]
+ 2R′′ab(x1)R′′ac(x2)

[
R′′′ab(y1)R′′′ab(y2) +R′′′ab(y1)R′′′ac(y2) +R′′′ab(y1)R′′′bc(y2)

−R′′′ac(y1)R′′′bc(y2) +R′′′ac(y1)R′′′ac(y2)−R′′′(0+)2
]

+ 2R′′ab(x1)R′′bc(x2)
[
R′′′ab(y1)R′′′ab(y2)−R′′′ab(y1)R′′′ac(y2)−R′′′ab(y1)R′′′bc(y2)

−R′′′ac(y1)R′′′bc(y2) +R′′′bc(y1)R′′′bc(y2)−R′′′(0+)2
]

+ 2R′′ac(x1)R′′bc(x2)
[
R′′′bc(y1)R′′′bc(y2)−R′′′ab(y1)R′′′ac(y2) +R′′′ab(y1)R′′′bc(y2)

+R′′′ac(y1)R′′′bc(y2) +R′′′ac(y1)R′′′ac(y2)−R′′′(0+)2
]}

(B.16)

C Systematic treatment of diagrams up to 3 loops: sloops and
recursive construction

We present a systematic procedure to obtain (relatively) simple results for diagrams at up to 3 loops.
The idea is to write the diagram, and then to consider all possible sloops which lead to the same
diagram. Subtracting them with the right weight leads to results which are much simpler than those
obtained by trying to reduce expressions term by term. The notation used throughout this section is

hab := R′′ab(1− δab) gab := R′′′ab(1− δab) fab := R′′′′ab (1− δab)
pab := R

(5)
ab (1− δab) sab := R

(6)
ab (1− δab) . (C.1)
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We also use h0 := R′′aa a.s.o. The notation is such that all summations (which are implicit) are
restricted. An example is

hab :=
∑
ab

hab ≡
∑
a6=b

hab =
∑
ab

R′′ab −
∑
a

R′′aa (C.2)

We will write rather instistinguishably, in a little abuse of notation,R(ua−ub) ≡ Ru ≡ Rab, whatever
is more convenient or suggestive. Below, we will give all diagrams.

There is always an additional combinatorial factor. At n-loop order, denote the number of prop-
agators between points i and j as ni,j . Further denote the number of symmetries S as NS . Then the
combinatorial factor for the contribution to R is

Comb =

(
1

2

)n
× 1

NS
×
∏
i,j

1

ni,j!
(C.3)

at n-loop order, written apart from the diagram. We will give this factor at the beginning of each
diagram with the same conventions as above.

C.1 1 loop

Here we give the 1-loop diagram. A (closed) dashed line represents a sloop. Comb = 1
2
× 1

2
× 1

2
.

= 4hab
2 + 4hab hac (C.4)

=
∑
a,b

4R′′abR
′′
ac = 4h0

2 + 8h0 hab + 4hab hac (C.5)

− = −4h0
2 − 8h0 hab + 4hab

2 = 4
∑
a,b

[
R′′ab

2 − 2R′′0 R
′′
ab

]
+ const .(C.6)

C.2 2 loops

C.2.1 The hat-diagram

Comb = 1
22
× 1

2
× 1

2

= 8
(
2 g2

ab hab + 3 g2
ab hbc − gab gac hbc + 2 gac gbc hbc + gac gbc hcd

)
(C.7)

= 8
(
g2
ab hbc − gab gac hbc + 2 gac gbc hbc + gac gbc hcd

)
(C.8)

= 8
(
h0 g

2
ab + h0 gab gac + g2

ab hbc + gac gbc hcd
)

(C.9)

The simplest combination is

− = 16 g2
ab (hab + hbc) . (C.10)
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C.2.2 The bubble-chain

The bubble-chain has Comb = 1
22
× 1

2
× (1

2
)2, and reads

= 16 fab h
2
ab + 32 fab hab hbc + 8 fac hab hcd + 8 fachbc hcd (C.11)

= 16h0 fab hab + 16h0 fab hbc + 16 fbc hab hbc + 8 fac hab hcd + 8 fac hbc hcd (C.12)

Now two sloops are a little bit more complicated, and in fact to be specific, we set

:=
1

2

[
+

]
(C.13)

We have

= 16h2
0 fab + 32h0 fab hac + 16 fab hac had (C.14)

= 16h2
0 fab + 32h0 fab hac + 16 fab hac hbd (C.15)

= 16h2
0 fab + 32h0 fab hac + 8 fab hac had + 8 fab hac hbd (C.16)

Note that we have dropped the term f0, which naively would be there in the calculations. This can be
done, since f0

∑
abcR

′′
abR

′′
ac is itself a 3-replica-term.

