Sampling first-passage times of fractional Brownian Motion using adaptive bisections
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We present an algorithm to efficiently sample first-passage times for fractional Brownian motion. To increase
the resolution, an initial coarse lattice is successively refined close to the target, by adding exactly sampled
midpoints, where the probability that they reach the target is non-negligible. Compared to a path of N equally
spaced points, the algorithm achieves the same numerical accuracy Neg, while sampling only a small fraction
of all points. Though this induces a statistical error, the latter is bounded for each bridge, allowing us to bound
the total error rate by a number of our choice, say PLS%, = 1075, This leads to significant improvements in
both memory and speed. For H = 0.33 and Neg = 2%, we need 5000 times less CPU time and 10 000 times
less memory than the classical Davies Harte algorithm. The gain grows for H = 0.25 and Nog = 2% to 3-10°
for CPU and 10° for memory. We estimate our algorithmic complexity as C*B5°¢(N.g) = O ((In Neﬁ)S), to
be compared to Davies Harte which has complexity C°*(N) = O (N In N). Decreasing PLS%, results in a
small increase in complexity, proportional to In(1/P23%.). Our current implementation is limited to the values
of Neg given above, due to a loss of floating-point precision. Our algorithm can be adapted to other extreme
events and arbitrary Gaussian processes. It enables one to numerically validate theoretical predictions that were
hitherto inaccessible.

I. INTRODUCTION

Estimating the distribution of first-passage times is a key
problem in understanding systems as different as financial
markets or biological systems [1, 2], and the dynamics of local
reactions [3, 4]. Typically, research focuses on non-Markovian
processes and bounded geometries, where first-passage time
distributions are difficult to obtain analytically [5-9]. Within
the class of non-Markovian processes, fractional Brownian
Motion (fBm) is of particular interest as it naturally extends
standard diffusion to sub- and super-diffusive self-similar pro-
cesses [10]. Fractional Brownian Motion is a one-parameter
family of Gaussian processes, indexed by the Hurst parameter
H € (0, 1]. The latter parametrizes the mean-square displace- 036 058 040 042 04 046 048 050
ment via

< X152> _ o2H , (1 FIG. 1. The contirlluous stochastic path (grey) crosses th.e bar.rier

(blue) for the first time at 7°° (black square mark). The discretiza-
tion with N points (red) over-estimates this time as 77 (red square).
The numerical estimate is improved to 7%V (green square) when re-
fining the discretization (green). This systematic error worsens for

diminishing values of Hurst parameter H.

recovering standard Brownian Motion at H = 1.

5. It retains
from Brownian motion scale and translational invariance, both
in space and time.

In order to render the extreme events of this process acces-

sible to an analytical treatment, an e-expansion around Brow-

nian motion in ¢ = H — 3 has been proposed [11]. This field
theoretic approach has been applied to a variety of extreme
events, yielding the first-order corrections of several proba-
bility distributions [8, 11-13]. The scaling functions predicted
by this perturbative field theory are computationally expensive
to verify, since they require a high numerical resolution of the
path. Typically this is done by simulating a discretized version
of the path over a grid of N equidistant points. Measuring a
first-passage time then amounts to finding the first passage of
a linear interpolation of these grid points. This approximation,
however, can lead to a systematic over-estimation of the first-
passage time. As can be seen on Fig. 1, a high resolution of

the path is necessary in order to find the first-passage event at
t = 0.36 instead of the one at ¢ = 0.45 or even ¢t = 0.47 for
the coarser grids. To account for this, usually the number of
grid points is increased. As the size of fluctuations between
gridpoints diminishes as
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the sub-diffusive regime (H < %) necessitates an enormous
computational effort.

As can be seen in Ref. [8], this poses challenges to the nu-
merical validation of high-precision analytical predictions. As



an example, for H = 0.33, one needs system sizes of at least
N = 224 necessitating a CPU time of 6 seconds per sample.
If theories of such high precision are to be tested against sim-
ulations, new numerical techniques need to be developed. The
present work addresses this problem by designing, implement-
ing, and benchmarking a new algorithm sampling first-passage
times of fractional Brownian Motion using several orders of
magnitude less CPU time and memory than traditional meth-
ods. The general idea is to start from a rather coarse grid (as
the red one on Fig. 1), and to refine the grid where necessary.
As a testing ground, we simulate and compare to theory the
first-passage time of an fBm with drift [9].

The algorithm proposed here is an adaptive bisection rou-
tine that draws on several numerical methods already estab-
lished in this field, notably the Davies-Harte algorithm [14],
bisection methods [15, 16], and the Random Midpoint Dis-
placement method [17, 18]. The central, and quite simple,
observation is that in order to resolve a first-passage event it is
necessary to have a high grid resolution only near the target.
This translates into an algorithm that generates a successively
refined grid, where refinement takes place only at points close
to the target, with the criterion of closeness scaling down by
2~ H for each bisection. This refinement is stopped after the
desired resolution is reached. The sampling method is exact,
i.e. the collection of points is drawn from the ensemble of
fBm, a continuous process, with no bias. The only error one
can make is that one misses an intermediate point. We have
been able to control this error with a failure rate smaller than
10~C per realisation.

While there is a relatively large overhead for the non-
homogenous refinement, this is compensated by the use of far
less points, leading to a significant increase both in speed and
memory efficiency over sampling methods that produce points
for the full grid. For H = 0.33 and system size N = 232,
our algorithm is 5000 times faster than the Davies Harte Algo-
rithm (DH), the fastest exact sampler (cf. [19, 20]) if all points
are needed. It has computational complexity O(N log(N)),
which makes it the standard algorithm in most current works,
see e.g. [6, 7, 21], with system size N ranging from 22! to
224, Our maximal grid size is limited by the precision of the
floating point unit to Nyay ~ 211/ 7.

This paper is organised as follows. In Sec. II, we introduce
our adaptive bisection algorithm. First, its higher-level struc-
ture is outlined and then each subroutine is detailed. Possible
generalisations to other extreme events or other Gaussian pro-
cesses are discussed at the end of this section. In Sec. III,
we present our implementation of the adaptive bisection in C,
which is freely available [22]. We benchmark it against an im-
plementation of the Davies Harte algorithm. We compare error
rates, average number of bisections, CPU time and memory.
Sec. IV contains a summary of our findings.

II. ALGORITHM

In this section, we introduce the adaptive bisection routine
(ABSec). The central aim is to translate the idea of refining
the grid “where it matters” into a rigorous routine.

A. Fractional Brownian Motion and first-passage times

Gaussian processes X; are stochastic processes for which
X evaluated at a finite number of points 7 in time, has a mul-
tivariate Gaussian distribution [23]. They are simple to han-
dle, since their path probability measure can be obtained from
their correlation function. The best known Gaussian Process
is Brownian Motion which is the only translational invariant
Gaussian process with stationary and independent increments.

