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We locate the phase-transition line for the Ising model on the fuzzy sphere from a finite-size scaling analysis

of its ground-state energy. This is similar to what was used to locate the complex CFT of the 5-state Potts
model in dimension d = 2 [PRL 133 (2024) 077101]. There it was shown that a CFT is characterized by a
stationarity condition for the measured effective central charge. Our strategy is to write the ground-state energy
as EGS(N)/Nm = E0+E1/Nm+E3/2/N

3/2
m + ..., and to search for a minimum of E3/2/E0 as a function of

the couplings. This procedure finds the critical curve of [PRX 13 (2023) 021009] with good precision, and their
sweet spot as well. We find similar results when normalizing by the gap to the stress tensor or first parity-odd
singlet.

I. INTRODUCTION

The fuzzy-sphere regularization is an exciting new tool
[1] to access conformal field theories (CFTs) in dimension
d = 2 + 1. The technique uses a 2-sphere inside which are
placed s magnetic monopoles. The lowest Landau level on
this sphere is Nm = 2s+1 times degenerate, each with Nf fla-
vors (Nf = 2 for the Ising model). Filling Nm of the Nm×Nf

states, and adding interactions between the electrons, allows
one to engineer CFTs with a given symmetry. This approach
was introduced in [1] to study the quantum 2d Ising model,
equivalent to the classical 3d Ising model. It was since ap-
plied to other systems, among which are theories with Sp(n)
global symmetry [2], Chern-Simons matter [3] and the Potts
model [4–7]. The last example is interesting as the theory is
non-unitary, even though its spectrum is real; thus it is not ac-
cessible via the numerical conformal bootstrap [8–12], which
is the current gold standard for 3d CFTs.

While the method allows one to study phases as well as
critical points, the latter are particularly interesting, especially
when they correspond to a CFT. A crucial step is to identify
the location of the critical point. The standard approach con-
sists in choosing couplings which optimize properties of the
intended CFT. Doing so without assuming what one wants to
show is critical. There are interesting recent proposals [13, 14]
to construct the conformal generators on the fuzzy sphere, al-
lowing one to check for the overlap of states conjectured to be
descendants, with the constructed descendant of known pri-
maries.

Here we locate the phase-transition line and sweet spot for
the Ising model on the fuzzy sphere from a finite-size scal-
ing analysis of the ground-state energy, without using any in-
formation on higher excited states. Our procedure finds the
critical curve of [1] with good precision, and their sweet spot
(point of optimal conformality) as well.

II. SIZE-DEPENDENCE OF THE GROUND STATE
ENERGY

In dimension d = 2, the free energy per site of a CFT on a
torus of circumference L is given by [15, 16],

f = f∞ − πceff
6L2

+O(L−3). (1)

Here f∞ is the free energy per site in the limit of L → ∞,
and ceff the effective central charge. This formula is valid at
the critical point, and can be used to locate it: one demands
that the theory is at a marginal point for the measured effective
central charge [17],

∂gceff(g)
∣∣
g=g∗ = 0 =⇒ ceff(g

∗) = cCFT. (2)

For a standard (real) CFT, a local minimum for ceff indicates
a critical point, while a local maximum for ceff indicates a tri-
critical point. If the microscopic model is a CFT, then ceff(g

∗)
is the central charge of the corresponding CFT.

The central charge has three properties: (i) it appears in the
Virasoro algebra of conformal generators, (ii) it governs finite-
size corrections as in Eq. (1), and it decreases along the RG
flow (Zamolodchikov’s c-theorem [18]). This motivates the
condition (2) for IR attractive fixed points, and explains why a
critical point is a local minimum, and a tricritical point a local
maximum. The marginality condition (1) can also be used
for complex CFTs, and allowed the authors of [17] to locate
the critical point of the 5-state Potts model in d = 2, which
has a complex second derivative, thus is neither maximum nor
minimum.

