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Fractional Brownian motion is a non-Markovian Gaussian process Xt, indexed by the Hurst
exponent H. It generalises standard Brownian motion (corresponding to H = 1/2). We study the
probability distribution of the maximumm of the process and the time tmax at which the maximum is
reached. They are encoded in a path integral, which we evaluate perturbatively around a Brownian,
settingH = 1/2+ε. This allows us to derive analytic results beyond the scaling exponents. Extensive
numerical simulations for different values of H test these analytical predictions and show excellent
agreement, even for large ε.

Random processes are ubiquitous in nature. While av-
eraged quantities have been studied extensively and are
well characterized, it is often more important to under-
stand the extremal behavior of these processes [1], asso-
ciated with failure in fracture or earthquakes, a crash in
the stock market, the breakage of dams, etc.

Though many processes can successfully be modeled
by Markov chains and are well analyzed by tools of sta-
tistical mechanics, there are also interesting and realis-
tic systems which do not evolve with independent incre-
ments, and thus are non-Markovian, i.e. history depen-
dent. Dropping the Markov property, but demanding
that a continuous process be scale-invariant and Gaus-
sian with stationary increments defines an enlarged class
of random processes, known as fractional Brownian mo-
tion (fBm). Such processes appear in a broad range of
contexts: Anomalous diffusion [2], polymer translocation
through a pore [3–5], the dynamics of a tagged monomer
[6, 7], finance (fractional Black-Scholes and fractional
stochastic volatility models [8]), hydrology [9], and many
more.

FBm is a generalization of standard Brownian mo-
tion to other fractal dimensions, introduced in its final
form by Mandelbrot and Van Ness [11]. It is a Gaussian
process (Xt)t∈R, starting at zero, X0 = 0, with mean
〈Xt〉 = 0 and covariance function (variance)

〈XtXs〉 = s2H + t2H − |t− s|2H . (1)

The parameter H ∈ (0, 1) is the Hurst exponent; the
process typically grows with time as tH . Standard Brow-
nian motion corresponds to H = 1/2; there the covari-
ance function reduces to 〈XtXs〉 = 2 min(s, t). Unless
H = 1/2, the process is non-Markovian, i.e. its incre-
ments are not independent: For H > 1/2 they are corre-
lated, whereas for H < 1/2 they are anti-correlated,

〈∂tXt ∂sXs〉 = 2H(2H − 1)|s− t|2(H−1) . (2)

In this letter we study the maximum of a fractional Brow-
nian motion m = maxt∈[0,T ]Xt and the time tmax when
this maximum is reached [24] with the initial condition

FIG. 1: Two realisations of fBm paths for different values of
H, generated using the same random numbers for the Fourier
modes in the Davis and Harte procedure [10]. The observables
m and tmax are given.

X0 = 0 and total time T > 0. Figure 1 shows an illus-
tration for different values of H, using the same random
numbers for the Fourier modes. We will denote PTH(m)
and PTH(t) their respective probability distributions. Pre-
vious studies can be found in [12, 13].

These observables are closely linked to other quanti-
ties of interest, such as the first-return time, the survival
probability, the persistence exponent, and the statistics
of records. Though studied since long time, most results
for non-Markovian processes are quite recent [14–16].

Following the ideas of [17–19], we encode our observ-
ables PTH(m) and PTH(t) in a path-integral,

Z+(m1, t1;x0;m2, t2) =∫ Xt1+t2=m2

X0=m1

D[X] θ[X] δ(Xt1 − x0) e−S[X] .
(3)

This sums over all paths Xt, weighted by their prob-
ability e−S[X], starting at X0 = m1 > 0 (shifted for
convenience), passing through x0 (close to 0) at time
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FIG. 2: Graphical representation of a contribution to the
path-integral Z+(m1, t1;x0;m2, t2) given in Eq. (3). The red
curve represents the non-local interaction in the action (sec-
ond line of Eq. (4)) while blue lines are bare propagators.
There are two other contributions when the time ordering is
τ1 < τ2 < t1 or t1 < τ1 < τ2, already computed in [19].

t1, and ending in Xt1+t2 = m2 > 0, while staying
positive for all t ∈ [0, t1 + t2]. The latter is enforced by
the product of Heaviside functions θ[X] :=

∏t1+t2
s=0 θ(Xs).

As Xt is a Gaussian process, the action S can (at least
formally) be constructed from the covariance function of
Xt. However this is not enough to evaluate the path
integral (3) in all generality. Following the formalism of
[19], we use standard Brownian motion as a starting point
for a perturbative expansion, setting H = 1

2 + ε with ε
a small parameter; then the action at first order in ε is
(we refer to the appendix of [19] for the derivation)

S [X] =
1

4Dε,τ

∫ t

0

Ẋ2
τ1dτ1

− ε

2

∫ t−τ

0

dτ1

∫ t

τ1+τ

dτ2
Ẋτ1Ẋτ2

|τ2 − τ1|
+O(ε2) .

