ICFP M2 — Selected Topics in Statistical Field Theory
TD n°® 8 — Scale Invariance in Driven Interfaces

Kay Wiese & Camille Aron
March 16 & 23, 2018

The Kardar-Parisi-Zhang (KPZ) equation is the field theory of many surface growth
processes. For a surface parametrized by h(x,t), it reads

(@, 1) = V2h(z, 1) + % (Vh(z, )] + C(a, 1) (1)

where h(x,t) is assumed to be single valued, A > 0, and ((«,t) is a Gaussian white
noise,

(((@,)) =0,  (C(=,t)¢(2",t)) =2Dd(x — a')o(t - t'). (2)

A — Scaling analysis

(1) Write down the Martin-Siggia-Rose (MSR) action functional, S[h, k], associated to
the dynamics of the KPZ equation.

(2) Measuring lengths in units of [#] = A~!, compute the scaling dimensions for the
fields h and h, and the coupling constant A. In which dimensions is A relevant? When
is A = 0 expected to be a stable fixed point?

(3) Edwards-Wilkinson model. At A = 0, notice that the dynamics coincides with those
of a Gaussian Model A at criticality. Compute the steady-state probability distribution
P, [h], and the correlation function Cp(k,w).

(4) The scaling law for a critical correlation function generically reads
Culz,t) = |2[** fo. (t/|2]), (3)

where fc, (y) is a dimensionless function, z the dynamical exponent, and we introduced
the static exponent x = —(d — 2 + 17)/2. Express the behavior of fc,(y) when y — 0
and y — oo. Discuss why y is called the roughness exponent. Compute x and z in the
Edwards-Wilkinson model. In which dimensions does one get a rough surface?

(5) For A > 0, check that the KPZ equation is invariant under the infinitesimal tilting
of the surface

h(z,t) — b (2, t') = h(x — Ndvt,t) — v -x. (4)

Applying the scale transformations * — bx , t — b*t to Eq. (4). Show that at any
finite fixed point (0 < \* < 00), we have the relation

X+z=2, (5)

which reduces the number of independent exponents to one.



B — Mapping to linear diffusion

For A > 0, we can eliminate the non-linear term by the so-called Cole-Hopf transforma-
tion, i.e. working in terms of the field

2
Z(x,t) = exp %h(az,t) - )\TDt . (6)

(1) Using stochastic calculus, show that the KPZ equation maps onto the following It
stochastic differential equation,

OZ(x,t) = V> Z(x,t) + éV(m,t)Z(:c,t) , (7)

where V' is a Gaussian white noise with (V(z,t)V(2/,#)) = 2A2Dd(x — =')5(t — t').
Equation (7) is a linear diffusion equation with multiplicative noise.

(2) Show that the MSR action functional associated to the dynamics of the equation (7)
reads

S|z, 7] = / dt / Az iZ(z,t) [0:Z (2, t) — V2Z(2,1)] —

(NS

. 2
iZ@Hz@] ,  ®)
with the coupling g = \2D/2.

C — Roughening transition via RG

Let us now calculate the S-equation associated to the renormalization of the coupling g
in d > 2 by concentrating on the vertex

i2(@.02(@.0)] = >< . ()

(1) Show that

expg><:1—|—g><—|-92><><+g3>©©<... (10)

where the higher-order vertices may be discarded since the only divergencies they may
contain are sub-chains as those depicted in Eq. (10).

(2) By resuming the series in Eq. (10), show that the effective 4-point function is
1

I'k,w) = gm : (11)
(3) Show that
d/2—1
Q(k,w) = (&Tl)dﬂm —d/2) (;kQ + iw) . (12)

(4) The theory is renormalizable if we can make the 4-point function finite as a function
of gr instead of g by setting

g=2Zggr A" with Z, =

de=d-—2, 13
1+ agr and (13)



where A is an arbitrary scale. Fix a by demanding that I'(k,w) evaluated at A? =
%kQ + iw be equal to gg. Show that
g

IR =R —ag

S (14)

(5) Derive the (-equation

2

Blgr) = (d —2)gr — BT @ d)2) 9 »

(15)

and show that there is a non-trivial unstable perturbative fixed point in d > 2 which
separates a smooth Edwards-Wilkinson phase from a rough phase at strong coupling.