Then the simplest combination is

− 2 + = 16fab (hab − h0)2 = 16
∑
a,b

R′′′′ab (R′′ab −R′′0)
2
.

(C.17)

C.3 3 loops

C.3.1 Diagram (h)

Diagram (h) has Comb = 1
23
× 1

2
× (1

2
)3.

= 64 f 2
ab h

2
ab + 128 fab

2 hab hbc + 64 fab fbc hab hbc + 64 fab fbc hab hcd + 32 fbc
2 hab hcd

+64 fac fbc hac hcd + 32 fbc
2 hac hcd + 16 fac fcd hab hde + 32 fac fcd hbc hde

+16 fad fcd hbd hde (C.18)

= 64h0 fab
2 hab + 64h0 fab

2 hbc + 64h0 fab fbc hbc + 64 fbc
2 hab hbc + 32h0 fab fbc hcd

+32h0 fac fbc hcd + 32 fbc
2 hab hcd + 32 fac fcd hab hcd + 32 fbc

2 hac hcd

+32 fac fcd hbc hcd + 16 fac fcd hab hde + 32 fac fcd hbc hde + 16 fad fcd hbd hde (C.19)

= 64 fab fbc hab hbc + 64 fab fac hab hcd + 64 fac fbc hac hcd + 16 fab fad hbc hde

+32 fab fbd hbc hde + 16 fad fcd hbd hde (C.20)

= 64h0
2 fab

2 + 64h0
2 fab fac + 128h0 fab

2 hac + 64h0 fab fac had + 32 fab
2 hac had

+16 fab fad hac hae + 32 fab
2 hac hbd + 64h0 fab fac hcd + 32 fab fad hac hde

+16 fab fbd hac hde (C.21)
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For two intersecting 2-loops, there are 2 possibilities, and we define:

=
1

2

 +

 (C.22)

The terms are

= 64h0 fab fbc hbc + 32h0 fab fac hcd + 32h0 fac fbc hcd + 64 fac fcd hbc hcd

+32 fab fad hac hde + 32 fad fcd hbd hde (C.23)

= 64h0 fab fbc hbc + 32h0 fab fbc hcd + 32h0 fac fbc hcd + 64 fac fcd hab hcd

+32 fad fcd hab hde + 32 fab fbd hac hde (C.24)

= 64h0 fab fbc hbc + 32h0 fab fac hcd + 32h0 fac fbc hcd + 32 fac fcd hab hcd

+32 fac fcd hbc hcd + 32 fab fad hac hde + 16 fab fbd hac hde + 16 fad fc,d hbd hde (C.25)

Now 3 intersecting sloops. They can intersect in 3 different manners, and we take the average, with
the weight proportional to their combinatorial factor,

=
1

4

 + 2 +

 . (C.26)

The respective contributions are:

= 64h0
2 fab fad + 128h0 fab fad hac + 64 fab fad hac hae (C.27)

= 64h0
2 fab fad + 64h0 fab fad hae + 64h0 fab fad hbc + 64 fab fad hae hbc (C.28)

= 64h0
2 fab fad + 128h0 fab fad hbc + 64 fab fad hbc hde (C.29)

= 64h0
2 fab fad + 64h0 fab fad hac + 16 fab fad hac hae + 64h0 fab fad hbc

+32 fab fad hae hbc + 16 fab fad hbc hde (C.30)

56



The final combination is

− 2 − + + 2 −

= 64f 2
ab (hab − h0)2 = 64

∑
a,b

f 2
ab (hab − h0)2 (C.31)

Note that each sloop comes with a factor of (−1) and furthermore one has taken into account the
proper combinatorial factor. This result is confirmed by the recursive-construction algorithm.