(4)

The time τ is a regularization cutoff for coinciding times
(one can also introduce discrete times spaced by τ [19]).
The first line is the action for standard Brownian motion,
with a rescaled diffusion constant [25] Dε,τ = 1 + 2ε(1 +
ln(τ)) +O(ε2) ' (eτ)2ε. The second line is a correction,
non-local in time since fBm is non-Markovian.

Computing the ε expansion of (3) using (4) is rather
technical. A graphical representation of the key term
is given in Fig. 2. The result for Z+(m1, t1;x0;m2, t2)
covers a page, presented in [20]. We use this result here
to deduce its most interesting implications, starting with
the probability distribution of t = tmax. For Browanian
motion (H = 1/2), this distribution is well known as the
Arcsine law [26],

PT1
2

(t) =
1√

πt(T − t)
, for t ∈ [0, T ] . (5)

Until now, only scaling properties were known for this
distribution in the general case [21]. The path integral

FIG. 3: Distribution of tmax for T = 1 and H = 0.25 (red)
or H = 0.75 (blue) given in Eq. (7) (plain lines) compared to
the scaling ansatz, i.e. F = cst (dashed lines) and numerical
simulations (dots). For H < 0.5 realisations with tmax ≈ T/2
are less probable (by about 10%) than expected from scaling.
For H > 0.5 the correction has the opposite sign.

(3) is linked to this distribution via

PTH(t) = lim
x0→0

1

Z

∫
m1,m2>0

Z+(m1, t;x0;m2, T − t) . (6)

The normalization Z depends on x0 and T . Our result
for the distribution of tmax takes a nice forme if we ex-
ponentiate the order-ε correction obtained from Eq. (6),

PTH(t) =
1

[t(T − t)]H
exp

(
εF

(
t

T − t

))
+O

(
ε2
)
. (7)

This is plotted on Fig. 3. We see the expected change in
the scaling form of the Arcsine law,

√
t(T − t)→ [t(T −

t)]H and a non-trivial change in the shape given by the
function

F(u) =
√
u
[
π − 2 arctan(

√
u)
]

+
1√
u

[
π − 2 arctan

(
1√
u

)]
+ cst .

(8)

The time reversal symmetry t→ T − t (corresponding to
u→ u−1) is explicit; the constant ensures normalization.

We tested the prediction (7)-(8) with numerical sim-
ulations of a discretized fractional Brownian motion for
different values of H. To this aim, we used the Davis
and Harte procedure as described in [10] (and references
therein). To compare numerical results with the theory,
we extract an estimation Fεnum of the function F as

Fεnum
(

t

T − t

)
:=

1

ε
ln
(
PT,Hnum (t)× [t(T − t)]H

)
. (9)

Here PT,Hnum (t) is the numerical estimation of the distribu-
tion of tmax for the discretized fBm at given H (obtained
with uniform binning). Apart from discretization effects,
we should see significant statistical errors as ε → 0, and
systematic order-ε2 corrections for larger ε. As can be
seen on Figs. 3 and 4, our numerical and analytical re-
sults are in remarkable agreement for all values of H stud-
ied, both for ε positive and negative. As an example, for
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FIG. 4: Left: Numerical estimation of F for different values of H on a discrete system of size N = 212, using 108 realizations.
Plain curves represent the theoretical prediction (8), vertically translated for better visualization. Error bars are 2σ estimates.
Note that for H = 0.6, H = 0.66 and H = 0.8 the expansion parameter ε is positive, while for H = 0.4, H = 0.33 and H = 0.2
it is negative. Right: Deviation for large |ε| between the theoretical prediction (8) and the numerical estimations (9), rescaled
by ε. These curves collapse for different values of H, allowing for an estimate of the O(ε2) correction to PT

H (t).

H = 0.75, the correction to the pure scaling distribution
has a relative magnitude of 10% (see Fig. 3), which is
measured in our simulation with a relative precision of
0.5%. This precision even allows to numerically extract
the subleading O(ε2) correction, see Fig. 4 right.

