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Abstract – We study several probability distributions relevant to the avalanche dynamics of
elastic interfaces driven on a random substrate: The distribution of size, duration, lateral extension
or area, as well as velocities. Results from the functional renormalization group and scaling
relations involving two independent exponents, roughness ζ, and dynamics z, are confronted to
high-precision numerical simulations of an elastic line with short-range elasticity, i.e., of internal
dimension d = 1. The latter are based on a novel stochastic algorithm which generates its disorder
on the fly. Its precision grows linearly in the time discretization step, and it is parallelizable. Our
results show good agreement between theory and numerics, both for the critical exponents as for
the scaling functions. In particular, the prediction a = 2 − 2

d+ζ−z for the velocity exponent is
confirmed with good accuracy.

Copyright c⃝ EPLA, 2019

Introduction. – Disordered systems, when driven
slowly or via a small kick, do not respond smoothly, but in
a bursty way. An example are elastic manifolds, or more
specifically elastic strings, subject to a random potential.
An example for the global velocity as a function of time
is shown in fig. 1. At t = 0, the system received a small
kick. The velocity as a function of time t then performs
a random walk, which terminates at a precise moment in
time. Driving the system adiabatically slowly, it is at rest
for most of the time, interceded with jerky motion as the
one shown in fig. 1. Each such event is called an avalanche.
Avalanches are ubiquitous, found in earthquakes in geo-
science [1], Barkhausen noise [2,3] in dirty disordered mag-
nets, contact-lines on a disordered substrate [4], and many
more.

The theory has been developed for many years, starting
with phenomenological and mean-field arguments [5,6]. In
the context of magnets, a more systematic approach was
proposed by Alessandro, Beatrice, Bertotti, and Montorsi
(ABBM) [7,8], who reduced the equation of motion for a
magnetic domain wall to a single degree of freedom, subject
to a random force modeled as a random walk. It was only

realized later [9] that the Brownian force model (BFM) is
the correct mean-field theory for the avalanche dynamics.
In contrast to the ABBM or similar mean-field models,
which have a single degree of freedom, the BFM is an
extended model, in which each degree of freedom, i.e., each
piece of the elastic manifold, sees an independent random
force, which itself is a random walk. In [9] it was shown
that its center of mass is the same stochastic process as
the single degree of freedom of the ABBM model.

The BFM is the starting point for a field theory of elastic
manifolds subject to short-ranged disorder. It allows us
to calculate a plethora of observables beyond pure scaling
exponents, as, e.g., the full size distribution [10–12], the
velocity distribution [9,13], and the temporal [14,15] or
spatial shape [16–19] of an avalanche.

In this letter we study numerically, and compare to
the field theory, the distributions of the duration T of an
avalanche, its size S =

∫ T
0 u̇(t)dt, its velocity u̇, and exten-

sion ℓ, defined as the number of interface points that ac-
tively participated in an avalanche. We briefly review the
corresponding scaling relations, and then confront them
to large-scale numerical simulations. The latter have been
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Table 1: Left: scaling relations for short-range (SR) and long-range (LR) elasticity. Right: critical exponents obtained via the
scaling relations using standard values for ζ and z [20–23].

P (S) P (T ) P (u̇) P (V )

S−τ T−α u̇−a V −kV

SR τ = 2 − 2
d+ζ α = 1 + d−2+ζ

z a = 2 − 2
d+ζ−z kV = 2 − 2−ζ

d

LR τ = 2 − 1
d+ζ α = 1 + d−1+ζ

z a = 2 − 1
d+ζ−z kV = 2 − 1−ζ

d

d ζ z τ α a kV

1 5/4 10/7 10/9 47/40 −10/23 1.25
SR 2 0.75 1.56 1.27 1.48 0.32 1.38

3 0.35 1.75 1.40 1.77 0.75 1.45
LR 1 0.39 0.77 1.28 1.51 0.39 1.39
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Fig. 1: (a) The velocity as a function of time t for one avalanche
of duration T . (Parameters are T = 26.2, A = 10, L = 64,
m = 1.) Zooms of the departure (b), and ending (c) of the
avalanche. The arrow in (b) indicates the magnitude vkick of
the uniform velocity kick triggering the avalanche.

possible through the development of a novel powerful algo-
rithm which generates the disorder on the fly by accurately
solving an extension of the BFM to model short-ranged
disorder.

