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When driving a disordered elastic manifold through quenched disorder, the pinning forces exerted on the
center of mass are fluctuating, with mean fc = −Fw and variance ∆(w) = FwF0

c
, where w is the externally

imposed control parameter for the preferred position of the center of mass. ∆(w) was obtained via the functional
renormalization group in the limit of vanishing temperature T → 0, and vanishing driving velocity v → 0.
There are two fixed points, and deformations thereof, which are well understood: The depinning fixed point
(T → 0 before v → 0) rounded at v > 0, and the zero-temperature equilibrium fixed point (v → 0 before
T → 0) rounded at T > 0. Here we consider the whole parameter space of driving velocity v > 0 and
temperature T > 0, and quantify numerically the crossover between these two fixed points.

I. INTRODUCTION

A. Generalities

Elastic manifolds driven in a disordered medium have a de-
pinning transition at zero temperature. Typical examples are
the motion of domain walls in magnets [1–4], contact line de-
pinning [5], earthquakes [6, 7] and the peeling of a RNA-DNA
helix [8]. What these systems have in common is that they are
governed by an over-damped equation of motion for the in-
terface u(x, t) which is driven through a quenched disordered
medium,

∂tu(x, t) =∇2u(x, t) +m2[w − u(x, t)] (1)

+ F
(
x, u(x, t)

)
+ η(x, t),

w = vt, v ≥ 0.

The disorder forces F (x, u) are short-range correlated,
quenched random variables, whereas η(x, t) is a thermal
noise. Their correlations are

F (x, u)F (x′, u′) = δ(x− x′)∆0(u− u′), (2)
〈η(x, t)η(x′, t′)〉 = 2Tδ(x− x′)δ(t− t′). (3)

The equation of motion (1) can be studied via field theory.
Its principle object is the renormalised force-force correlator
∆(w). Interestingly, ∆(w) is the zero-velocity limit of the
connected correlation function of the forces acting on the cen-
ter of mass uw = 1

Ld

∫
x
u(x, t) [9]

∆(w) = lim
v→0

∆v(w),

= lim
v→0

Ldm4〈[uw − w][uw′ − w′]〉c. (4)

The functional renormalization group (FRG) predicts two dis-
tinct universality classes, termed depinning and equilibrium.
Equilibrium is the limit of first v → 0 and then T → 0,
whereas depinning is the limit of first T → 0 and then v → 0.
In both classes, ∆(w) has a cusp and admits a scaling form

∆(w) = m4ρ2∆̃(w/ρ). (5)

Their first distinction is in the scaling of ρ,

ρ ∼ m−ζ , (6)

defining a roughness exponent ζ. The second distinction is the
shape function ∆̃(w).

The function ∆(w) was measured in numerical simulations
[10, 11], and experiments [2, 4, 5, 12]. These measurements,
both in simulations and experiments, are done by moving the
center of the confining potential of strengthm2 at a small driv-
ing velocity v. For depinning, such measurements were done
in soft ferro magnets, both with SR and LR elasticity [4] and
DNA/RNA unzipping [8]. In all cases, the measured force-
force correlator ∆(w) agreed with the predictions from field
theory, and was rounded by a finite driving velocity v > 0.
While the experiments above are for zero-temperature depin-
ning, in general the driving velocity v > 0 is not the only
perturbation and the system is subject to thermal noise at tem-
perature T > 0 as in Eq. (1). This prompted us to study the
crossover between the two fixed points. Apart from the two
fixed points depinning and equilibrium, only small deforma-
tions of these fixed points are well understood: For depinning,
driving at a finite velocity can be accounted for by folding the
zero-velocity fixed point with the response function, which
leads to a rounding of the cuspy fixed point [13]. On the other
hand, the equilibrium fixed point is rounded by a finite tem-
perature, describable by a boundary layer [14]. The goal of
this paper is to describe the crossover between these two lim-
iting cases. We do this by means of numerical simulations.
Choosing to work at fixed m2, this is parametrised by v and
T .