C.3.2 Diagram (i)

Comb = 1
23
× 1

4!
× 1. For a given order of the contractions, we have:

= 16
(
6 g4

ab + 16 g3
ab gac + 3 g2

ab g
2
ac + 6 g2

ab gac gad + gab gac gad gae + 12 g2
ab gac gbc

)
(C.32)

= 16
(
g2
ab g

2
ac + 2 g2

ab gac gad + gab gac gad gae
)

(C.33)

= 16
(
4 g3

ab gac + 3 g2
ab gac gad + gab gac gad gae + 3 g2

ab gac gbc
)
. (C.34)

The simplest combination is

+ 3 − 4 = 96
(
g4
ab + g2

ab g
2
ac

)
= 1-rep + 96

∑
a,b

(
R′′′ab

4 − 2R′′′ab
2
R′′′0

2
)

+ 3-reps .

(C.35)
Note that the factors are combinatorial factors for the number of possibilities to chose the sloop, while
the signs are less intuitive. The diagram is supercusp-free.

C.3.3 Diagram (j)

Diagram (j) has Comb = 1
23
× 1

4
× 1

2
. We number 1 to 4 for points x1 to x4,

1

3

2

4
(C.36)

We have performing, the contractions in the order (23)(23)(13)(12)(34)(24) or (13)(12)(34)(24)(23)
(23)

= 16
(
4 f 2

ab h
2
ab + 12 f 2

ab hab hbc − 4 fab fac hab hbc + 2 fab fbc hab hbc + fab fac h
2
bc

+2 fab fbc h
2
bc + 4 fab fbc hab hbd + 3 f 2

ab hbc hbd + 4 f 2
ac hab hc,d − 2 fac fad hab hc,d

+fad fcd hbd hde
)

(C.37)

Sloops: The 2-sloop contracted as (23)(23)(13)(12)(34)(24) gives

= 16
(
4 f 2

ab hab hbc − 4 fab fac hab hbc + 2 fab fbc hab hbc + fab fac h
2
bc + 2 fab fbc h

2
bc

+4 fab fbc hab hbd + f 2
ab hbc hbd + 2 f 2

ac hab hc,d − 2 fac fad hab hc,d + fad fcd hbd hde
)

(C.38)
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The 3-sloop is

= 16
(
2h0 f

2
ab hab + h0 fac fad hab + 3h0 f

2
ab hbc − h0 fab fac hbc + 2h0 fac fbc hbc

+2 f 2
ab hab hbc + 2 fab fbc hab hbd + f 2

ab hbc hbd + 2 fac
2 hab hcd − fac fad hab hcd

+fad fcd hbd hde
)
. (C.39)

The 4-sloop(13)(12)(34)(24), then contracted (23)(23) gives

= 16
(
3h2

0 f
2
ab + h2

0 fab fac + 2h0 fac fad hab + 6h0 f
2
ab hbc + 3 f 2

ab hbc hbd + fad fcd hbd hde
)
.

(C.40)
We can study another configuration, which we do not know how to draw, so call it S

S = 16(hab(x1) + h0)gac(x2)gac(x3)Rde(x4) , (C.41)

where we have already dropped the term a = c, which will disappear after the next contraction.
Contracting (34) and then (24) gives

64h0 fab
2 hab + 64h0 fab

2 hbc + 64 fbc
2 hab hbc + 32 fac

2 hab hcd + 32 fbc
2 hac hcd . (C.42)

A simple combination seems to be

− = 32
(
2 f 2

ab h
2
ab + 4 f 2

ab hab hbc + f 2
ab hbc hbd + f 2

ac hab hcd
)
. (C.43)

A still simpler configuration is

− − S = 64(−h0fab
2hab + fab

2hab
2 − h0fab

2hbc + fab
2habhbc)

= 64[fab
2hab(hab − h0) + fab

2hbc(hab − h0)]

= 64[fab
2(hab − h0)](hab + hbc) . (C.44)

The trivial de-slooping gives (confirmed by the recursive-construction algorithm)

− = 64f 2
ab(hab − h0)2 = 64

∑
ab

R′′′′ab
2

(R′′ab −R′′0)
2
. (C.45)