Fractional Brownian Motion (fBm) generalises Brownian
Motion by relaxing the requirement of independent incre-
ments, while keeping self-similarity. The latter property
means that its path probability measure is invariant under a
space-time transformation t — ct, * — ¢ Hx for ¢ > 0.
The parameter H is referred to as Hurst exponent. As a
Gaussian process, fBm is entirely characterized by its mean
Xo = (X;) = 0, and correlation function

C(Sﬂf) = <X5Xt> = |S|2H + |t‘2H - |t - S‘QH ’ (3)

where H € (0,1]. As a consequence, ((X;— X,)?) =
2|t—s|?#, and in particular (X7 ) = 2|t|*#. From the correla-
tion function it follows that on all time scales non-overlapping
increments are positively correlated for H > % and negatively
correlated for H < % For H = % one recovers Brownian
Motion with uncorrelated increments.

The first-passage time (FPT) of a stochastic process is the
fist time the process crosses a threshold m. Since we use Xy =
0, it is defined for m > 0 as

=1 > .
Tm, t1r>1£ {t|X: > m} )

B. Notation

In simulating a fBm on a computer, one is forced to repre-
sent the continuous path by a discretized path that takes values
on a finite set of points in time, the grid. We denote the grid
by ordered times T = {t1,t2,--- ,tn}, and the correspond-
ing values of the process by X = {Xy,, X¢,, -+, Xty }- To-
gether, (X, T') form the discretized path. Due to self-similarity
of the process, we can restrict ourselves to 7 C [0, 1] with no
loss of generality. The intervals between any two successive
times t;,t;,41 € T are referred to as bridges (t;,t;+1). Each
connected component of [0, 1]\ 7 is a bridge.

We denote the dyadic lattice on the unit interval by A¥ =
{z’ . 2”“; 0<1< 2’“}. Our adaptive bisection algorithm sets
out from a dyadic lattice 7(®) = A9 of relatively low resolu-
tion (typically g < 8 or 10) and performs several bisections



of that grid in successive iterations 7 71 ... (M)

where M is the number of bisections generated before the
routine terminates. To each bridge (¢,t,) spanned in be-
tween left and right endpoints ¢, and ¢, and contained in
a grid 7(™), one can associate a level £ defined by ¢ =
—log, (t; — t1). A bridge is bisected by introducing its mid-
point, t,,, = % (t +t,) = t; + 2%~ and inserting it into the
grid 70D = {t1, ..., t1,tm, te, ..., tx }. A bridge is allowed
to be bisected until the level of a bridge reaches a maximum
bisection level L (typically L < 30 for H = 0.33). Since each
iteration only halves an existing interval, all grids are sand-
wiched between two dyadic lattices

NM=TOcT® ... c T C AL, Q)

representing the lowest and highest possible resolution. We
define the truncation of the grid 7 to a certain time 7 € [0, 1]
as

T|T = {ti S T‘ti_1 < 7'} ©6)

i.e. the truncation contains all points in time up to time 7 and
to the next highest gridpoint contained in the initial grid A9
(cf. section I C 3). Note that for each bridge (¢, t,), there is
always one dyadic lattice A™, s.t. t; and ;1 are neighbouring
points in A™; they are members, but not neighbours in A" for
n’ > n, and at least one of them does not exist in A" for
n' < n.

C. Definition of the algorithm

The algorithm consists of two phases. In the first phase, the
initialisation, a coarse grid is generated. In the second phase,
the adaptive bisection, this grid is successively bisected where
necessary. Once the second phase terminates, the first-passage
time is calculated using the final grid.

The first phase starts by sampling an initial discretized path
X over a dyadic lattice 7(©) = A9 with N = 29 equidis-
tant points, using the Davies-Harte salgorithm. The latter is
the fastest known algorithm to sample an exact fBm path on
an equidistant grid in time [19]: its execution time scales as
N In(N), thus only slightly slower than what is needed to gen-
erate an uncorrelated sample of the same length N. From this
relatively coarse grid, (X(?), 7(0)), the first-passage time is
estimated via linear interpolation as 7(°).

Subsequently, the grid is truncated by discarding all points
behind the first point surpassing m (cf. Eq. (6)). That this
does not change the measure is explained in section IIC 3. If
no such point exists, the full grid is kept. The correlations
between the different points X, at times ¢ stored in the grid
are given by the correlation matrix
It is a symmetric matrix computed from the correlation func-
tion (3). It is then inverted to obtain the inverse correlation

ALGORITHM 1: Adaptive bisection

procedure ABSEC(g, L, m, )
T+ A9

X <DAVIES_HARTE(AY) >IIC1
T < FPT_FROM_GRID(X, T) >1IC2
(X,T)(* (X,T)‘T(o) >IIC3
C™! + cMatrixTable[r(?] >11C4

(t1, t:) <~ NEXT BRIDGE(T, 0, 7(9)
while (¢, t;) defined do
if Bridge (1, t) critical and not yet bisected then >IIC5
C™' < AUGMENT C™'-MATRIX(C™ ', )

X* ¢ GENERATE MIDPOINT(C™, t1) >IIC6
X+~ XUuXx-
T+ TUtm
if X* > m then
T < FPT_FROM_GRID(X, T)
(tiytit1) < NEXT BRIDGE(T, (¢i,ti+1), T) >IIC7

output(7)

matrix C’igl(T ). The inversion is optimised by using pre-
calculated tabularized matrices. This concludes the first phase.

In the second phase, bridges are checked successively un-
til the maximum level is reached. The order in which the
bridges of the growing grid are checked is determined by a
subroutine whose aim is to find the first-passage event with
the least amount of bisections. The check consists in testing
whether the midpoint X, _ of the bridge (¢, ;) could surpass
the threshold m with a probability larger than €, taken small. If
this is the case the bridge is deemed critical and bisected. The
bisection consists in generating a midpoint X, _ at time ¢y,
conditional to the pre-existing grid. This computation requires
the inverse correlation matrix and is detailed in Sec. IIC6.
Once the midpoint is generated, it is added to the path (X', 7).
In a last step the inverse correlation matrix of the new grid,
C~1(T Uty,) is stored. Further below, the algorithm is given
in pseudocode. The routines in the pseudocode are described
in sections II C 1-IIC7.

1. Davies-Harte Algorithm

The Davies-Harte algorithm (DH) is a widely used method
to generate fBm samples. It was introduced in [14], is ped-
agogically described in [19], and has been extended to other
Gaussian processes in [20], allowing us to omit an intro-
duction. It generates a sample of fractional Gaussian noise
(fGn) &1,&2,- -+, &N, the incremental process of fBm §; =
Xj+1 — X;,7 € N, and then sums the increments to a fBm
sample with values X;.5; = (6t)7 Z;Zl &;. Simulating the
increments is more efficient since fGn is a stationary Gaus-
sian process which, for equally sized increments, has a cir-
culant correlation matrix, which can be diagonalised using a
fast Fourier transform (FFT). Therefore a fGn sample of N
increments can be simulated with computational complexity
O(Nlog(N)). The FFT algorithm works optimally when the



number of points is a natural power of 2, i.e. if the grid is a
dyadic lattice.

2. Estimating the first-passage time

Given a discretized path (X', T'), we use its linear interpola-
tion to give the first-passage time as its first intersection with
the threshold (cf. Fig.1).