B. Mean-field description

Since these questions are difficult to treat numerically for
an interface, our study is done for a single degree of freedom
which can itself be interpreted as the center-of-mass of the
interface, or the mean field. Denoting the center of mass of
the interface by u(t), the equation of motion (1) and noise
correlations (2)-(3) reduce to

∂tu(t) = m2[w − u(t)] + F (u) + η(t), (7)
〈η(t)η(t′)〉 = 2Tδ(t− t′), (8)

F (u)F (u′) = ∆0(u− u′). (9)

The first term is the force exerted by a confining well, i.e.
a Hookean spring with spring constant m2. F (u) is the
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FIG. 1. w − uw for δt = 10−3, v = 0.01, m2 = 0.1, T = 0.5.
(DNS). Forward going sections are orange, and backward going sec-
tions are blue. Obtained after smoothening of the data in green.

random pinning force, possibly the derivative of a potential
F (u) = −∂uV (u). Specifying the correlations of F (u) de-
fines the system. Following [13] we consider forces F (u)
that describe an Ornstein-Uhlenbeck (OU) process driven by
a Gaussian white noise ξ(u)

∂uF (u) = −F (u) + ξ(u), (10)
〈ξ(u)ξ(u′)〉 = 2δ(u− u′).

At small distances u � 1, the forces F (u) have the statis-
tics of a random walk, thus its microscopic limit is the ABBM
model [15, 16]. At large distances w � 1 forces are uncorre-
lated; this is termed random-field (RF) disorder.

Returning to the equation of motion (7), at zero temperature
and at slow driving, most of the time the lhs vanishes. This
condition defines the force Fw, given w, and the associated
critical force fc as

Fw =m2(uw − w), (11)

fc := lim
v→0
−Fw = lim

v→0
m2(w − uw). (12)

The signs are such that exerting a positive force fc overcomes
the pinning forces F (uw). Due to the thermal noise, uw is a
fluctuating variable allowing for motion to occur even below
the threshold force by thermal activation over energy barriers
U . For sufficiently small velocities, this allows the dynam-
ics to equilibrate with activation times following an Arrhenius
law τ ∼ eU/T . Thermal fluctuations allow for uw to go back-
ward, violating Middleton[17]. In Fig. 1 this is illustrated
with forward segments in orange and backward segments in
blue. In green in the background is thermal noise. The effec-
tive disorder is defined as

∆v,T (w) = FwFw′
c
. (13)

We have written a subscripts v, T to remind that measure-
ments depend on both v and T . Finally, the critical force is
related to the area of the hysteresis loop as

m2[(w − uw)
forward

− (w − uw)
backward

] = 2fc. (14)

1 2 3 4
w

0.1

0.2

0.3

0.4

Δ

(w)

0.5 1.0 1.5 2.0 2.5 3.0
w

0.1

0.2

0.3

0.4

Δ

(w)

FIG. 2. ∆̃(w) for the Sinai model (blue) obtained by numerical inte-
gration of Eqs. (16)-(18). It is compared to the energy minimisation
for m2 = 0.1 (red), m2 = 0.01 (cyan dashed) indistinguishable
from the theory. Statistical errors are within line thickness. Inset:
Idem for the OU model in Eq. (10).

Hysteresis is absent in equilibrium where f = 0 and maximal
at depinning.

C. Review of known results for a single perturbation

Before we present our findings answering the questions
posed in the introduction, let us review what is known for the
single perturbation cases.

1. Equilibrium fixed point

The zero-temperature equilibrium fixed point can be mea-
sured by energy minimisation (EM) at fixed w of

Hw(u) =
m2

2
(u− w)2 + V (u), (15)

see appendix A for implementation details. Here V (u) =
−
∫
F (u)du is the random potential. For the random-field

disorder relevant for Eq. (10), the model is known as the Sinai
model, first introduced in [18]. The effective force-force cor-
relator reads (see [19], with corrections in [20])

∆(w) = m4ρ2m∆̃(w/ρm), (16)

ρm = 2
2
3m−

4
3σ

1
3 , (17)



3

∆̃(w) = − e−
w3

12

4π
3
2
√
w

∞∫
−∞

dλ1

∞∫
−∞

dλ2 e−
(λ1−λ2)2

4w

×ei
w
2 (λ1+λ2)

Ai′(iλ1)

Ai(iλ1)2
Ai′(iλ2)

Ai(iλ2)2

×
[
1+2w

∫∞
0

dV ewV Ai(iλ1+V )Ai(iλ2+V )

Ai(iλ1)Ai(iλ2)

]
.