C.3.4 Diagram (k )

Next is diagram (k). It has Comb = 1
23
× 1

2
× 1

3!
. With contractions (13)(13)(13)(12)(34)(24) we have

1

3

2

4
= 16

(
12 f 2

ab hab hbc − 6 fac
2 hab hbc + 6 fac

2 h2
bc + 2 fab fbc hab hbd + 7 f 2

ab hbc hbd

+fad fcd h
2
bd − 2 fab fac hbc hcd + fab fad hbc hcd + 2 fab fbc hbc hcd − 2 fab fbd hbc hcd

+fad fcd hbd hde
)

(C.46)
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The 2-sloop (13)(13), then (13)(12)(34)(24)

= 16
(
4 f 2

ab hab hbc − 2 fac
2 hab hbc + 2 fac

2 h2
bc + 2 fab fbc hab hbd + 3 f 2

ab hbc hbd

+fad fcd h
2
bd − 2 fab fac hbc hcd + fab fad hbc hcd + 2 fab fbc hbc hcd − 2 fab fbd hbc hcd

+fad fcd hbd hde
)

(C.47)

We find that the difference is

− = 64
(
2 f 2

ab hab hbc − f 2
ac hab hbc + f 2

ac h
2
bc + f 2

ab hbc hbd
)

(C.48)

Trivial deslooping gives
0 (C.49)

This is important since there is no counter-term in the theory for the divergence between the two
leftmost vertices.

C.3.5 Diagram (l)

Diagram (l) has Comb = 1
23
× 1× 1

2
. We use the notation

1

3

2

4
(C.50)

Diagram (l) is

= 16
(

4fabg
2
abhab + 8fabg

2
abhbc − 3fabgabgachbc + fbcgabgachbc − fabg2

achbc + fbcg
2
achbc

−3fabgabgbchbc − 5fbcgabgbchbc + fabg
2
bchbc + fbcg

2
achcd − facgabgbchcd − 2fbcgabgbchcd

+4facgacgbchcd + fbcgabgbdhcd + fcdgadgbdhcd − fbcgacgcdhcd + fcdgadgbdhde

)
. (C.51)

The 2-sloop is

= 16
(

2fabg
2
abhbc − fabgabgachbc + fbcgabgachbc − fabg2

achbc + fbcg
2
achbc − fabgabgbchbc

−3fbcgabgbchbc + fabg
2
bchbc + fbcg

2
achcd − facgabgbchcd − 2fbcgabgbchcd + 2facgacgbchcd

+fbcgabgbdhcd + fcdgadgbdhcd − fbcgacgcdhcd + fcdgadgbdhde

)
. (C.52)

There is the special sloop configuration, which is obtained by starting from 16gab(1)gab(2)hac(2)Rde(4).
It is denoted and reads

= 32
(
− fab gab gac hbc − fab gab gbc hbc + fbc gac gbc hbc + fac gac gbc hcd

)
. (C.53)

Now diagram (l) is with the 2-sloop subtracted

− = 32
(

2 fab g
2
ab hab + 3 fab g

2
ab hbc − fab gab gac hbc − fab gab gbc hbc

+fbc gac gbc hbc + fac gac gbc hcd

)
. (C.54)
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An even simpler configuration is

− − = 64
(
fab g

2
ab hab + fab g

2
ab hbc

)
. (C.55)

There are of course much more possible sloops, involving three or four vertices. However, we did
not use them here, and thus do not display them.

The recursive-construction algorithm gives, consistent with the above

= 64
[
R′′u(R

′′′
u )2R′′′′u −R′′0(R′′′u )2R′′′′u −R′′u(R′′′0 )2R′′′′0

]
. (C.56)

C.3.6 Diagram (m)

Diagram (m) has Comb = 1
23
× 1

4
×(1

2
)2. It is not independent of the path of contractions. We number

1

2

3

4

(C.57)

The simplest result is obtained by using contractions (12)(12)(34)(34)(13)(24)

= 16
(

4 g4
ab + 8 g3

ab gac + 8 g2
ab g

2
ac + 8 g2

ab gac gad + gab gac gad gae − 4 g2
ab gac gbc

−2 g2
ab gac gbd − gab gad gbc gcd

)
. (C.58)