3. Truncating the grid

A further optimisation is to discard grid points beyond the
first point crossing the threshold (cf. Eq. (6)). It is necessary to
show that the density of first-passage times conditioned on the
full grid equals the distribution conditioned on the truncated
grid, i.e. that truncating does not change the measure.

The first-passage time distribution (FPTD) P(7) can be de-
composed into a sum of conditional probabilities for disjoint
events: Each term of the sum is the probability that the ¢th
point of a grid surpasses m, the threshold, for the first time
(“P#id(X,. > m first)”), times the FPTD of a fBm condi-
tioned on the event that its discretization on grid 7 surpasses
m at t; for the first time, i.e.

Pr (7| X, > m first)
= P(7|X;: Xy, >mand Xy, <mVt; <t;) (8)

for t;,t; € T. The decomposition thus reads

P(r) = Z Pr(7]|X:, > m first) P& X, > m first).

t; €T
©))
By continuity of the process,
Pr(r > t;| Xy, > m first) = 0, (10)

such that the sum in Eq. (9) can be truncated to

P(r)= Y Pr(r|X;, >mfirst) PEY(X,, > m first).
ti—1<T

an

In order to sample Py (7|X;, > m first), one would naively
sample the entire grid X" over all of T, but since

Pr (7| Xy, > mfirst) = Pry_(7|X;, > m first), (12)

where the restriction is defined in Eq. (6), it is sufficient to
only regard the smaller grid 7., i.e.

P(r)= Y Pr (71X, > m fist) PEY(X,, > m first).
ti—1<T

13)

Discarding points in the initial stage leads to a smaller corre-
lation matrix to be inverted, which increases performance, and
decreases memory.

4. Tabulating inverse correlation matrices

The inverse of the correlation matrix (7) is necessary to
compute the conditional probability of any further midpoint
(cf. App. B). Its computation is costly and typically scales with
O(N?) where N = 29 is the number of points in 7(®), If
the algorithm is run multiple times, this computation slows it
down. The initial grid however, is always a dyadic lattice trun-
cated at some point, i.e. TO) = {k279;0 < k < K}, where
X go-g 1s the first point to surpass m. Therefore, the initial in-
verse correlation matrix C~* (7(?)) can take 29 — 1 possible
values, one for each possible value of K. It is more efficient
to pre-calculate all possible inverse correlation matrices in the
beginning, and store them in a vector ‘CMatrixTable’,

CMatrixTable[K] = ([C(i . 2‘9,j~2_g)]fj:1)71 :
(14)

After generating the initial grid and measuring 7(?), one
reads out the appropriate entry of the table at K =
min {n € Z;n279 > T(O)}.

5. Deciding whether a bridge is critical

Once entering the bisection phase, the algorithm needs to
decide whether a particular bridge is critical, i.e. whether it
is suspicious of hiding a “dangereous” excursion crossing the
threshold at m (cf. Fig. 1). Rather than determining whether
any point in (t},t,) surpasses the threshold, we focus on the
midpoint ¢, conditioned on all other points X, and ask how
likely X;,, > m. Such an event needs to be avoided with
a very low probability ¢, the error tolerance. The relevant
probability,

P(X;, >m|X) <e (15)

is too costly to be computed for every bridge in every step of
the iteration, as the midpoint is a Gaussian random variable,
with its mean and variance determined by every other point in
the grid. If we ignore all points of the path apart from (¢;, X,)
and (t;41,X¢,,,). a calculation given in App. A shows that
mean and variance would be given by

1
M= 5 (Xti + Xti+1) (16)

and
1
0_2 — <21—2H _ 2) X 2—2@]‘[ . (17)

Here / is the level of the bridge of width 6t = 27¢. Interest-
ingly, adding to the bridge’s endpoints further points lowers
the variance (cf. Eq. (30)) which means that neglecting all but
nearest neighbours gives an upper bound on the variance of the
midpoint. Further, we conservatively bound the mean by the



maximum of both endpoints, 4 < max (Xy,, Xy,,, ). Thisis a
priori not a precise approximation, since far-away grid points
are able to “push” the expected midpoint above the bridges’
endpoints for values of H # % As is shown in Sec. III C,
this systematic error can be absorbed by introducing an even
smaller error tolerance €’. Furthermore, it is less relevant in
the sub-diffusive regime, where the process is negatively cor-
related. By giving conservative bounds on mean and variance
with quantities that are local (i.e. do not depend on the re-
maining grid), we can replace the original criterion (15) by a
computationally cheaper alternative, namely the local condi-
tion

P(Xtm > m|(Xt1,Xtr)) < 61. (18)

This implies that Eq. (15) holds for an appropriate choice of
¢’, on average. This is to be understood as follows: In a simu-
lation, there are n decisions of type (15) to be taken. The total
error is approximately P! = ne. The parameter ¢ is cho-
sen such that the total error rate remains smaller than 106,
and thus negligible as compared to MC fluctuations. The de-
pendence between €' and PLY is investigated in Sec. IIIC
(cf. Fig. 3).

Criterion (18) is rephrased, using again ¢ as the level of the
bridge, to

m — max (Xti7Xti+1)

fo1— 1 _
( 21 2H7§)2 (H

)

>1-¢ (19)

which implies

1
max (X, Xi,,,) <m— (1 / 212H—2> 2 =1 (1-¢),

(20)

where we introduced ®, the cumulative distribution function
of the standard normal distribution, and its inverse ®—!. This
is further simplified by defining the critical strip

co = (W) e t1-¢), (1)

and the level-corresponding critical strips
co=2"Hey. (22)

A bridge (X, Xy, ) of level ¢ is deemed critical if either of its
endpoints lies above the critical strip corresponding to /, i.e.

max (X, Xi,,,) >m—ce. (23)

This makes for a computationally fast decision process, since
the critical strip width has to be computed only once. The
procedure then checks for a given level of the bridge whether
it reaches into the critical strip, in which case it is bisected
(cf. Fig. 2 for illustration).

6. Generating the new midpoint efficiently

If a bridge triggers a bisection, the midpoint is drawn ac-
cording to its probability distribution, given all points that have
been determined previously. If this occurs at, say, the m-th it-
eration, the discretized path is ((X1,%1),- -, (Xn,tn)) with
|70 = | x| = N = K +m where K < 29 is the number
of points in the truncated initial grid. Denoting the midpoint
to be inserted by (X;+,¢*), one needs to find

P (X Xy, XN) - (24)

The midpoint is again normal distributed with mean g, (V)
and variance o, (N). Let 7" = (T(m) ¢*) be the aug-
mented grid, and C~1(N + 1) = C~1 (T(™*+Y) the associ-
ated inverse correlation matrix (cf. Eq. (7)). Then, as detailed
in App. B, the inverse of the variance is given by

oZ2(N) = [C7H (N +1)]

vonn @9

and the mean by

N
(V) = () [CN N+ )]y X (26)
i=1
Computing the inverse correlation matrix from scratch at every
iteration would require a matrix inversion which typically uses
O(N?) steps. We do this in O(N?) steps, by starting from the
already calculated inverse correlation matrix of the previous
grid C~Y(N) = C~1(T(™). As detailed in App. C, the
inverse correlation matrix C~'(N + 1) = C~! (T(™*+1)) can
be constructed as follows: First, generate a vector containing
all correlations of the new point with the grid, using Eq. (3)

F(N) = (C(t*, 1), C(t* t2),--- , C(t* tx)" . (@27)

Second, multiply it with the (already constructed) inverse cor-
relation matrix to obtain

g(N) =C " (N)F(N) . (28)

In terms of v and g, the mean and variance can be expressed
as

p(N) = X775, (29)
where we use X = (X, , -

o?(N) =2(t")*" - 577 (30)

*

-, X, ) for short, and

Since ¥7'g = ¥TC~1(N)¥ > 0, conditioning on more points
diminishes the variance of a midpoint. The outer product of §
defines the matrix

GIN) =Foq" . 31)
It is used to build the enlarged inverse correlation matrix

CY(N) +072G(N) | —U_2§(N)>
—og Ny [ e )

CYN+1)= <
(32)

where 02 = 02(N).