(18)

The roughness exponent is thus ζ = 4/3. Fig. 2 shows in
blue the analytical solution of Eqs. (16)-(18). In red and cyan
are numerical simulations of Eq. (15) for σδ(u − u′) corre-
lated forces, i.e. 〈V (u) − V (u′)〉 ∼ σ|u − u′|. Already for
m2 = 0.01, the simulation has converged to the theory. The
inset shows comparison to the model (10) of OU forces, which
belongs to the same universality class. Since the microscopic
disorder integrates to 1, σ = 1. At finite temperature, ther-
mal fluctuations smoothen the shocks and round the cusp in a
boundary layer u ∼ T . This is shown in Fig. 3. The size of
this boundary layer can be estimated from the FRG [20],

∆eq
T (w) = AT∆eq(w̃), (19)

w̃ =
√
w2 + t2,

t

ρ
=

3

ε

2Tm2

∆(0)
, (20)

AT =

∫∞
0

dw∆eq(w)∫∞
0

dw∆eq(w̃)
. (21)

The amplitude AT ensures normalisation and the area is pre-
served under thermal rounding. A brief derivation[20] of this
set of equations in given in appendix B. The dimensionless
temperature Tm ∼ Tmθ scales with its own exponent, where
θ = d− 2 + 2ζ is the equilibrium energy exponent.
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FIG. 3. Boundary layer analysis for equilibrium random field disor-
der (EM) for the dimensionless rescaled disorder ∆̃(w) and rescaled
to have unit amplitude and slope 1 atw = 0. Black solid, v = 0, T =
0 fixed point, black dashed, numerical measurement at m2 = 0.01,
T = 2, red dotted, thermal boundary layer ansatz using equations
(19). Inset: The effective force at various T .

A more delicate question is what the dynamical exponent
z in equilibrium is. The observation that z = 2 in both the
free theory as well as at depinning suggests that this likely
holds also in equilibrium. Finally, the pinning force fc = 0 in
equilibrium.

Depinning fixed point

For depinning the effective disorder (4) is given by [21]

∆(w) = m4ρ2m∆̃Gumbel(w/ρm), (22)

∆̃Gumbel(w) =
w2

2
+ Li2(1− e|w|) +

π2

6
, (23)

ρm =
1

2m2 ln (m−2)
. (24)

The roughness exponent thus is ζ = 2−; the dynamical expo-
nent is z = 2− [13]. In the simulations, we can measure (22)
at zero velocity, by moving the parabola from w → w + δw
and waiting for the dynamics to cede. In an experiment, per-
formed at finite v, ∆(w) is rounded by the driving velocity
[13]

∆v(w − w′) =

∫∫
R(t)R(t′)∆(w − w′ − v(t− t′)). (25)

By construction,
∫
t
R(t) = 1 and the integral under the depin-

ning fixed point is preserved under velocity perturbations. At
small v, (25) can be approximated by

∆v(w) =
1

N
∆(
√
w2 + (vτ)2), (26)

where N is chosen s.t.
∫
w

∆v(w) =
∫
w

∆(w).
At v = 0 the critical force fc defined in (12) is maximal; it

decreases at v > 0 [13]

fc :=m2(w − uw)− v (27)

II. RESULTS

We now present our numerical results, mostly obtained by
direct numerical simulation (DNS). First in section II A we
check Eqs. (16)-(21) for equilibrium. In section II B we dis-
cuss several order parameters characterizing the crossover be-
tween equilibrium and depinning. Section II C shows that
with the rescalings established so far, we can collapse all our
data.