Definition of the model. – Consider the over-
damped equation of motion for a manifold in a random-
field environment,

∂tux,t = ∂2
xux,t + F (x, ux,t) + m2(wt − ux,t). (1)

The manifold is trapped in a harmonic potential of
width m2, and position wt. The well is moved slowly,
either via wt = vt in the limit v → 0+ (constant-velocity
driving), or by augmenting w by a small amount δw at dis-
crete times t (kick driving). F is a short-ranged correlated

random force, which will be specified below. Equation (1)
provides a well-defined framework to study avalanches,
both in the field theory [9,13–15,24,25], as for simula-
tions [26–32]. Indeed, the velocity as a function of time
performs a burst-like evolution, with a well-defined begin-
ning and end, see fig. 1(a), separated by periods without
activity (not shown).

Scaling relations. – The theory of the depinning tran-
sition of interfaces [20,33–38] introduces two independent
critical exponents, the roughness exponent ζ, and the dy-
namic exponent z. Within the field theory developed
in [9,13–15,24,25] no independent exponent is required to
describe avalanches. As a consequence, their exponents
are given by scaling relations, together with the require-
ment of the existence of a massless field theory [24], a
generalization of the arguments of ref. [34]. Consider the
PDF Pδw(S) of the total size S of the avalanche following
a small kick δw. Its large-size cutoff Sm ∼ m−(d+ζ) is
defined through the ratio of its first two moments [12],

Sm =
⟨S2⟩
2⟨S⟩ . (2)

The PDF reads, for S larger than a microscopic cutoff,

Pδw(S) ≃ ⟨S⟩
S2

m

p(S/Sm), ⟨S⟩ = δwLd, (3)

where p(s) is a universal scaling function with p(s) ∼ s−τ

at small s, defining the size exponent τ . Existence of a
massless field theory imposes that the avalanche density
per unit applied force, ρf (S) = limδw→0

1
m2δwPδw(S), has

a finite limit for m → 0. This requires m−2Sτ−2
m to be

independent of m at small m, hence τ = 2− 2
d+ζ , recover-

ing the value of Narayan and Fisher [34]. The exponents
for the avalanche duration T , or lateral size ℓ are then ob-
tained by writing Pδw(S)dS = Pδw(T )dT , and using the
appropriate scaling relations between S, m and T , leading
to the results in table 1, where numerical values are given
as well. We also consider the (spatially integrated) veloc-
ity at time t after the kick, u̇(t) =

∫
ddx ∂tux,t. The PDF

of the total velocity u̇ = u̇(t) is obtained by considering
many successive kicks and sampling the time t uniformly.
Its associated density is ρf (u̇) ∼

∫
dt ρf (u̇(t)). By scaling

it takes at small u̇ the form ρf (u̇) = Ld

m2v2
m

(vm/u̇)a, where
a is the velocity exponent, vm = Sm/τm and τm ∼ m−z is
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the large-time cutoff. The requirement of a massless limit
implies

a = 2 − 2
d + ζ − z

, (4)

a main prediction of ref. [24], in agreement with the ϵ ex-
pansion of ref. [13], and which we test numerically below.

The algorithm: theory. – Specifying a realization of
the disorder force F over a range of u sufficiently large,
eq. (1) can be integrated numerically, allowing one to
access all quantities of interest. This method was used
extensively (see [30–32] for a review and recent applica-
tions). Here, we follow a different strategy: We develop
a stochastic algorithm to solve a dynamical system in the
same universality class. As we discuss later, this method
presents some important advantages over the standard one
based on eq. (1), in particular for observables related to
the avalanche duration.

We first state that the equation of motion of an elastic
manifold due to short-ranged disorder-forces can be gen-
erated by the following set of equations (with an arbitrary
constant A) [25,39]:

∂tu̇x,t = ∂2
xu̇x,t + ∂tFx,t + m2(v − u̇x,t), (5)

∂tFx,t = −AFx,tu̇x,t +
√

2Au̇x,t ξ(x, t), (6)
⟨ξ(x, t)ξ(x′, t′)⟩ = δ(x − t′)δ(t − t′). (7)

The first line is the time derivative of eq. (1), its time
integral allowing to reconstruct u(x, t). The second line
is the update of the random force, which we show now
to be statistically equivalent to a quenched random force
F (x, u). To this purpose, rewrite Fx,t as a function of
x and ux,t, Fx,t ≡ F (x, uxt). This yields for each x an
evolution equation for F (x, u),

∂uF (x, u) = −AF (x, u) +
√

2Aη(x, u), (8)
⟨η(x, u)η(x′, u′)⟩ = δ(x − x′)δ(u − u′). (9)