7. Bridge selection

The task of the bridge-selection routine (cf. Alg. IIC) is to
choose the order in which bridges of the successively refined
grid are tested, and possibly inserted. Its aim is to find the first-
passage event with the least number of bisections. To this aim,
it zooms in into areas where a first-passage time is likely, and
zooms out when the possibility of a crossing becomes neg-
ligible. In this subsection, we phrase this intuition in more
rigorous terms.

Prior to the first call of the routine, the initial grid consists of
29 bridges of uniform width 279. The routine selects the earli-
est bridge, i.e. (t, = 0,¢, = 279), and scans all bridges of the
initial grid in ascending order in time until a critical bridge is
found (by applying the criticality criterion (18)). Once such a
bridge is found, the algorithm explores this bridge by succes-
sive bisections. After a finite number of bisections the algo-
rithm either has identified a first-passage event to the desired
precision, or no crossing was found. In the latter case, the
routine then moves on to the next bridge of the initial grid.

In order to illustrate the workings of the bridge-selection
routine, it is helpful to consider a bijection between the adap-
tively bisected grid and a rooted binary tree (cf. Fig. 2). Every
bridge (¢, t,) that is bisected by introducing a point at ¢,, con-
tains two sub-bridges (¢, tm) and (tm, ;). We refer to these
bridges as the left and righ children of (¢, t,). Vice versa, ev-
ery bridge that is not part of the initial bridge (i.e. with level
¢ > g)is the child of another bridge which is referred to as par-
ent of the bridge. The set of all bridges that are contained in a
initial bridge of width 279 is mapped to a rooted binary tree by
identifying every node with a bridge, where a node can either
have zero or two children depending on whether the bridge has
been bisected or not. The root of the tree corresponds to the
bridge contained in the initial bridge from where the bisections
were spawned off. The generation of a node in the tree corre-
sponds to its level by generation = ¢ — g + 1. Therefore, the
depth of the tree is limited to generation,,, = L — g + 1.

The routine stores a representation of this tree internally, to-
gether with the information whether a node/bridge has previ-
ously been checked for criticality or not. If a bridge is bisected,
but its two children have not yet been checked for criticality,
the left child is selected. This is because earlier crossings of
the threshold render later crossings irrelevant. If a bridge has
two children, but the left has already been checked (imply-
ing that neither it nor any of its further descendants contains a
first-passage event), the right child is selected. If both children
of the bridge have already been checked, none of the descen-
dants contains a first-passage event. In that case the parent of
the bridge is returned (zooming out). If the routine returns to
the root, the bridge of type (-279, (i+1)-279) has no parent,
and the next such bridge ((i+1)279, (i +2)-279) is returned.
If ¢ = 29 — 1, the routine terminates by returning an empty
bridge since the entire grid has been checked.

To summarise, the routine is either descending (zooming
in) or ascending (zooming out) within the tree, depending on
whether the children of a node, if existent, have been visited

ALGORITHM 2: Finding the next bridge to be checked

procedure NEXT BRIDGE(T, (t1, tr), Tm)
if (t1,¢:) = 0 then
return (0,279)
if (1, ) has no children then
return parent bridge
if (t1,t,) early enough for 75, AND level < L then
if left child not checked then
return left child > Move down left
if left child checked AND right child not checked then
return right child > Move down right
if both children checked then
return parent bridge
if level of (t1,¢;) = L then
if Bridge crosses threshold then
return NULL
else
return parent bridge

> Initialise with first bridge

> Move up to parent

or not.

The routine takes into account two additional constraints.
First, the maximum bisection level L; if a bridge of maximum
level L contains a first-passage event, the routine terminates
since this estimate has reached the desired resolution. If it
contains no crossing, the parent is returned. Second, it takes
into account whether a bridge is early enough in time to im-
prove the first-passage estimate. If a bridge at level ¢ records
a first-passage event, only its descendants can improve this re-
sult.

We give the pseudocode of the routine below. In the im-
plementation we present later (Sec. III A), the algorithm is im-
plemented slightly differently for performance reasons. The
logical steps however are the same and we decided to present
them here for pedagogical reasons.

D. Adding deterministic functions

The adaptive bisection routine can be adapted to further
generate first-passage times of stochastic processes of the form

Zy =X + f(3), (33)

where f(t) is a deterministic smooth function, e.g. a linear
or fractional drift term, and X, is again a fractional Brow-
nian motion. In its first phase, X; is generated on a sub-
grid, and f(t) is added accordingly. The resulting process
Zi,t € T is then passed to the bridge-selection routine,
where the bridges are checked for criticality using the values
of Z; in the criticality criterion (20). Once a bisection is re-
quired, the midpoint is generated using the subtracted process
X = Z;— f(t), i.e. the vector used to generate the midpoint’s
mean (cf. Eq. (26)) is X, not Z. Then, the generated midpoint
X is transformed back using Z, = X, + f(tm), and in-
serted into the path of Z. Note that even if f(¢) = ut (linear
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FIG. 2. Tlustration of the adaptive bisection routine. The grid 7
(bottom) contains points in time, here detail shown of initial bridge
t1 =14279, ¢, = (i + 1)277 (labelled bullets) and successively intro-
duced midpoints (bullets on time axis); The path X' (above) samples
values at times (dashed lines) which approximate path by linear in-
terpolations (grey and black thick lines). The threshold m (red line)
is crossed by the path and bisections are generated for every bridge
whose endpoints lie in the critical strip corresponding to its level (blue
lines). The horizontal arrows on top of the path indicate the bridges
in between the grid points. The mapping from bridges to binary tree
(top) is indicated with dotted lines. The top node (1) corresponds to
the widest bridge (279, (¢4+1)279), and children correspond to sub-
intervals generated by midpoint. The bridges are explored in order as
given by numbers above nodes and chosen by the bridge-selection
routine (see text for details). Bridges that are critical (blue nodes) are
bisected, and their children checked from left to right, until a first-
passage event has been identified at maximum bisection level L (red
node). This event terminates the algorithm.

drift), and contrary to Brownian motion, the iteration can not
be performed directly on Z;.