A. Equilibrium regime and thermal peak

In Fig. 5 we show the results of numerical simulations of
∆v,T (w) in the near-equilibrium regime. The presence of the
thermal noise leads to a thermal peak (TP) at small w. In
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FIG. 4. (a) Comparison of the prediction (28) (blue) for m2 = 0.01, v = 10−3, T = 2 to a measurement of the noise correlations in the
absence of disorder. (b) and (c) are in presence of quenched disorder.
Subfigures (b) and (c): For m2 = 0.01, T = 2 (b) and T = 3 (c) comparison of the equilibrium ∆eq

T (w) (green, EM) to ∆v,T (w) at
v = 10−3 (blue solid, DNS) and v = 10−4 (orange solid, DNS). In dashed cyan/red, we show the combination (30). This correctly captures
the amplitude, but a signal of anti-correlations remains. In the inset we show the difference δ∆v,T (w/v), which quantifies the corrections due
to non-equilibration.

absence of disorder, it reads

∆TP
v (w − w′) = 2Tm4

∫ ∞
−∞

R(t, τ)R(t′, τ) dτ

= Tm2e−m
2|t−t′|

= Tm2e−m
2|w−w′|/v. (28)

Here R(t) = Θ(t)e−m
2t is the response function of the free

theory. This is checked in Fig. 4(a).
Let us now turn back to the disordered case, at finite veloc-

ity v > 0 and finite temperature T > 0. We make the ansatz

∆v,T (w) = ∆eq
T (w) + ∆TP

v (w) + δ∆v,T (w). (29)

The first term is the relevant result for v = 0. The second term
is the contribution (28) from the thermal noise. If the driving
velocity is small enough for the dynamics to equilibrate, then
we expect the third term δ∆v,T (t) to vanish, or at least to be
small.

Figs. 4(b)-(c) show the combination

∆v,T (w)−∆TP
v (w) = ∆eq

T (w) + δ∆v,T (w), (30)

for T = 2 (b) and T = 3 (c). Whereas it correctly subtracts
the thermal noise at w = 0, the remaining term δ∆v,T (t) is
visible. In the inset, we show δ∆v,T (t), i.e. the error we make
in the approximation ∆v,T (w) ≈ ∆eq

T (w)+∆TP
v (w). We see

that despite a difference of v by a factor of ten, the rescaled
combination δ∆v,T (t = w/v) at small t depends little on v.
This estimates the boundary layer in our example to be δt ≈ 2.

Eq. (29) approximately predicts the amplitude for equilib-
rium,

∆v,T (0) ≈ ∆T (0) +m2T. (31)

20 40 60 80 100 120
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0.03

0.04

0.05

0.06
Δ(w)

FIG. 5. The equilibrium regime for T = 2 with the zero temperature
fixed point in red and ∆T (w) (EM) shown in green. Simulation of
(7) shows v = 0.01 (brown), v = 10−3 (blue) and 10−4 (orange)
we show ∆v,T (w) (DNS). For the smallest two driving velocities the
agreement is excellent, and the thermal peak, rounded by the driving
velocity, is clearly visible. The largest velocity no longer obeys the
decomposition (31) and belongs to the crossover regime.

As can be seen in Fig. 5, this relation breaks down for v =

0.01, corresponding to T̂ = Tm2/3 ln (v) ≈ 2. A look at
Fig. 6, discussed next, shows that there f/fc ≈ 0.05, which
signals the approach to the crossover regime.
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FIG. 6. Scaling collapse of the measured force for T > 0, and dif-
ferent m, v. We found an optimal collapse for v0 = 1, but any v0 of
the same order of magnitude does well.
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FIG. 7. This plot shows that f/fc from Fig. 6 is a stretched exponen-
tial, with an exponent of about 0.55. Gray dashed is a fit to a linear
function, gray dotted putative error bars.