Another result is obtained using (12)(12)(13)(24)(34)(34) instead of (12)(12)(34)(34)(13)(24). The
difference is

(12)(12)(13)(24)(34)(34)− (12)(12)(34)(34)(13)(24) = 32 gab gac gbc gcd (C.59)

We check that this projects to 0.
Now the sloops give

= 16
(

4 g3
ab gac + 2 g2

ab g
2
ac + 6 g2

ab gac gad + gab gac gad gae − 2 g2
ab gac gbc − 2 g2

ab gac gbd

−gab gad gbc gcd
)

(C.60)

= 16
(
4 g2

ab gac gad + gab gac gad gae − 2 g2
ab gac gbd − gab gad gbc gcd

)
. (C.61)

The following combination is simple

− 2 + = 64 g4
ab + 64 g2

ab g
2
ac

= 1-rep + 64
∑
a,b

(
R′′′ab

4 − 2R′′′ab
2
R′′′0

2
)

+ 3-reps . (C.62)
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C.3.7 Diagram (n)

Comb = 1
23
× 1

3!
× (1

2
)3. We have with the choice of contractions (13)(13)(23)(23)(34)(34)

= 16(4hab
3sab + 12hab

2hbcsab + 6habhachcdsac + 6hachbchcdsac + 3habhcdhdesad

+hadhbdhdescd) . (C.63)

A single sloop is

= 16(4h0hab
2sab + 8h0habhbcsab + 2h0habhcdsac + 2h0hbchcdsac + 3habhcdhdesad

+4habhbc
2sbc + 4habhbchcdsbc + 4hachbchcdsbc + hadhbdhdescd) .

(C.64)

Double and triple sloops yield

=
1

2

[
+

]
(C.65)

= 32(2h2
0habsab + 2h2

0hbcsab + 2h0habhcdsac + habhachdesad + 4h0habhbcsbc

+2h0hachcdsbc + 2hachbchcdscd + hadhbdhdescd) (C.66)

= 32(2h2
0habsab + 2h2

0hbcsab + 2h0habhcdsac + 2h0hbchcdsac + 2habhcdhdesad

+4h0habhbcsbc + 2hadhbchcdscd) (C.67)

= 16(4h2
0habsab + 4h2

0hbcsab + 4h0habhcdsac + 4h0hbchcdsac + 3habhachdesad

+8h0habhbcsbc + 2hachbchcdscd + 2hadhbchcdscd + hadhbdhdescd) . (C.68)

=
1

4

[
+ 3

]
(C.69)

= 16(h3
0sab + 3h2

0habsac + 3h0habhacsad + habhachaesad) (C.70)

= 16(h3
0sab + 3h2

0habsac + 2h0habhcdsac + h0habhacsad + habhachdesad) (C.71)

= 4(4h3
0sab + 12h2

0habsac + 6h0habhcdsac + 6h0habhacsad + habhachaesad

+3habhachdesad) (C.72)

The final result is

− 3 + 3 − 4 = 64(hab − h0)3sab (C.73)

This is confirmed by the recursive-construction algorithm.
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C.3.8 Diagram (o)

Comb = 1
23
× 1

2
× (1

2
)2.

= 64 fab gab
2 hab + 128 fab gab

2 hbc − 64 fab gab gac hbc − 64 fab gab gbc hbc

−64 fbc gab gbc hbc + 16 fab gac gbc hcd + 96 fbc gac gbc hcd − 16 fab gad gbc hcd

−32 fac gad gbc hcd − 16 fcd gad gbc hcd + 16 fab gbc
2 hcd − 16 fab gbc gbd hcd

−32 fac gbc gcd hcd + 16 fad gbd gcd hde (C.74)

= 32 fab gab
2 hbc − 32 fab gab gac hbc − 32 fab gab gbc hbc + 32 fbc gac gbc hbc

+16 fab gac gbc hcd + 64 fbc gac gbc hcd − 16 fab gad gbc hcd − 32 fac gad gbc hcd

−16 fcd gad gbc hcd + 16 fab gbc
2 hcd − 16 fab gbc gbd hcd − 32 fac gbc gcd hcd

+16 fad gbd gcd hde (C.75)