E. Further generalisations

The underlying idea of the algorithm — to generate a grid
that is fine only where it matters — lends itself to various other
non-local observables, in particular extreme events, such as
running maxima (minima), positive time (time spent in the re-
gion X; > 0), last returns, or the range or span (max X; —
min X;) of a process.

In each of these examples, one needs to adapt two logical
steps in the procedure: (¢) the order in which bridges of the
grid are iterated, and (i7) the criterion for triggering a bisec-
tion. For first-passage times, the order of the bridges is given
by the subroutine described above in Sec. IIC7. The crite-
rion for bisection is determined by the bridge’s distance to the
threshold. These two choices are particular to first-passage
events.

For running maxima, the bridges should be tested in de-
scending order of height, and the bisection-criterion adapted
to decide whether the midpoint could surpass the current max-
imum with a probability larger than . If the current maximum
changes, the criterion for triggering a bisection also changes.
As the maximum can only increase, bridges which were un-
critical before do not become critical by a change of the esti-
mate of the maximum.

To find the last return to zero (f9 = sup, ., {t'| Xy = 0}),
the bisection criterion is the same as for first-passage times
(with m set to zero), but bridges should be iterated over from
latest to earliest, choosing the right subinterval first after bi-
section (cf. Fig. 2).

The span of a process at time ¢ is defined as the running
maximum minus the running minimum [8, 24-27]. To find
the first time the span reaches one is more delicate. There are
two cases, given a discretization: Either span one is reached
first when the maximum increases, or the minimum decreases.
Suppose that the maximum increases. Then there is a mini-
mum for a smaller time. By refining the grid close to this min-
imum, the latter may decrease. This in turn shifts down the
critical strip for the maximum, and one has to redo all checks
for bridges close to the maximum.

The algorithm can be generalized to other Gaussian pro-
cesses, since the derivations given in Sec. IIC 6 and App. B
for the insertion of a conditional midpoint apply to any Gaus-
sian process. The only point at which we made explicit use
of properties for fBm was at the initialisation step, where the
Davies-Harte method was employed to generate a path on a
coarse dyadic lattice. If one were to study another Gaussian
process, one would need to replace the correlation function
(3), and adapt the routine generating the initial grid.

Once these modifications are made for the new problem,
we expect the algorithm to deliver similar improvements in
performance and memory.

III. RESULTS AND BENCHMARKING

In this section, we compare an implementation of our adap-
tive bisection method (ABSec) with an implementation of
the Davies Harte (DH) method. Our focus lies on compar-
ing both CPU time and memory usage for a simulation of
equal discretization error. We find that for large system sizes,
Negt 2 102/ | the adaptive bisection routine outperforms the
Davies Harte method both in CPU time and memory. This ad-
vantage grows markedly for lower values of H. At H = (.33,
for instance, and a final grid size of Nog = 232 we need 5000
times less CPU time and 10 000 less memory. At H = 0.25
we find ABSec to be 300.000 times faster and 10° less memory
intensive than DH at an effective system size of Nog = 242.

We then discuss systematic errors and analyse how they de-
pend on the parameters, in order to clarify the payoff between
computational cost and numerical accuracy. We conclude with
a discussion of our findings.



A. Implementation in C

We implemented the adaptive biection algorithm in C, us-
ing external libraries lapack [28], gs1 [29], ££tw3 [30],
and cblas [31]. The code is published [22] and available un-
der a BSD license. It was compiled using the Clang/LLVM
compiler using the —03 flag as only compiler optimisation.
The code was executed on an ‘Intel(R) Core(TM) i5-7267U
CPU 3.10GHz’ processor.

As reference, we use an implementation of the Davies-Harte
method in C''. Compiler settings and hardware are identical to
those used for the adaptive bisection algorithm.

In order to compare performance, we used user time and
maximum resident set size as measured by the POSIX com-
mand getrusage; user time indicates the time the process
was executed in user space, and maximum resident set size the
amount of RAM held by the process.

B. Numerical errors and fluctuation resolution

The adaptive bisection algorithm suffers from three errors.

(i) the resolution of the grid itself, determined by the max-
imum grid size if all bridges were triggered, which we refer
to as horizontal error. Any discretization of a continuous path
suffers from errors that are made when replacing the rough
continuous path by the linear interpolation of a grid. Even if
the true first-passage time is optimally approximated, the er-
ror still depends on the system size N. In that respect, our
algorithm does not differ from DH or other exact sampling
methods.

(i) the adaptive bisection routine suffers from a probabilis-
tic error, namely false negative results of the criticality check,
i.e. bridges which do contain an excursion crossing the thresh-
old m, but whose endpoints do not lie in the critical strip
(cf. Sec. IIC5). We refer to these errors as vertical errors.

(iii) the algorithm suffers from rounding errors of the
floating-point unit.

Horizontal errors correspond to the resolution of the pro-
cess’ fluctuations. To contain fluctuations of a fBm between
two grid points at distance N~! to the order of §X, one
needs to choose N ~ (60X )’%. Horizontal errors are there-
fore characterised by the effective discretization resolution
N ~ (6§X)~! which corresponds to the inverse fluctuation
resolution. In order to compare two discretizations of a fBm
path for two different values of the Hurst parameter H, com-
paring N is misleading. Rather, we compare their effective
discretization resolutions N/, Horizontal errors are impossi-
ble to measure numerically, since there exists no way to sim-
ulate a continuous path. They are however independent of the
sampling method used; this implies that the horizontal error of

I B.Walter, K.J.Wiese, https://github.com/benjamin-w/
davies-harte-fpt.git

a path generated by DH with system size 2% and an adaptive
bisection routine of maximum bisection level L are exactly the
same, given no vertical error occurred. For a deeper discussion
of discretization errors of the DH algorithm, see [27, Sec.V.E].

Vertical errors are controlled by the error tolerance ¢,
of Eqgs. (20)-(21). To study vertical errors systematically, one
needs to compare the results with a fully sampled grid using
(for instance) DH. This is discussed in the next section.

In the remainder of the section, we run benchmarking exper-
iments that repeat the adaptive bisection routine a large num-
ber of times, typically I = 10*. Following the insights of
Sec. III C, we choose an error tolerance that is small enough to
neglect errors of the vertical kind (whenever the vertical error
rate is much smaller than /~'). In doing so, we can ignore
the vertical error such that the numerical discretization error
becomes a good common error for both adaptive bisections
and DH. This allows us to compare grids sampled with both
methods systematically across various values of H and L.

Finally, errors due to the finite precision of the floating-point
unit are considered. These arise in the matrix inversion (32),
where inspection reveals terms of opposite sign. They can be
detected by plotting 02(N) as a function of grid resolution.
For small grids, o2(IV) almost follows a power-law, with little
spread. Numerical errors are visible as a net increase of this
spread, see Fig. 10. To be on the safe side, we choose the max-
imal L to be 4 less than the point where we first see numerical
eITors appear.