The author wondered whether a similar procedure may be
available in higher dimensions. There is a generalization of
Zamolodchikov’s c-theorem to d = 4, related to anomalies
under Weyl rescaling [19, 20], which gives the stress-energy
tensor in the form (see Eq. (1.2) of [21])

Tµ
µ = aE4 − cW 2

µνρσ. (3)

Here E4 is the Euler density (which integrates to the Euler
characteristic), and W the Weyl tensor. It was first conjectured
and checked to 1-loop order by Cardy [22], and later proven in
[21] that a decays along RG trajectories (a-theorem). There
is, however, a caveat for practical applications: on a sphere
the Euler-characteristics vanishes, and a inaccessible. How to
extract it from the entanglement entropy was shown in [23].

We now consider dimension d = 3. Ref. [24] (section 1)
considers finite-size corrections for an Euclidean field theory
on a 3-sphere of radius R imbedded into R4,

F = − ln |ZS3 | = α1R
3 + α2R+ F . (4)

https://dx.doi.org/10.1103/PhysRevLett.133.077101
https://dx.doi.org/10.1103/PhysRevX.13.021009
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F was first obtained via holography [25] and in super-
symmetric models [26], and only later for more general the-
ories [27]. It took some time to find a proper definition of
F which is universal, and independent of the microscopic
degrees of freedom [28, 29]. Currently, the best approach
to extract F is to study the entanglement spectrum [30].
Refs. [29, 30] proved that F so defined descends along the
RG flow. For the fuzzy sphere Ref. [31] succeeded to apply
this to the Ising model. Splitting the sphere at latitude θ (par-
allel to the equator), the entanglement entropy SA(θ) reads
[31]

SA(θ) = α
R

δ
sin θ −F . (5)

To our knowledge, no relation to finite-size corrections is
known.

Inspired by Eq. (4), our strategy is to write the ground-state
energy per electron1 as

EGS(Nm)

Nm
= E0 +

E1

Nm
+

E3/2

N
3/2
m

+ ... (6)

and to look for a minimum of E3/2/E0 as a function of the
couplings. We wrote “inspired” as there is no obvious rela-
tion between Eq. (4) derived for a 3-sphere imbedded into R4

and the fuzzy sphere. We are comforted in our choice by the
observation that the stress-energy tensor gap ET − EGS has
the same scaling in Nm as E3/2 (see discussion below and
Fig. 7); thus if one looks for a coefficients of the ground-state
energy which is universal, the only viable candidate is E3/2.

As we shall show, this procedure finds the critical curve
and the sweet spot of [1] with good precision. The standard
algorithm to locate a CFT is to search for a spectrum with
integer-valued spacing for descendants of primary operators,
as dictated by CFT [1], or explicitly check for conformal sym-
metry [13, 14]. Our procedure is an alternative. Its sole ingre-
dient is the ground-state energy, and no further assumptions
are made. Its advantages are that it is simple to implement,
and computationally fast.

III. FINITE-SIZE SCALING ANALYSIS OF THE
GROUND-STATE ENERGY

A. Model

We use the Ising model defined in the seminal work [1]. It
consists of a 2-sphere with s magnetic monopoles at its center,
and onto which are placed Nm = 2s+ 1 fermions, each with
two internal degrees of freedom (up and down spin). With-
out interactions, the spectrum is flat. One then introduces a
repulsive interaction upon contact between electrons pointing
in the z-direction of strength 1, and a “kinetic” term (coupling

1 The ground-state energy given by FuzzifiED is ∼ Nm. What we report
here is the energy per electron, obtained by dividing by Nm.
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FIG. 1. EGS(x) for various values of h and g, for o = 4, using xi/2

as a basis, {1, x, x3/2, x2, x5/2}, Nmax
m = 16. Gray dots are not

used for the fit, but in agreement with it.

to the gradient of the density interactions) of strength g in the
same direction. Finally, a transverse magnetic field of strength
h drives the phase transition, similar to what happens in the 1-
dimensional spin chain.