Note that this change of variables is possible since u̇x,t ≥ 0,
a property which holds in the zero-temperature sliding
state for any (d + 1)-dimensional elastic manifold with a
convex elastic energy in a quenched potential [40,41]. The
solution to this equation is

F (x, u)F (x′, u′) = δ(x − x′)e−A|u′−u|. (10)

The microscopic disorder force-force correlator thus is

∆(u − u′) = e−A|u′−u|. (11)

It is short-ranged, and microscopically rough. Note that
computationally it is more convenient and efficient to up-
date the forces as a function of time than having to gen-
erate an independent set of forces as a function of u, and
refine the latter as necessary. As can be seen from eq. (6),
fixing a time discretisation step δt implies a u discretisa-
tion step of δu = u̇δt, which becomes more refined when
the velocity is small, an important advantage. Finally,

dealing with a white noise ξ(x, t) is both numerically and
analytically advantagous, and allows one to connect to
other seemingly unrelated stochastic problems [39,42].

Generating a microscopically rough disorder “on the
fly”, with a prescribed correlation length, is one
of the main advantages of our algorithm. It allows us to
drive the elastic system quasistatically, to generate a large
number of stationary avalanches in a long run (avoiding
storage of a large disorder configuration), and to compute
precisely the spatio-temporal extent of an avalanche in the
continuous displacement model of eq. (1). To illustrate
the method, in fig. 1(a) we show the calculated center-of-
mass (COM) velocity of a typical avalanche with a well-
defined total duration T , while in figs. 1(b), (c), we zoom
in on the COM velocity near its beginning (0 < t/T ≪ 1)
and end (1 − t/T ≪ 1). At the departure, in fig. 1(b), a
small uniform kick in the velocity (vkick = 10−5) triggers
the avalanche, and a sharp increase in the COM velocity
is observed, reaching 104 times the kick velocity in fig. 1.
Note that since the total advance ⟨S⟩ is proportional to the
kick, there are many more avalanches which decay rather
quickly; these do not contribute to quantities we are in-
teresed in, as the size ratio ⟨S2⟩/⟨S⟩. As a consequence,
the pulse driving of magnitude vkick is fairly quasistatic.
Finally, the end of the avalanche, shown in fig. 1(b), is
clearly observed as a sharp decrease in the COM veloc-
ity. These features of our algorithm are particularly im-
portant to precisely measure the duration T . It is worth
noting that the smooth pinning potentials normally used
in numerical simulations of eq. (1) require to perform an
accurate, and expensive, time integration of eq. (1), which,
in turn, displays a strong critical slowing-down near both
avalanche extremes. This is not a collective effect, and
requires one to go to huge avalanches, or introduce an
artificial threshold for the velocity, which, in turn, intro-
duces spurious avalanche correlations [43]. Our stochastic
method is by construction free of these artifacts.

The remaining problem is how to solve efficiently the
stochastic equations (5), (6). A first approach is to dis-
cretize time in steps of size δt, yielding

u̇t+δt − u̇t = Ft+δt − Ft + O(δt)

=
√

2Au̇tδt ξt + O(δt),
(12)

where ξt is a normal-distributed Gaussian random variable
with mean ⟨ξt⟩ = 0, and variance ⟨ξtξt′⟩ = δt,t′ . This is the
most efficient approach as long as one can use relatively
large δt. Here we are interested in the limit of δt → 0, thus
the appearance of

√
δt in front of the noise term implies a

rather slow convergence.

The algorithm: an improved solver. – The idea is
to first solve analytically the (for small δt) most singular
term in eqs. (5) and (6), equivalent to the random process

∂tu̇t =
√

2Au̇t ξ(t) (13)

with absorbing boundary conditions at u̇ = 0 for a finite
interval δt, and only later add the drift terms proportional
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Fig. 2: Left: the rescaled distribution of size P (S). To avoid system-spanning avalanches, the ratio Lm = 10 is kept fixed. The
black dashed line is the 1-loop result (12) of ref. [44], the gray dotted line the pure power law. Right: the same for the duration
distribution P (T ). The analytical result is given in eqs. (3.113)–(3.116) of ref. [25] and in ref. [15]. Note that in all of our curves
there is no fitting parameter, as all scales are measured. As an example, for P (S) one measures the first two moments ⟨S⟩ and
⟨S2⟩, which then defines the scale Sm := ⟨S2⟩/(2⟨S⟩). Rescaling all data by Sm, the ensuing scaling function plotted above has
no adjustable parameter left.