C. Error rate depending on &’

This section addresses the question of vertical errors, i.e.
bridges that were deemed uncritical by the adaptive bisec-
tion routine (cf. Sec. IIC5), yet contained an excursion that
crossed the threshold for the first time. This probability,
P(X;, > m), where X; marks the midpoint of a bridge,
was bounded using an error tolerance €’. Therefore, we need
to know how &’ controls the error rate. Since we can only
measure the error rate when compared to another numerically
generated grid, we compare our algorithm to a path generated
using the Davies-Harte algorithm of equal precision. The pro-
cedure is as follows: In a first step, the Davies-Harte method
is used to generate a path on the dyadic lattice A”. For this
path, and a threshold m, the first-passage time is calculated
using its linear interpolation as detailed in Sec. IIC2. Then,
only times in the subgrid A9 C A’ are copied into a second
path. This path is handed over to a modified adaptive bisection
routine (cf. Alg. IT C). The bridges of the grid are successively
checked, at each step deciding whether to bisect as discussed
in Sec. IIC5. Once a midpoint needs to be drawn, it is not
randomly generated, but taken from the full grid at the same
time. The full grid thus serves as a phone book for the adap-
tive bisection algorithm, where points are looked up if they lie
at points the algorithm would have otherwise generated ran-
domly. The algorithm then outputs its own estimate of the
first-passage time. If the first-passage times disagree, this is
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FIG. 3. Error rate from phone book test for various values of &’ for
H = 0.33. The error rate is almost identical when changing the ini-
tial grid size from 28 (red squares) to 2* (blue triangles) at the same
maximum bisection level L = 20. When lowering the maximum bi-
section level to L = 16, the error rate improves. The relation between
error rate and error tolerance decreases approximatively linearly over
several orders of magnitude (compare with gray line). The total error
rate is approximately 10¢’ for L = 20 (solid gray line) and about
3¢’ for L = 16 (dashed gray line). Note that the prefactor is much
smaller than the number of points, which can read off from Fig. 5.
Error rates were averaged over 10° to 10° iterations.
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FIG. 4. Average number of new midpoints generated at bridge level £,
for various values of H as a function of /H. For equal values of {H,
lower Hurst parameter implies a larger number of average bisections.
These numbers are virtually independent of the initial grid size, as
shown for A* (circles) and A® (triangles).

considered an error. We refer to this check as phone book test.
This test is iterated 10° times, and the error rate PLS! - is de-
fined as the ratio between errors and the number of iterations.

The results are shown in Fig. 3, where we compare the error-
rate for different values of ¢’ and for three different grids of
varying initial grid size, and maximum bisection levels. The
plot shows that the total error rate and error tolerance ¢’ de-
pend on each other linearly, indicating that £’ is a suitable re-
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FIG. 5. Average number of bisections M as a function of the max-
imum bisection level L (i.e. Nog = 2%) for different values of H
(Inset: M versus LH). Aslong as H > 0.33 growth is asymptoti-
cally approximately linear in L, corroborating M ~ log(Neg). For
smaller values of H, either the linear regime is not yet reached, or
the growth is stronger. (5000 iterations with initial grid A® and error
tolerance ¢’ = 10~%). For H = 0.5 extrapolation was used.

placement for € introduced in Eq. (15). The plot further shows
that the error rate remains almost identical when replacing the
initial grid A® by A* (which contains 16 points only). Further,
the error rate improves if the maximum bisection level is low-
ered. When lowering the effective system size from 22° to 216,
the error rate lowers approximately by a factor of three.

In summary, this plot confirms that the computationally
cheap variant (18) allows us to control the vertical errors (false
negative results of the criticality test).

D. Average number of bisections

In this section, we investigate how many points are added
to the initial grid, and how the additionally inserted midpoints
are distributed over the different generations. The number of
midpoints generated, M, is the main expense of computational
resources, since each point requires promoting an inverse cor-
relation matrix from size n to n + 1 requiring O(n?) steps.

Each midpoint that is generated bisects a bridge at level ¢
and creates two sub-bridges at level /1. In order to know how
the algorithm spends most of its time, we simulated the adap-
tive bisection routine 10* times over an initial grid of size A*
or A® and measured the average distribution of the M newly
generated midpoints over the different levels. The results are
shown in Fig. 4.

While the distribution remains virtually unchanged when re-
placing the initial grid by A%, its shape changes for different
values of Hurst parameter H. For H > %, the distribution
remains flat and even descends for ¢ > 5/H. For H = % it
remains constant for ¢ > 8 (at around 11 midpoints per gener-
ation), while for H < 3 (see figure for H = § and H = 7),
the number of inserted midpoints increases, and tends to be at



higher bridges.

Since the number of additionally inserted points M is cru-
cial to the performance of ABSec, the routine is designed to
minimise this number, with a hypothetical minimum of L — g
points (when finding the first-passage event with no fault). The
hypothetical maximum corresponds to a full bisection of the
grid which would require 2 — 29 ~ 2 additional points (this
occurs when the path does not cross the threshold at all and
¢’ — 0). In Fig. 5, we show the total number of bisections M
for various system sizes L, averaged over 10? realisations. The
number of additional points ranges from 40 to 1500, where
larger system sizes lead to an increase of M. For H = 0.33
and L = 32, the average of additional points is M = 710
which corresponds to 1.6 x 10~7 of the full grid. This means
that with that fraction of the full grid only, the algorithm iden-
tifies the first-passage time to the same accuracy as DH (up to
vertical errors controlled by ¢/ = 10~ in this case).

We observe that for values of H 2> % the number of bisec-
tions grows first sublinearly and then linearly in L. This be-
haviour changes for values H < %, where growth is stronger,
and we may not yet be in the asymptotic regime. This is also
indicated by the profiles shown in Fig. 4, where for lower val-
ues of H the distribution ceases to tend to a plateau, but grows
for higher levels of bisection ¢.

E. Computing time and complexity estimate

In this section, we analyse how the performance of our al-
gorithm varies with different parameters, and how it compares
to DH. In loose terms, we expect the initial grid, generated by
DH, to cost O(29log(29)), and each of the M bisections to
cost k2 with k, the number of gridpoints, i.e. costs, or more
precisely the algorithmic complexity, should behave as

29+ M 1 )
CABSec(g M) ~ > K~ S+ M) (34
k=29

It is therefore evident that the majority of the computational
cost lies in the bisection phase, and the overall complexity is of
order O((29 + M)3). When comparing this to the complexity
of generating 2 gridpoints with DH, which is O (2% log(2%)),
one estimates that ABSec outperforms DH whenever M? <
2L log(2%). As is shown below, ABSec outperforms DH for
L 2 12to 16.

We define the performance of the algorithm via its user time,
i.e. the share of the CPU time the process spends in user space.
This means that, depending on the implementation, the total
of CPU time (“wall time”) might differ. User time is a more
robust observable, so we use it as best approximation to the
performance of the implementation.

We measure the average user time per generated first-
passage time, using either DH or ABSec. To render different
Hurst-values and algorithms comparable, we plot the user time
versus the inverse of the effective discretization error, which
scales as N for DH and 2% for ABSec. It describes how
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FIG. 6. Average user time required to find first-passage time in a
grid of effective discretization precision 272 The dashed lines in-
dicate user time for Davies-Harte method, solid lines for the adap-
tive bisection method. The three different colours indicate H =
0.33,0.5,0.67. Simulations were run 10* times for ¢’ = 10™° and
for two different initial subgrid sizes (A* circles; A® squares).

well the fBm-path is resolved numerically, taking into account
the fluctuation scaling for different Hurst-parameters.