B. FuzzifiED

We use the package FuzzifiED. It provides a compact and
efficient implementation to obtain the spectrum of a user-
defined model on the fuzzy sphere, both using exact diagonal-
ization and DMRG. The package is described in detail in [32].
The program used is an adaptation of “ising spectrum.jl”,
wrapped inside a Mathematica loop. To avoid numeri-
cal errors, we eliminated the rounding, i.e. the instruction
“round.([enrg[i], l2 val[i], P, Z], digits = 6)”. For system sizes
Nm ≥ 16 we restrict the evaluation to the ground-state energy,
leading to a considerable speedup. (We can do Nm = 17 in
about 10 minute on 8 cores, using a machine from 2013.)

C. Dependence of the ground-state energy on system size

We use the identification that the area of the sphere grows
as the number of electrons, or more precisely [32]

N2
m = 1 + 4R4. (7)

Fig. 1 shows that as a function of

x :=
1

Nm
≃ 1

2R2
, (8)

the energy of the ground-state1 has a strong linear component.
The question is what the best ansatz is. A simple polynomial
fit would be

EGS(x|h, g)
Nm

=

o∑
i=0

Ei(h, g)x
i. (9)

https://docs.fuzzified.world
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FIG. 2. E0 = EGS(0|h, g) for o = 4, Nmax
m = 16; this plot changes

little between Nmax
m = 13 and Nmax

m = 16. In blue the critical line.

The alternative used by [4] is

EGS(x|h, g)
Nm

=

o∑
i=0

Ei/2(h, g)x
i
2 . (10)

We have experimented with the fits (9) (in powers of x), and
(10) in powers of 1/R ≃

√
2x. For fits with integer pow-

ers the information about the critical line seems to be sitting
in higher derivatives, which we do not find convincing, see
appendix A.

Our final choice suggested by Eq. (4) and stated in Eq. (6)
is

EGS(x|h, g)
Nm

= E0(h, g) + E1(h, g)x+ E3/2(h, g)x
3
2

+E2(h, g)x
2 + E5/2(h, g)x

5
2 + ... (11)

Our protocol is to obtain EGS(x = 1/Nm|h, g), fit this to
available system sizes, by choosing the largest possible sizes
so that all coefficients are fixed. We played with different or-
ders o of truncation. We trust our analysis when higher-order
coefficients are small. With its almost straight behavior, Fig. 1
(which uses o = 4) suggests that the leading term in the ex-
pansion is indeed of order x, and not

√
x, or that at least the

coefficient ∼
√
x is very small. This, the predicted form (4)

(on S3 ⊂ R4), as well as its absence in dimension d = 2, see
Eq. (1), led us to discard the term ∼

√
x.

We now look at the GS energy extrapolated to x = 0. As
Fig. 2 attests this is rather featureless. A crucial problem with
quantum-mechanical approaches is that all energy levels are
multiplied by an unknown Fermi velocity. In the fuzzy-sphere
approach, this is usually fixed by demanding that the stress-
energy tensor have dimension d = 3. An alternative is to
prescribe the energy of the first excited state σ which suffers
less from finite-size corrections close to the Ising CFT [33].
Our goal here is to extract the location of the CFT solely from
the ground-state energy. To eliminate the unknown Fermi-
velocity, we consider finite-size corrections normalized by the

FIG. 3. χ for Nmax
m = 16; in blue the critical line. To make the

minimum visible, we plot the signed root (
√
χ := sign(χ)

√
|χ|). To

enhance the resolution of the plot, the interpolation outlined below
in Eq. (13) and Fig. 5 was used.

extrapolated ground-state energy, i.e.

χ(h, g) :=
E3/2(h, g)

E0(h, g)
, (12)

where the coefficients are those of Eq. (11).