to δt. Following [45], we first write the analytic solution
of the corresponding Fokker-Planck equation

P (u̇, t) = δ(u̇) exp
(
− u̇0

At

)

+
exp

(
− u̇0+u̇

At

)

At

√
u̇0

u̇
I1

(
2
√

u̇0u̇

At

)
, (14)

where I1 is the Bessel-I function of the first kind. It can
be expressed as a series

P (u̇, t) =
∞∑

n=0

pn
1

At
Pn

(
u̇

At

)
(15)

with

pn =
(

u̇0
At

)n exp
(
− u̇0

At

)

n!
, (16)

P0(y) = δ(y), (17)

Pn(y) =
yn−1 exp (−y)

(n − 1)!
, n ≥ 1. (18)

The algorithm consists of two steps: First draw a random
number n from a Poisson distribution with parameter u̇0

At .
Second draw a random number y from a Gamma distribu-
tion with the (previously determined) parameter n. This
yields

u̇t+δt = u̇t + Ay δt, (19)

to which are added the drift terms proportional to δt.
Our method has the drawback that performing a single

time step is computationally more costly than the direct
integration of eq. (1) with smooth pinning potentials, or
the direct integration of eq. (12). Thus, we are far from the
sizes of ref. [29], where parallelization allowed the authors
to reach size L = 225, while in our work the maximum is
L = 214. Large sizes are needed to obtain purely geometri-
cal properties such as the roughness exponent and related

quantities. Velocity observables or time-dependent prop-
erties, such as the avalanche duration, are more efficiently
targeted using the present algorithm.

Results: size and duration distributions. – Our
simulations are performed in dimension d = 1. In fig. 2, we
report our findings for the avalanche size and duration dis-
tributions, both known analytically from the ϵ = 4−d ex-
pansion [12,15,25]. The size distribution was also checked
numerically [27]. One extends the definitions of eqs. (2)
and (3) to observables O such as the duration T and exten-
sion ℓ (see below) by writing the probability distribution
function (PDF)

Pδw(O) =
⟨O⟩
O2

m

p

(
O
Om

)
, (20)

where Om = ⟨O2⟩
2⟨O⟩ is the characteristic large-scale cut-

off, and p(x) is a universal function depending only on
d and O, such that

∫ ∞
0 dxxp(x) = 1,

∫ ∞
0 dxx2p(x) = 2.

It is this function p(x) which is plotted in figs. 2 and 4 from
our simulation, (denoted there by P (x)) and compared to
its prediction from the ϵ expansion (via an extrapolation
to ϵ = 3). While the scaling relations using ζ = 5/4 and
z = 10/7 predict a size exponent τ = 1.11 and a duration
exponent α = 1.17, see table 1, our best fits are

τ = 1.2 ± 0.2, (21)
α = 1.1 ± 0.15. (22)

Velocity distribution. – For the center of mass, the
velocity distribution P (u̇) is predicted to scale as

P (u̇) ∼ u̇−a, (23)

with a very large exponent a = 1 for the BFM and the
ABBM model (see fig. 3). On the other hand, the scaling
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Fig. 3: The center-of-mass velocity distribution P (u̇). The
weight of the peak at u̇ = vkick is δt

⟨T ⟩ ∼ L−z ∼ mz, where T
is the duration of an avalanche and δt the time discretization
step. The analytic result (black dashed line) is from eq. (385) of
ref. [13], the dotted gray line the pure power law P (u̇) ∼ u̇−a,
with a given in eq. (4). As noted in the caption of fig. 2, there
is no adjustable (fitting) parameter, thus convergence to the
theory including all scales is read off from the plot.

relation (4) predicts a negative exponent a = −0.45 in
dimension d = 1, a quite dramatic deviation from the
value of the BFM and MF. Our simulations confirm this
negative value, yielding

a = −0.45 ± 0.05. (24)

Distribution of spatial extensions. – We finally
consider the spatial extension ℓ of an avalanche. Using
that P (ℓ)dℓ = P (S)dS, and S ∼ ℓd+ζ , we get

P (ℓ) ∼ ℓ−k, k = d − 1 + ζ
d=1
−−→ ζ = 1.25. (25)

Our numerical data shown in fig. 4 are in agreement with
this scaling relation, yielding

k = 1.25 ± 0.05. (26)

In higher dimensions, the lateral extension of an avalanche
is difficult to define, whereas its volume is well defined.
Using scaling arguments equating P (V )dV = P (S)dS,
S ∼ ℓd+ζ , and V ∼ ℓd we find

P (V ) ∼ V −kV , (27)

kV = 2 − 2 − ζ

d
. (28)

Explicit values are given in table 1.