= 4h0 fab gab
2 + 8h0 fab gab gac + 4h0 fab gac gad + 4 fab gab

2 hac + 8 fab gab gac had

+4 fab gac gad hae

(C.76)

For 2 touching loops, intersections are possible:

=
1

2

 +

 (C.77)

The terms are

= 32 fab gac
2 hcd − 32 fab gac gad hcd − 64 fac gbc gcd hcd + 32 fad gbd gcd hded1 (C.78)

= 32 fab gac gbc hcd + 64 fac gac gbc hcd − 64 fac gad gbc hcd − 32 fab gac gbd hcd

−32 fcd gac gbd hcd (C.79)

= 16 fab gac
2 hcd − 16 fab gac gad hcd + 16 fab gac gbc hcd + 32 fac gac gbc hcd

−32 fac gad gbc hcd − 16 fab gac gbd hcd − 16 fcd gac gbd hcd − 32 fac gbc gcd hcd

+16 fad gbd gcd hde (C.80)

The simplest combination is

− 2 + = 64fabg
2
ab (hab + hbc)

= 64
∑
a,b

R
(4)
ab R

′′′
ab

2
R′′ab −R′′0 R′′′′ab R′′′ab

2 −R′′′′0 R′′′0
2
R′′ab (C.81)

This is confirmed by recursive construction.
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C.3.9 Diagram (p)

The diagram (p) has Comb = 1
23
× 1× (1

2
)2 and is

= 16(4gabhab
2pab + 10gabhabhbcpab − 2gachabhbcpab − 2gbchabhbcpab − gcdhabhcdpac

+3gbchachcdpac + gcdhabhdepad + 2gachbc
2pbc + 3gbchabhcdpbc − gbdhabhcdpbc

+3gbchachcdpbc − gbdhachcdpbc − gcdhachcdpbc + gbdhachcdpcd + gbdhadhdepcd) . (C.82)

The two 1-sloop terms are

= 16(4h0gabhabpab + 6h0gabhbcpab − 2h0gachbcpab − 2h0gbchbcpab + h0gbchcdpac

−gcdhabhcdpac + gcdhabhdepad + 2h0gachbcpbc + 4gbchabhbcpbc + h0gachcdpbc

+3gbchabhcdpbc − gbdhabhcdpbc + 3gbchachcdpbc − gbdhachcdpbc − gcdhachcdpbc
+gbdhachcdpcd + gbdhadhcdpcd + gbdhadhdepcd) (C.83)

= 16(2gabhabhbcpab − 2gachabhbcpab − 2gbchabhbcpab + gachabhcdpac − gadhabhcdpac

−gcdhabhcdpac + 3gbchachcdpac + gcdhabhdepad + 2gachbc
2pbc + gbchachcdpbc

−gbdhachcdpbc − gcdhachcdpbc
+gbdhachcdpcd + gbdhadhdepcd) . (C.84)

There are again the 2-sloop terms,

=
1

2

[
+

]
(C.85)

= 16(2h0gabhbcpab − 2h0gabhbcpac + 2h0gbchbcpac + 2gachabhcdpac − 2gachabhcdpad

−2h0gabhbcpbc + 2h0gachcdpbc + 2gcdhadhcdpbd − 2gbchachcdpcd + 2gbdhadhdepcd)

(C.86)

= 16(2h0gabhbcpab − 2h0gabhbcpac + 2h0gbchbcpac + 2h0gbchcdpac + 2gcdhabhcdpad

+2gcdhabhdepad − 2h0gabhbcpbc + 2gbchachcdpbc − 2gbchadhcdpbd − 2gbchadhcdpcd)

(C.87)

= 16(2h0gabhbcpab − 2h0gabhbcpac + 2h0gbchbcpac + h0gbchcdpac + gachabhcdpac

−gachabhcdpad + gcdhabhcdpad + gcdhabhdepad − 2h0gabhbcpbc + h0gachcdpbc

+gbchachcdpbc − gbchadhcdpbd + gcdhadhcdpbd − gbchachcdpcd − gbchadhcdpcd
+gbdhadhdepcd) (C.88)