Since at the beginning of the ABSec procedure inverse cor-
relation matrices are tabulated (cf. section IIC4), we mea-
sured the run time for 10* iterations, in order to render the
initial overhead irrelevant.

Fig. 6 shows the result of the benchmarking. For small ef-
fective system sizes, ABSec performs slower than DH, which
is due to the relatively complex overhead of bisections. For
(effective) system sizes of N 2 107 the ABSec algorithm
gains an increasing and significant advantage since its run time
only grows sublinearly.

To estimate performance time, we observe that for values
of H > 0.33, the number of additional gridpoints M grows
linearly in effective system size (cf. Fig. 5) throughout the en-
tire observed range. Based on our empirical findings, we pro-
pose a linear relation M ~ L = log,(Nes), which implies,
cf. Eq. (5), an overall computational complexity of

CABSee(N 1) = O ((m Neﬂ)3) . H> é ,
since M > 29. This estimate is corroborated by Fig. 8, where
the scaling of user time with system size agrees with our es-
timate of log(N.g)? for sufficiently large system sizes. The
linear relation between the number of bisections M and the
logarithmic system size L, however, does not extend to smaller
values of H, where Fig. 5 indicates super-linear growth. Still,
testing the ABSec routine at H = 0.25 for an effective system
size of Nog = 242 gave an average user time of 6.2s and was
about 300000 faster than an extrapolation of the user time for
DH at the same system size.> This shows that for all practi-

(35)

2 This experiment was run with an initial grid A% and &’ = 1077,
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FIG. 7. User time for ABSec compared to DH for two different initial
grid sizes and two different values of error tolerance €’. For a hundred
times higher error tolerance, user time increase by up to 60%.

cal purposes, ABSec remains a much faster algorithm even at
parameters where estimate (35) seems to no longer hold.

For H = (.33, due to memory limitations, DH is unable to
generate paths larger than N = 224, where ABSec is already
about 40 times faster. Since ABSec is also more memory-
efficient (see next section), we can generate grids of size up to
232 for which, if we interpolate the growth of DH?, we find that
ABSec is 5500 times faster than DH for these parameters. For
H > %, the advantage is less pronounced, and at a comparable
discretization precision, the algorithm is “only” 40-50 times
faster at H = 0.67.

Performance also depends on the initial grid size. In Figs. 6
and 7, we compare run times for two different initial grids, A4
and A8. For larger initial grid sizes, the algorithm is slower
since more points need to be generated initially. An increase
in initial grid size leads to a decrease of 15% (for H = 0.33)
in the average number of bisections. This is approximately
outweighed by the time DH takes to generate a path on A8
(cf. Fig. 6).

The run time increases only slowly for a smaller error tol-
erance. In Fig. 7, we show how user time decreases when
changing €’ from ¢/ = 107 to ¢’ = 10~". For an effective
precision of 2%, user time increases by roughly 60 %. Since
error rates grow linearly with ¢’ (see Fig. 3), we conclude that
for an error rate 100 times lower one only needs to invest 60%
more user time.

All together, these observations show that the algorithm be-
haves in a controlled manner for varying error tolerances and
initial grid sizes. Depending on the number of iterations, and
the quality of the data desired, choosing g (initial grid size), L
(desired precision), and ¢’ (error tolerance level) accordingly

3Since DH scales with Nlog(N), we fit with f(N;a,b,c) =
N (alog(N) +b) +c.
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H = 0.67, cf. Fig. 6). They corroborate the estimate of CABS¢¢ ~
log(Neg)®. Straight lines indicate fits of the form a log(N) + b. The
inset shows the ratio between data points and the fit.

leads to an algorithm that performs up to 5000 times faster
than DH at H = 0.33, that was hitherto very hard to access
with high precision. The algorithm should be tested more for
H = 0.25, where it allows one to reach a precision unimagin-
able by DH.

F. Memory requirements

As a final benchmark of our algorithm, we consider mem-
ory usage. The latter is defined by the resident set size of the
process, as measured by get rusage. When using DH, the
full grid needs to be saved, and in doing so memory usage
scales like N. Fig. 9 shows memory usage for both DH and
ABSec when performed for different effective discretization
precisions and initial grid sizes. It shows that for large sys-
tem sizes, ABSec gains a growing and significant advantage.
To generate a path of 228 lattice points in double precision
via DH, one requires 10 GB working memory, whereas AB-
Sec uses between 20 and 80 MB, depending on the initial grid
size. This represents an improvement by a factor of 125 to 500.
This is due to the fact that only the initial grid which scales as
O(29), the additional gridpoints of order O(M) and a corre-
lation matrix, scaling as O(29 + M)?, need to be stored. As
implemented, additional memory is needed for the catalogue
of inverse correlation matrices (cf. Eq. (14)) which occupies
memory of order O(239), so including the catalogue overall
memory space grows like 239 + (29 + M)?2. Since we can
assume that 29 < M, the necessary memory grows with or-
der M?. For values of H > %, we empirically found that
M ~ log(Nest), such that in that parameter range we estimate
memory to grow with

MABS (N g) = O (log(Newr)?),  H 2 (36)

Wl
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FIG. 9. Memory usage for DH and ABSec for two different initial
subgrid sizes. DH scales linearly in N, while ABSec grows only
slowly (see text for estimate). For system of size Neg = 225, ABSec
needs only 10™2 to 10~ of the memory for DH. For larger systems
or smaller [, the advantage of ABSec is even bigger. Measurements
were taken after 10* iterations.

This advantage is again due to M < 2%, i.e. using the fact
that the first-passage time can be found to equal precision with
much less grid points.

G. Floating point precision

Currently, our implementation uses the 64-bit double
type. Since the variance of a bridge-point is calculated from
the subtraction of quantities of O(1) (cf. Eq. (30)) whose dif-
ference can be as small as O(Q_LH ), the subtraction suffers
from the finite floating-point precision when L is too large, as
is demonstrated in Fig. 10 (cf. caption for details). This leads
t0 Lyax ~ 10.5/H, or N ~ 2 x 107,

H. Discussion

In this section we illuminated several aspects of our algo-
rithm that show how it is capable of generating first-passage
times with high numerical precision using several orders of
magnitude less CPU time and memory as compared to DH.
We chose to compare ABSec to DH because the latter is
widely spread in simulating first-passage times of fBm (see
e.g. [6, 7]), and since it is the fastest known exact genera-
tor of fBm. Since our method is also exact (the statistics of
the grid generated is bias-free), we think of DH as the natural
benchmark. There are related approximative algorithms like
the random midpoint displacement algorithm Rz, ;- that also in-
serts midpoints, only taking into account the ¢ left and r right
nearest neighbours [18]. This neglects long-range correlations
between small increments at ¢, ¢ which even for ¢; < ¢, are
correlated algebraically via (t1 — t2) ™' + O ((H — 3)?) (for
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FIG. 10. Ratio between sampled variance and no-neighbour-estimate
of variance (cf. Eq. (17)) of an inserted midpoint X, versus the level
of the bisected bridge. For H = 0.5 (green), the ratio equals 1, as BM
is Markovian. For H # 0.5, the variance fluctuates, as shown by the
error bars for one standard deviation. Numerical errors due to a loss
of floating point precision become relevant around Lmax ~ 11/H.
ABSec was used with an initial grid A® and &’ = 107°.