B. Order parameters

1. The mean force as an order parameter

Since the measured pinning force f is maximal at zero-
temperature depinning, and vanishes at equilibrium, it is a
natural candidate for an order parameter. We define

Ψf :=
f

fc
, (32)

which vanishes in equilibrium and is 1 at depinning. The
inset of Fig. 6 shows this force ratio for different m2, T
and v, for v = 10−2, 10−3, 10−4, m2 = 0.1 − 10−3 and
T = 0− 2. Using that the dimensionless temperature is Tmθ

and velocity and temperature are related by Arrhenius’ law as

-12 -10 -8 -6
ln(T


)

-2

-1

1

2

lnρdep - ρT 

FIG. 8. Check of the scaling relation (35). The green dashed line has
a slope of φ = 0.50.

ln(v) ∼ 1/T , a natural ansatz for a scaling parameter is

T̂ := Tm2/3 ln(1/v). (33)

This collapses all curves on a single master curve as shown in
the main plot of Fig. 6.

We can go one step further. To do so, let us plot the log of
f/fc as a function of T̂φ. We find on Fig. 7 an almost linear
behaviour for an exponent φ = 0.55, with slope −2.41. Thus

f

fc
≈ e
−
(
T̂
T̂c

)φ
, φ ≈ 0.55, T̂c ≈ 0.2. (34)

is a stretched exponential. Note that if the fit is attempted
close to f ≈ fc, one can also conclude on φ ≈ 0.51. If we
restrict to 10 percent deviation, this allows for φ in a range
φ ∈ [0.51, 0.56]

We expect the regime f/fc → 1 to be governed by the
depinning fixed point, and f/fc → 0 by the equilibrium fixed
point. The crossover regime should be best visible for f/fc ≈
1/2 .

2. The correlation length as an order parameter

In section II B 1 we established the mean force as an order
parameter between equilibrium and depinning. While this is
the most robust quantity, there are other quantities one might
use, and compare to their values for zero-temperature depin-
ning. The first is the correlation length ρ, which decreases
with temperature compared to its value at depinning. If one
considers zero-temperature depinning as reference point, then
at small temperatures,

ρdep − ρT ∼ T̂φ, (35)

with φ = 0.50± 0.02, see Fig. 8.
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FIG. 9. The change with temperature of the area (main plot) and
amplitude at w = 0 (inset) for φ = 0.56

3. The disorder amplitude as an order parameter

Assuming that

∆v,T (w) = m4ρ2T ∆̃(w/ρT ), (36)

the amplitude ∆v,T (0) at small T should behave as

∆v,T (0)

∆dep(0)
− 1 '

(
ρT
ρdep

)2

− 1 ∼ Tφ +O(T 2φ). (37)

Our measurements presented in the inset of Fig. 9 are consis-
tent with an exponent in a range φ ∈ [0.5, 0.6].

4. The disorder integral as an order parameter

Both the correlation length as well as the amplitude are very
sensitive to details of the rounding around the cusp. More
robust is to consider the area under ∆(w). The above relations
above would imply that∫

w
∆v,T (w)∫

w
∆dep(w)

∼
(
ρT
ρdep

)3

∼ Tφ +O(T 2φ) (38)

Our data are consistent with an exponent in the range of φ =
0.5 to φ = 0.67, favoring the upper end. The decrease of the
area is shown in Fig. 9. The orange dashed lines are references
for depinning (top) and equilibrium (bottom).

C. Scaling collapses

Let us next consider scaling close to equilibrium and depin-
ning.
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Δ(w)
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0.25

Δ(w)

I

II

FIG. 10. Scaling of ∆(w) (DNS). The inset shows the equilibrium
fixed point (EM) at m2 = 0.1 (black) and ∆v,T (w) for m2 = 0.1
(red), m2 = 0.05 (purple) and m2 = 0.01 (blue) for T = 1, v =
10−3. Main plot shows the collapse of m2 = 0.01 onto m2 = 0.1
by I) rescaling only m2, II) rescaling in addition Tmθ .