There are more sloops, but we find a simple expression with only the above. It is

− − +

= −64h0gabhabpab + 64gabhab
2pab − 64h0gabhbcpab + 64gabhabhbcpab (C.89)
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Trivially deslooping gives, as with the recursive-construction algorithm,

= 64R′′′uR
(5)
u (R′′u −R′′0)2 . (C.90)

C.3.10 Diagram (q)

Diagram (q) has Comb = 1
23
× 1

2
× (1

2
)2. We make contractions (13)(13)(24)(24)(23)(34)

1

3

2

4
= 16(4fabgab

2hab + 4fabgabgachab + 6fabgbc
2hab + 4fbcgbc

2hab + 3fbdgbc
2hab

+2fabgbcgbdhab + 2fbcgbcgbdhab + fbdgbcgbehab + 3facgcd
2hab + facgcdgcehab

+2fbcgbcgbdhac − 2fcdgbcgbdhac − 2fbcgabgachbc) . (C.91)

Sloop (13)(13), then (24)(24)(23)(34) gives

= 16(4h0fabgab
2 + 4h0fabgabgac − 2h0fbcgabgac + 2h0facgabgad + 6h0fabgbc

2

+4fbcgbc
2hab + 3fbdgbc

2hab + 2fbcgbcgbdhab + fbdgbcgbehab + 3facgcd
2hab

+facgcdgcehab + 2fbcgbcgbdhac − 2fcdgbcgbdhac) . (C.92)

Sloop (24)(24), then (13)(13)(34)(24) yields

= 16(4fabgabgachab + 2fabgbcgbdhab + 2fbcgbcgbdhab + fbdgbcgbehab + fadgcd
2hab

+facgcdgcehab + 2facgbc
2hac + 2fbcgbcgbdhac − 2fcdgbcgbdhac + fcdgbd

2had

−2fbcgabgachbc) . (C.93)

Sloops (13)(13)and (24)(24), then (23) (34) gives

= 16(4h0fabgabgac − 2h0fbcgabgac + 2h0facgabgad + 2h0facgbc
2 + 2fbcgbcgbdhab

+fbdgbcgbehab + fadgcd
2hab + facgcdgcehab + 2fbcgbcgbdhac − 2fcdgbcgbdhac

+fcdgbd
2had) . (C.94)

There are more sloops, but our now acquired experience tells us that the simplest combination should
be

− − +

= 64(fabgab
2hab + fabgbc

2hab − h0fabgab
2 − h0fabgbc

2) (C.95)

Trivial de-slooping yields in agreement with recursive construction

= 64 [R′′′u
2 −R′′′0

2
]R′′′′u (R′′u −R′′0). (C.96)
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D 2-loop integral for the 2-point correlation function

We consider the following 2-loop contribution to the 2-point correlation function

Φ2,ε(q) = IA(q)− IA + I2
1 − I1I1(q) = 1

m2ε Φ̃2,ε(
q
m

) , (D.1)

which can be written as

Φ̃2,ε(z) = N 2
[
Fε(z, 1)− Fε(0, 1)− Fε(z, 0) + Fε(0, 0)

]
(D.2)

with

Fε(z, b) = Γ(ε)

∫
x1,x2,x3>0

[
1 + x1 + x2 + x3 + z2 x1(x2+x3)+x2x3b2

(x2+x3)(1+x1)+x2x3b2

]−ε
[
(x2 + x3)(1 + x1) + x2x3b2

]2− ε
2

. (D.3)

Although each individual term is of order 1
ε2

, the limit ε→ 0 of Φ̃2,ε exists and is given by

Φ̃2,0(z) = N 2

∫
x1,x2,x3>0


ln

(
1+

z2x1
(1+x1)(1+x1+x2+x3)

)
(1+x1)2(x2+x3)2

−
ln

1+
z2x1(x2+x3)+x2x3[

(1+x1)(x2+x3)+x2x3

]
(1+x1+x2+x3)

[
(x2+x3)(1+x1)+x2x3

]2
 .