Conclusion. – We confronted theoretical results for
the distributions of avalanche size, duration, and velocity
with numerical simulations. We confirm the theoretical
results based on scaling arguments, and functional RG
calculations to 1-loop order. Our comparison goes beyond
exponents, validating the full 1-loop scaling functions.

Fig. 4: The distribution of lateral sizes P (ℓ). In the absence
of analytic results for the scaling function, we use the relation
P (ℓ)dℓ = P (S)dS, and S = ℓd+ζ to infer the latter (black
dashed line). A pure power law P (S) ∼ S−k is given as a gray
dotted line.

The model and algorithm proposed here can be general-
ized to arbitrary dimension and long-range interactions. It
is computationally more demanding than the standard de-
pinning model due to the presence of multiplicative noise,
but it has the advantage to compute more precisely the
spatio-temporal extent of an avalanche and to reach the
regime of adiabatic driving. It avoids the difficulties and
artifacts associated with velocity thresholding. In addi-
tion, as its microscopic disorder has the statistics of a ran-
dom walk, it is readily connected to the BFM.

∗ ∗ ∗

We thank A. Dobrinevski for very useful discussions.
PLD and KJW acknowledge support from PSL grant
ANR-10-IDEX-0001-02-PSL and thank KITP for hospital-
ity and support in part under Grant NSF PHY11-25915.
ABK acknowledges support from Grants PICT2016-
0069/FONCyT and UNCuyo C017, from Argentina.

REFERENCES

[1] Gutenberg B. and Richter C. F., Bull. Seismolo. Soc.
Am., 46 (1956) 105.

[2] Barkhausen H., Phys. Z., 20 (1919) 401.
[3] Cizeau P., Zapperi S., Durin G. and Stanley H.,

Phys. Rev. Lett., 79 (1997) 4669.
[4] Le Doussal P., Wiese K. J., Moulinet S. and

Rolley E., EPL, 87 (2009) 56001 (arXiv:0904.4156).
[5] Buldyrev S. V., Barabasi A. L., Caserta F.,

Havlin S., Stanley H. E. and Vicsek T., Phys. Rev.
A, 45 (1992) R8313.

[6] Fisher D. S., Phys. Rep., 301 (1998) 113.
[7] Alessandro B., Beatrice C., Bertotti G. and

Montorsi A., J. Appl. Phys., 68 (1990) 2901.
[8] Alessandro B., Beatrice C., Bertotti G. and

Montorsi A., J. Appl. Phys., 68 (1990) 2908.
[9] Le Doussal P. and Wiese K. J., EPL, 97 (2012) 46004

(arXiv:1104.2629).

46001-p5



Alejandro B. Kolton et al.

[10] Le Doussal P. and Wiese K. J., Phys. Rev. E, 85 (2011)
061102 (arXiv:1111.3172).

[11] Le Doussal P. and Wiese K. J., Phys. Rev. E, 82 (2010)
011108 (arXiv:0908.4001).

[12] Le Doussal P. and Wiese K. J., Phys. Rev. E, 79 (2009)
051106 (arXiv:0812.1893).

[13] Le Doussal P. and Wiese K. J., Phys. Rev. E, 88 (2013)
022106 (arXiv:1302.4316).

[14] Dobrinevski A., Le Doussal P. and Wiese K. J.,
Phys. Rev. E, 85 (2012) 031105 (arXiv:1112.6307).

[15] Dobrinevski A., Le Doussal P. and Wiese K. J.,
Avalanches beyond mean-field: durations and shape, in
preparation.

[16] Thiery T., Le Doussal P. and Wiese K. J., J. Stat.
Mech., 2015 (2015) P08019 (arXiv:1504.05342).

[17] Delorme M., Le Doussal P. and Wiese K. J., Phys.
Rev. E, 93 (2016) 052142 (arXiv:1601.04940).

[18] Aragon L. E., Kolton A. B., Le Doussal P.,
Wiese K. J. and Jagla E., EPL, 113 (2016) 10002
(arXiv:1510.06795).

[19] Zhu Z. and Wiese K. J., Phys. Rev. E, 96 (2017) 062116
(arXiv:1708.01078).

[20] Leschhorn H., Nattermann T., Stepanow S. and
Tang L.-H., Ann. Phys. (Berlin), 509 (1997) 1
(arXiv:cond-mat/9603114).
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