1. Scaling near equilibrium

For equilibrium

∆(w) ∼ m4/3∆̃(wm4/3). (39)

While this scaling holds for allw at the zero-temperature fixed
point, the scaling within the boundary layer is more subtle.
Consider first the inset of Fig. 10. In black is shown the
equilibrium fixed point for m2 = 0.1 and red/blue/purple
show from top to bottom m2 = 0.1, 0.05, 0.01 for T = 1,
v = 10−3. In the main plot we perform a scaling collapse
from m2 = 0.01 onto m2 = 0.1. In blue dotted (I), we
rescaled by only accounting for the difference in mass, i.e.
with m4/3. One sees it clearly deviates. To obtain a full scal-
ing collapse, one needs to scale also temperature with its cor-
responding dimension, i.e. Tm−θ with θ = 2/3, leading to
the blue-dashed curve (II). The remaining offset, comes from
the velocity which also scales with m2. Using that z = 2
both in the free theory and depinning, suggest a scaling of
v ∼ m2/3. A look at the size of the boundary layer of the
thermal peak, suggests that the driving velocity should be re-
duced by a factor 2, which is approximately consistent with
the above scaling.

2. Scaling near depinning

In Figs. 11 and 12 we show the whole crossover regime
from depinning to equilibrium. The previous section studied
the change in correlation length and area as an order parame-
ter, but there is more we can say close to depinning. For this
consider Fig. 11, at v = 0.001. In the inset we use the scaling
relation (36) to collapse the curve for T = 0.02 onto T = 0.
In particular, this implies that the shape ∆̃(w) is not affected
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by temperature. When comparing experimental data to the
fixed point theory candidates, this is important as scales are
fixed using the correlation length. At larger T this no longer
holds true, and the shape changes. Another interesting feature
can be identified at a larger driving velocity. Consider Fig.
12 for v = 0.1, where the rounding due to the driving veloc-
ity is clearly present. As we now know that when approach-
ing equilibrium a thermal peak forms, one would expect some
interplay between the velocity boundary layer and the ther-
mal peak. Fig. 12 shows that this is indeed the case. For
large T > 3 an apparent cusp seems to re-emerge. Its nature
however, is very different then the cusps of the depinning and
equilibrium fixed points. There is was related to the existence
of shocks and avalanches. Here, it is an artefact of the com-
bined effect of the velocity boundary layer and the thermal
peak forming on top. This regime corresponds to T̂ = 0.32
far in the crossover regime of Fig. 6.
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FIG. 11. ∆v,T (w) (DNS) for m2 = 0.01, v = 10−3 and
T ∈ [0, 0.005, 0.01, 0.02, 0.05, 0.2, 0.5, 1] from equilibrium (red,
bottom, EM) to depinning (black, top). The inset shows scal-
ing collapse using the scaling relation in (36) for T = 0.02.
Tmθ ln 1/v = 0.03 indeed close to depinning. Brown curve cor-
responds to Tmθ ln 1/v = 0.075 already at 60 % of the maximal
value of fc. No scaling collapse could be obtained here.

III. SUMMARY AND DISCUSSION

In this work we addressed the long-standing question of the
full crossover between depinning and equilibrium. Studying
the force and the effective force-force correlator for a one-
particle model, we characterized the whole phase diagram of
finite velocity v and finite temperature T . This serves as a
reference point to experiments and simulations. We showed
that the mean force, divided by the mean force at depinning,
is a robust order parameter, allowing one to quantify where
in between depinning and equilibrium one is, and what signal
one should expect for the force-force correlations.

Our results are directly applicable to the unzipping of a
DNA hairpin, and are currently confronted to experiments.

50 100 150 200 250
w

0.05

0.10

0.15

0.20
Δ(w)

2 4 6 8 10
w

0.16

0.17

0.18

0.19

0.20

Δ(w)

FIG. 12. ∆v,T (w) (DNS) for m2 = 0.01 at fixed v = 0.1 and vary-
ing T compared to the depinning (black, top) and equilibrium (red,
bottom, EM) and thermal rounding at T = 5. From top to bottom
temperature increases T ∈ [0, 0.001, 0.01, 0.1, 0.5, 1, 2, 3, 4, 5]. At
T = 3, the velocity boundary layer disappears due the formation
of the thermal peak. Inset shows the small temperature effect on
the boundary layer. It is little affected at small T = 0.001. In-
set black dashed shows T = 0.01, v = 10−3 and purple dashed
T = 0.01, v = 10−3 showing they are not related by velocity un-
folding.