(D.4)

We were not able to obtain a closed analytical expression for the three-dimensional integral. Using
the variable transformations x1 = 1

x
−1, x3 = y

x
, and x2 = y2

x
helps to determine the Taylor expansion

Φ̃2,0(z) ≈ N 2
∑

n αnz
2n with the first four coefficients

α1 = −2

9
− 8π2

243
+

1

81

[
ψ′(1

3
) + ψ′(1

6
)
]
≈ 0.03821 , (D.5)

α2 =
193

3240
+

16π2

2187
− 2

729

[
ψ′(1

3
) + ψ′(1

6
)
]
≈ 0.00169 , (D.6)

α3 ≈ −0.00039 , (D.7)
α4 ≈ 0.00007 . (D.8)

Since the coefficients are small, a Taylor expansion to fourth order compares well with the full func-
tion up to z ≈ 3, see Fig. 11.

To render the integral numerically well-behaved, it is convenient to perform a variable transfor-
mation to s = x2 + x3, ds = x2 − x3, x = x1. The integral to be calculated then is (using the
symmetry d→ −d)

Φ̃2,0(z) = N 2

∫
0<d<1

∫
s,x>0

ln
(

xz2

(x+1)(s+x+1)
+ 1
)

s (x+ 1) 2
−

16 ln

(
z2[(d2−1)s−4x]

(s+x+1)[(d2−1)s−4(x+1)]
+ 1

)
s (d2s− s− 4x− 4)2 . (D.9)

In order to calculate the asymptotics for large z we consider z2 d
dz2

Φ̃2,0(z), which helps to solve the
integrals but eliminates the constant part. Using again the variable transformations x1 = 1

x
− 1,
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Figure 11: Taylor expansion to 8th order as given in Eq. (D.5)–(D.8) (dashed curve) of Φ̃2,0(z) (red,
solid line).

x3 = y
x
, and x2 = y2

x
the integral reads

z2 d
d(z2)

Φ̃2,0(z) = N 2

∫ 1

0

dx

∫ ∞
0

dy

∫ ∞
0

dy2

[
F (1)
z (x, y, y2) + F (2)

z (x, y, y2)
]

(D.10)

F (1)
z (x, y, y2) =

xz2(1− x)

(y + y2)2(1 + y + y2 + (1− x)xz2)
(D.11)

F (2)
z (x, y, y2) =

−xz2[y(1− x+ y2) + (1− x)y2]

(y + y2 + yy2)2
[
(1 + y + y2)(y + y2 + yy2) + xz2(y2 − xy2 + y(1− x+ y2))

]
(D.12)

We distinguish the cases y < 1 and y > 1 and split z2 d
dz2

Φ̃2,0(z) = A< +A> accordingly. For y < 1
the limit z →∞ exists and can be taken in the integrand. This integration gives a constant,

lim
z→∞

A< =

∫ 1

0

dx

∫ ∞
0

dy

∫ 1

0

dy2

[
1

(y + y2)2
− 1

(y + y2 + yy2)2

]
= ln 2 . (D.13)

For y > 1 we perform the y and y2 integration over the first term in Eq. (D.4), then expand to lowest
orders in 1

z
and integrate over x. This gives the logarithm∫ 1

0

dx

∫ ∞
0

dy

∫ ∞
0

dy2 F
(1)
z (x, y, y2) = −3 + 2 ln z +O(z ln z). (D.14)

Obtaining the next order is more delicate than expanding in 1
z

before the x-integration. The second
term gives again only a constant, and the limit z →∞ can be taken in the integrand

lim
z→∞

∫ 1

0

dx

∫ ∞
0

dy

∫ ∞
0

dy2 F
(2)
z (x, y, y2) = − ln 2 . (D.15)

In summary, we find

z2 d

dz2
Φ̃2,0(z) = N 2

[
2 ln z − 3 +O(1

z
ln z)

]
. (D.16)
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Figure 12: Asymptotics of Φ̃2,0(z)−2 ln(z)2 +6 ln(z) for large z. The dashed line is the asypmptotic
value 6.17.

And consequently after integration

Φ̃2,0(z) = N 2
[
2(ln z)2 − 6 ln z + α0 +O(1

z
ln z)

]
. (D.17)

We plot the asymptotics in Fig. 12 and find numerically α0 ≈ 6.17(2).
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