H # %). The ABSec algorithm uses the full inverse corre-
lation matrix of all points generated and is therefore closely
related to exact procedures like DH.

Supported by our experiments, we are able to control both
vertical and horizontal errors at the scale of inherent errors
of a Monte Carlo simulation. In practice, the limiting factors
are not systematical errors of the algorithm but floating point
imprecisions stemming from the matrix inversion.

The phone-book test used to asses the error rate does not
take into account issues of precision when drawing new mid-
points, which are copied from a pre-generated grid. Since this
is an implementation-dependent grid, we decided to only use
the phone-book test since the errors caused in that procedure
are the ones inherent to the algorithm itself. An implementa-
tion with a higher-precision floating-point unit seems highly
desirable.

IV. SUMMARY

When simulating first-passage times, or any other non-local
observable, of fractional Brownian Motion, the large fluctua-
tions for H < % require the grid to have a very high resolution
for the same quality of data as for H > % Generating a fine
grid is particularly expensive, both in memory and time. The
algorithm proposed here refines the grid only where it is likely
to impact the first-passage event. To give rigorous notion to
that idea, we developed a precise criterion for when and where
the grid should be refined. The new mid-points are then sam-
pled exactly. Comparing it to the fastest known exact sampler,
the Davies-Harte algorithm, we find that our implementation
of the algorithm is 5000 times faster and uses 1000 times less
memory when applied to H = 0.33 at Nog = 232, due to the



fact that only roughly 0.1% of the full grid is needed to deter-
mine the first-passage event. Our algorithm works with a prob-
abilistic approximation, and the error rate can be bounded by
10~ or even 10~8. This should be sufficient for most Monte
Carlo experiments and be in the order of numerical (algorithm-
independent) errors.

We have successfully used the algorithm to validate the an-
alytic results for the first-passage time in Ref. [9]. There we
used 2.5 CPU years at precision N = 228, With DH we would
have had to reduce the precision to N = 224, which still would
have taken 75 CPU years.

Finally, the concepts presented here can be used for other
observables and other Gaussian processes. We hope that our
algorithm contributes to confirming theoretical predictions on
extreme events in Gaussian processes that where hitherto nu-
merically inaccessible at the required precision.
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Appendix A: Derivation of the critical strip length

In this section we derive the width of the critical strip which
was introduced in Sec. IIC5. The critical strip refers to the
distance between a fBm-bridge of size 5t = 27¢ and the
threshold m, below which the midpoint of the bridge may sur-
pass the threshold with probability larger than €. We ignore
any other grid points beyond the two fixed bridge points. By
translational invariance, we set Xg = 0, and Xs5; = a (a € R).
The problem is then equivalently stated as

P(X5, > cle)) =¢, (A1)

where X P is the fBm-bridge process conditioned on X, Xs;.
Following the derivation in [32], the law of the fBm-bridge is
itself a Gaussian process with first and second moment,

(Xe6(Xor — a))

= T ) -
Xthé X t— a
(o) = Sggment W

where on the right-hand-side the averages are over free fBm
paths. As shown in Resf. [32], Egs. (8) and (9), the averages
are

By C(t,dt)
<X§X§>C:C(S’t)_w (A5)

c(ot,ot)
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where C(s, t) is the correlation function of Eq. (3). Since we
are only interested in the midpoint with s = t = §t/2, this
yields

n=(XpPpn) =73, (A6)
o= ((x8,2) = (2027 — L) (gey2t
< / > 2)

This determines the normal distribution of the midpoint and by
translational invariance proves the values used in Sec. IIC5.

(AT)

|
/N Ne

Appendix B: How to generate an additional random midpoint

We derive the conditional law of an additional randomly
generated midpoint for an arbitrary Gaussian processes as
given in Egs. (25)-(26). Let TV = t1,--- ,ty and XN =
X¢,,--+, Xty be given, and denote the point to be inserted
by tny41 and X;,, (the times are not ordered). For ease of
notation, we write X; = X;,. As a Gaussian process, the vec-
tor X = (X1, , XN, XNH)T is a normal random variable
with mean zero and covariance matrix

<XXT> = CO(tit;) = C(N+1), 1<i,j<N.BI)

It has a symmetric inverse correlation matrix C;_ jl. Its proba-
bility law is therefore given by

N+1 -1
5 eXp (_% Ei,j:l Xicz’,j Xj)

P(X)= . (B2)
(2m)N+1 det(C)
Since X1, ---, Xy are fixed, Xy, conditioned on X'V fol-
lows the marginal distribution
P(Xy11|2)

1+y2 -1 N =1
exp (_§XN+1CN+1,N+1 =2 =1 XJCNJrlJXNJrl)

\/ 2”/01?111,1\41
(B3)

Note that the normalizing factor in Eq. (B2) has cancelled,
since Eq. (B3) is a conditional average. This is a Gaussian
distribution

exp (—%2 (Xnt1 — M)Z)

P(Xyp|X™N) = o , (B4)
with variance
1
0’ = (B5)
CN+1,N+1
and mean
N O]T[l
L
n=— Z Xj# (B6)

—1
j=1 C(N+1,N-‘,-1
The mean can be seen as an average of the X; with weight

-1 -1
CN+1,j/CN+1,N+1~



Appendix C: Derivation of the enlarged correlation matrix

In this section, we derive the algorithm to promote inverse
correlation matrices as given in Egs. (27)—(32). Assuming that
C(N) and C~*(N) are known, the aim is to find C'(N + 1)
and C~1(N + 1) in as little as possible computational steps.
The starting point is the observation that C(N + 1) contains
C(N) as block matrix and is only augmented by a row and
identical column,

(o) | 7
O(N+1)—< ] <X?v+1>> (C1)

where 7 is defined in Eq. (27) and (X3, ,) = 2t3,, in the
case of fBm, but is intentionally left general. For the more
difficult part, the inversion, we assume that the inverse corre-
lation matrix is of the form

CYUN+1)= (ASN) 5) (C2)
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for some arbitrary (symmetric) matrix A, vector b and number
c. Multiplying matrices (C1) and (C2) results in

co-1 ( (NAN) +7@ 5" |

C(N)b + 7 )
(C(N)b+c7)T

| 577 + e (X%,,)

=1y, (C3)

such that one obtains the system of equations

C(N)A(N)+7®b =1y, (C4)
C(N)b+c¢y=0, (C5)
by +e(X%,,)=1 (C6)
This is solved by
_ C ( )’Y®’Y C (N)
AN)=CYN) + 5 . (CT)
2 c- ( )l
b=— — -, (C8)
(X%41) —TC-UN)T
c L (C9)

T (XZ) - ATCI(N)Y

Defining g as in Eq. (28) and o2 as in Eq. (30), one arrives at
the inverse matrix (32).
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