We now present results for the distribution of the max-
imum PTH(m). For Brownian motion

PT1
2

(m) =
e−

m2

4T

√
πT

, m > 0 . (10)

On the other hand, not much is known for generic values
of H. This distribution is of interest, as it is linked to
the survival probability S(T, x), and the persistence ex-
ponent θ. The latter is defined for any random process
Xt with X0 = x as

S(T, x) = proba (Xt ≥ 0 for all t ∈ [0, T ])

∼
T→∞

T−θx .
(11)

For a large class of processes the exponent θ is indepen-
dent of x. For fractional Brownian motion with Hurst
exponent H it was shown that θx = θ = 1 −H [13, 22].
To understand the link of S(T, x) with the maximum dis-
tribution for fBm, we use self affinity of the process Xt

to write PTH(m) as

PTH(m) =
1√

2TH
fH

(
m√
2TH

)
. (12)

Here f is a scaling function depending on H. Eq. (10)

can be reformulated as f 1
2
(y) =

√
2
π e
−y2/2. The survival

probability is related to the maximum distribution by

S(T, x) =

∫ x

0

PT (m) dm =

∫ x√
2TH

0

fH(u) du . (13)

This states that a realisation of a fBm starting at x and
remaining positive is the same as a realisation starting at
0 with a minimum larger than −x, due to translation in-
variance of the fBm. Finally, the symmetry x→ −x gives
the correspondence between minimum and maximum.

These considerations allow us to predict the scaling
behavior of PTH(m) at smallm from the large-T behaviour
of S(T, x) [13],

PTH(m) ∼
m→0

m
θ
H−1 = m

1
H−2 . (14)

Using our path integral, we can go further. The maxi-
mum distribution can be extracted from Eq. (3),

PTH(m) = lim
x0→0

1

Z

∫ T

0

dt

∫
m2>0

Z+(m, t;x0;m2, T − t) .

(15)
Its ε-expension leads to the scaling form of Eq. (12), with

fH(y) =

√
2

π
e−

y2

2 eε[G(y)+cst] +O(ε2) . (16)

The constant term ensures normalization. The function
G involves the hypergeometric function 2F2:

G(y) =
y4

6
2F2

(
1, 1;

5

2
, 3;

y2

2

)
− 3y2

+ π(1− y2) erfi

(
y√
2

)
+
√

2πe
y2

2 y

+ (y2 − 2)
[
γE + ln

(
2y2
)]

.

(17)

This function has a different asymptotics for small and
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FIG. 5: Left: The combination (21) for H = 0.6. The plain line is the analytical prediction exp(ε[G(m/
√

2) + 4 lnm] + cst)
of the distribution of the maximum without its small-scale power law and large-scale Gaussian behavior. The symbols are
numerical estimations for T = 1 of the same quantity m2−1/H exp(m2/4)PT=1,H

num (m) for different sample sizes. At small scale
discretization errors appear. At large scales the statistics is poor due to the Gaussian prefactor. For the four decades in between
theory and numerics are in very good agreement. Right: ibid for H = 0.75. The large scale-behavior on both plots is consistent
with m2ε.

large y,

G (y) ∼
y→∞

− 2 ln(y)

∼
y→0
− 4 ln(y) .

(18)

The second line implies that PTH(m) ∼
m→0

m−4ε which

is consistent (at order ε) with the scaling result (14),
1
H −2 = −4ε+O(ε2). Formulas (16)-(17) also predict the
distribution at large m. The leading behavior of PTH(m)
is Gaussian, which is well known, and can be derived from
the Borrel inequality [23]. Our result for the subleading
term can be written as

lim
y→∞

ln
(
fH(y) exp(y

2

2 )
)

ln(y)
= −2ε+O(ε2) . (19)

In order to test these predictions against numerical sim-
ulations, we can rewrite the form (16) s.t. the small-m
behavior matches the exact scaling result (14)

fH(y) =

√
2

π
e−

y2

2 y
1
H−2eε[G(y)+4 ln y+cst] +O(ε2) . (20)

To extract the non-trivial contribution from numerical
simulations, we study for T = 1 (see Fig. 5)

m2− 1
H e

m2

4 P 1,H
num(m) = e

ε
[
G
(
m√
2

)
+4 lnm+cst

]
+O(ε2) .

(21)
The sample size N (i.e. lattice spacing dt = N−1) of
the discretized fBm used for this numerical test is im-
portant, as Pnum(m) recovers Brownian behavior for m
smaller than a cutoff of order N−H . Far small H the nec-
essary system size is very large, so we focus on H > 0.5.

Figure 5 presents results for H = 0.6 and H = 0.75,
without any fitting parameter. The constant term in the
scaling form, relevant for normalization, is evaluated nu-
merically. As predicted, convergence to the small-scale
behavior is quite slow. This would lead to a wrong nu-
merical estimation of the persistence exponent or other
related quantities if the crossover to the large-scale be-
havior is not properly taken into account. At large scales,
the numerical data on Fig. 5 grow as m2ε, consistent with
the prediction (19).

To conclude, we have given analytical results for the
maximum of a fractional Brownian motion, and the time
when this maximum is reached. To our knowledge these
are the first analytical results for generic values of H in
the range 0 < H < 1, beyond scaling relations. Compar-
ison to numerical simulations shows excellent agreement,
even far from the expansion point H = 1

2 .

Our calculations also gave the joint probability of the
maximum, the time when the maximum is reached, and
the final point [20]. This allows us to address other
observables of interests, such as fractional Brownian
bridges.
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