This experiment has all the ingredients studied here: It has
a finite temperature, it has random forces, and it has a confin-
ing potential whose minimum is slowly increasing at a driving
velocity v, allowing us to measure its force-force correlations.
Earlier analysis, [22] has suggested this experiment to be close
to equilibrium. Interesting in this experiment is that the stiff-
ness of the trap, (m2 in our notation) decreases during the
experiment

1

m2
=

1

m2
0

+ an =
1

m2
0

+ a′w, (40)

where n is the number of unzipped bases, itself proportional to
the position of the confining potential w, starting with w = 0
for the completely closed molecule. Reminding that m sets
the renormalization scale, we see that the experiment runs the
renormalization group for us! We report more on this exper-
iment in a future publication with P. Rissone, M. Rico-Pasto
and F. Ritort.

We hope that this work can serve as a reference work in any
situation where both the driving velocity v and temperature T
are non-vanishing, and it is a priori not clear where in the
phase diagram one is sitting. Looking at the critical force as a
ratio its value at depinning, allows one to locate where in the
phase diagram one is sitting. One can then asses and quantify
all the features discussed here: Thermal rounding, the thermal
peak and its broadening as a function of m2, the scaling in the
w direction.
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Appendix A: Numerical implementations

The number of samples is denoted

N := number of samples. (A1)

In this work we used two numerical implementations:

(i) Direct numerical simulation (DNS). To solve the cou-
pled set of differential equations (7)-(10) we use a space
discretization δu = 10−2 to first obtain the random
forces F (u) for u = nδu, n ∈ N. F (u) is then
linearly interpolated between these points. We finally
solve Eq. (7) with the Euler method, using a time-
discretization of δt = 10−3.

(ii) Exact minimisation (EM). In the statics the relevant
quantities are computed using minimisation of the en-
ergy in Eq. (15). For a given disorder realisation V (u),
the minimum of the potential as a function of w is

V̂ (w) = minu

[
V (u) +

m2

2
(u− w)2

]
, (A2)

At finite temperature, this is replaced by

V̂ (w) = V (w)− T ln

(
〈e−

V (u)−V (w)
T −m2

2T (u−w)2〉u
)
.

(A3)
Using potential differences allows to better restrict the
necessary range in u−w. For RF disorder, as is the case
for the model of OU forces, the potential is obtained by
integrating the random forces,

V (u)− V (w) = −
∫ u

w

F (u′)du′. (A4)

The effective force F̂ (w) = −∂wV̂ then becomes

F̂ (w) = m2 〈e−
V (u)−V (w)

T −m2

2T (u−w)2(u− w)〉u
〈e−

V (u)−V (w)
T −m2

2T (u−w)2〉u
.

(A5)

Appendix B: An auxiliary calculation

The size of the boundary layer can be estimated from the
finite T FRG equation for ∆̃(w). The computation has been
done in [20]. Here we give the relevant results. We define

∆̃(w) =
ε

3
κ−2yt(κu), yt(0) = 1, (B1)

T̃m =
ε

3
κ−2t =

2T

ε

(
εI1

∣∣∣∣
m=1

mθ

)
, (B2)

where I1 is the one-loop integral from field theory and θ =
d− 2 + 2ζ is the energy exponent. Note that there is a whole
family of solutions as per rescaling invariance. With these
definitions, the fixed point equation becomes

∂u

[
uyt(u)− 1

2
∂u(yt(u)− 1)2 + ty′t(u)

]
= 0. (B3)

One can then solve this for yt and relate it to the solution at
t = 0. Using this, together with rescaling invariance to define

ỹt(u) =
1

1 + t′
yt′(u

√
1 + t′), (B4)

t′ =
t

1− t
, (B5)

yields

ỹt(u) = y0

(√
u2 − 2t

t+ 1
+ 2 ln(t+ 1)

)
(B6)

' y0(
√
u2 + t2). (B7)

The last equation defines the thermal boundary layer. The pa-
rameter t is

t

ρ
=

3

ε

2Tm2

∆(0)
. (B8)

This works pretty well in the simulation (see Fig. 3).
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