D. Implementation

Our ED data are such that we can use Nm = 8 to 17, i.e.
a maximal Nm per fit of Nmax

m = 12 to 17. Large sizes are
possible since we only need the GS energy. For the order of
approximation, we tried o = 2, 3, 4, 5 and 6. Larger orders o
are not necessarily better, as numerical artifacts are amplified
in ways possibly not detectable. Common sense and experi-
ence lead us to consider o = 4 optimal, i.e. the form given in
Eq. (11).

We now evaluate χ: following [1], we plot h on the hor-
izontal axis, and g on the vertical axis. We first show a 3D
plot, see Fig. 3, then a heat-plot on Fig. 4. On the latter, the
critical line of [1] is given in white (partially hidden under
blue dots), with a white shamrock marking their sweet spot
(best agreement with Ising CFT). The dark blue dots in Fig. 4
mark the valley floor, defined as follows: look at the Hessian
Hij := ∂i∂jχ(h, g), where i, j ∈ {h, g}. Since Hij is sym-
metric, it has two eigenvalues, the curvatures, and two eigen-
vectors, which are orthogonal. We take the eigenvector in the
direction of the larger curvature, and ask that the slope in this
direction vanishes2.

2 This definition uses the metric of the coordinates h and g. It is not invariant
under reparametrization, e.g. {h, g} → {h, g + h}. The result is rather
similar if we look at a vanishing slope in the h direction only; this we
believe is what [1] did in their optimization procedure.
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FIG. 4. Heat map of χ(h, g) given in Eq. (12) for o = 4, Nmax
m =

16. The white dashed line is the critical line of [1], with a white
shamrock marking their sweat spot (best agreement with a CFT).
In dark blue dots the minimum of the valley of χ(h, g). The cyan
diamond marks the global minimum of χ(h, g).

This is a highly non-linear operation on the numerical data
generated on a grid with step size δh = 1/20, δg = 1/5, for
which we need a smooth interpolation. This is obtained by
fitting a polynomial of maximal degree four (15 coefficients)
to the 6× 6 neighbors, weighted by

ρ(h, g) := exp

(
−α

[
(hi − h)2

δh2
+

(gi − g)2

δg2

])
, (13)

where α = 0.6 is a phenomenological parameter. An example
for the weights is given on Fig. 5. Compared to lattice-based
approaches which are discontinuous when a new interpolation
point enters, our procedure is very smooth. If the data turn out
to be noisy, one can decrease α to effectively include more
points in the fit. The number of neighbors is chosen s.t. addi-
tional points have vanishing weight.

E. Results for the location of the critical point

As Fig. 4 attests, we can localize the phase-transition line of
Ref. [1] which corresponds to the white dashed line. Our val-
ley of χ(h, g) is marked by blue dots. On this phase-transition
line the best agreement with the Ising CFT is achieved at the
position of the white shamrock [1], while the nearby global
minimum of χ(h, g) is marked by a cyan diamond. The latter
minimum satisfies

CFT: ∂hχ(h, g) = ∂gχ(h, g) = 0. (14)

FIG. 5. The weights ρ(h, g) defined in Eq. (13), for h = 2.5 and
g = 4.75 (off grid).
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FIG. 6. Main plot: Dependence on Nmax
m of the critical curve and

sweet spot (dots) from a grid with δg = 0.2, δh = 0.05; from
Nmax

m = 12 (blue), over Nmax
m = 13 (cyan) to Nmax

m = 17 (ma-
genta); diamonds mark the minimum on a micro-grid with discretiza-
tion δg = 0.05, δh = 0.01. The inset shows a blow-up around the
sweet spot. Deviations are indicative of errors due to the finite grid
size. In black dashed the critical line of [1], a black trefle marking its
sweet spot.

How this minimum depends on the system size is shown in
Fig. 6. There is a small systematic upwards drift on the min-
ima obtained via interpolation (dots). We repeated the anal-
ysis on a much finer grid (“micro-grid”) with δg = 0.05 and
δh = 0.01 around the sweet spot, obtaining comparable re-
sults, see the diamonds on Fig. 6, and table I.

F. Different normalizations

The alert reader will object that E0 is not universal. We pro-
pose two ways out of the dilemma, which demand to calculate
one more eigen value, either ET , the subleading contribution



5

Nmax
m h g χ

12 3.17422 4.66314 0.00564418
13 3.17587 4.72479 0.00543531
14 3.17750 4.78087 0.00500998
15 3.17965 4.84383 0.00455052
16 3.18256 4.91919 0.00411340
17 3.18553 4.99396 0.00371342

TABLE I. Values for the minimum of χ and its location for different
Nmax

m , obtained on a grid with δg = 0.05, δh = 0.01.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
x

41

42

43

44

45

46

Nm (ET-EGS)

FIG. 7. The rescaled stress-energy tensor gap
√
Nm(ET − EGS)

(ℓ = 2, P = Z = 1) close to the sweet spot: g = 4.8 and h =
3.1 (bottom), h = 3.2 (middle), h = 3.3 (top). Fits to {1,

√
x, x}

(blue), compared to a linear fit (dashed green line). Interestingly, the
curvature changes sign at the transition.

in the GS sector corresponding to the stress-energy tensor, or
Eσ , the lowest-lying parity-odd state.

Let us first consider ET . On Fig. 7 we show how weakly
ET − EGS depends on x. We found it appropriate to fit to
{1,

√
x, x}. Interestingly, the curvature changes sign at the

transition; one should explore this further. Fig. 8 shows the
resulting extrapolated value of the stress-energy gap as a func-
tion of h and g. This allows us to define

χT :=
E3/2√

Nm(ET − EGS)
. (15)

A plot of this function is shown on Fig. 9, which should be
compared to Fig. 3.

An alternative is to normalize by the gap of the first parity-
odd operator σ,

χσ :=
E3/2√

Nm(Eσ − EGS)
. (16)

While the σ-gap is rather insensitive to perturbations close to
the Ising CFT [33], it depends strongly on h, as Fig. 10 attests.
Trying to extrapolate to Nm = ∞ even with a linear fit in√
x and two consecutive system sizes leads to a non-sensical

negative gap. For this reason, we use only one system size for
the normalization in Eq. (16). The result is shown on Fig. 11,
which should be compared to Figs. 3 and 9.

FIG. 8. The stress-energy tensor gap (ℓ = 2, P = Z = 1) multiplied
by

√
Nm, and extrapolated to x = 0. Fit to {1, x1/2, x}, Nmax

m =
15.

FIG. 9. χT for Nmax
m = 15; in blue the critical line. We use the

same approach as in Fig. 3 for χ.

We now use χ, χT and χσ at Nmax
m = 15, and repeat the

analysis for the critical line and sweet spot. Fig. 12 shows this
comparison, for a slightly coarser grid with δg = 0.2, δh =
0.1. The resulting phase-transition lines lie close together, as
do their sweet spots; deviations are well below the resolution
of the computing grid. Our conclusion is that χ, χT and χσ

give comparable results.

G. Universality and F-function

The function F in Eqs. (4) and (5) is universal, and recently
values for it have been reported [31, 34]:

Ffree theory =
ln(2)

8
− 3ζ(3)

16π2
≃ 0.0638071 [27]

F fuzzy
Ising = 0.0612(5) (fuzzy sphere) [31]

F4−ε
Ising = 0.0610 (4− ε) [34] (17)
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FIG. 10.
√
Nm(Eσ−EGS) for Nm = 15. Note that the gap vanishes

for small h: one is in the non-critical ferromagnetic phase.

FIG. 11. χσ for Nmax
m = 15; in blue the critical line. We use the

same approach as in Fig. 3 for χ, plotting the signed root
√
χσ .

Can F be accessed in our approach? An obvious guess is to
take E3/2 in units of the stress-energy tensor3,

F ?
= 3χT . (18)

At size Nm = 15, we find for the sweet spot

3χT ≈ 0.00013 at h = 3.16, g = 4.51. (19)

This value is much smaller than F reported in Eq. (17). It
seems that in our approach χ may even vanish, as we tested in
Fig. 13: we evaluated χ at the sweet spot of [1], using DMRG
results for larger systems (the last point at Nm = 23 may
not have converged.) By plotting both χ and χ

√
Nm we see

3 The number d = 3 is the dimension of the stress-energy tensor.
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FIG. 12. As figure 6, with different denominators at size Nmax
m =

15: χ (green), χT (red dashed) and χσ (blue). In black dashed the
critical line of [1], a black trefel marking its sweet spot.
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FIG. 13. Left: χ as a function of
√
x for Nm ranging from Nm =

6 to Nm = 23, at the sweet spot of [1], namely g = 4.75, h =
3.16. The black points are obtained via DMFT, and small numerical
errors increase in the differences we take. (This is apparent in the
last data point). To the right we show that the extrapolated value is
so small, that it is consistent with a different scaling, namely that
χ
√
Nm converges for Nm → ∞. All fits are quadratic polynomials

in
√
x.

that this is consistent with χ = 0 at the sweet spot. So either
much larger system sizes are needed to extract F , or χT has no
connection to F and vanishes at the transition. This may not
be too surprising, given that a quantum system on the fuzzy
sphere is equivalent to S2 ×R = R3, and the latter should not
have an anomaly.

IV. CONCLUSION

We have shown how the phase-transition line on the fuzzy
sphere, and the sweet spot of optimal conformality can be ob-
tained from a finite-size analysis of the ground-state energy.
This is achieved by analyzing the term of relative order N−3/2

m

in the ground-state energy, divided by the leading term, as a
function of Nm. It yields the phase transition of [1] and their
sweet spot with good precision. While small system sizes as
Nm = 12 already allow to locate the phase transition, the pre-
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FIG. 14. The equivalent of Fig. 4, when using a polynomial in x of
degree 4 for the fit, and analyzing −E3/E0.

cision increases for larger Nm. A non-negligible advantage of
our approach is that it only requires to find the ground-state
energy instead of the full spectrum, which is computationally
fast: we need about 10 minutes for Nm = 17 on 8 cores.

To justify our procedure, one should compute the depen-
dence of the ground-state energy around the sweet spot, i.e.
CFT, following what has been done for dimension d = 2 [35],
and for the first excited states for the Ising CFT on the fuzzy
sphere [33].

An alternative which does not normalize by the ground-
state energy is to use either the stress-energy gap, or the gap of
σ. Both procedures use a universal normalization, give com-
parable results, but are computationally slightly more costly.

We hope this procedure may prove useful for locating the
critical point in models as the 3-state Potts model in dimen-
sion d = 3, where the transition for real couplings is first-
order [4–7]. Suppose we know an approximate location of the
minimum in the real plane. We can then approximate χ(h, g)
by a polynomial around this point, and search for solutions
of Eq. (14) in the complex plane, near the approximate mini-

mum.
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Appendix A: Different extrapolation schemes

Since the term E3/2 seemingly vanishes at the transition,
we can try to extract the phase-transition line from a fit to
Eq. (9); reasonable agreement was achieved by considering
the term of order 4, as is shown on Fig. 14. It finds the phase
transition line, as well as the sweet spot, albeit with less pre-
cision. We do not know whether this somehow arbitrary pro-
cedure may have a use, but we wanted to point out that the
proposed approach is rather robust.

A final mark of caution: when using Eq. (11) it is important
to not terminate the expansion at E3/2, but to keep the two
following coefficients E2 and E5/2. Dropping the latter still
allows one to see the phase transition, albeit only at large Nm,
and with less precision; the sweet spot moves to h = 3.2,
g = 5.3. Dropping both terms gives a non-sensical result.
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