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The Kardar-Parisi-Zhang (KPZ) equation is the field theory of many surface growth
processes. For a surface parametrized by h(x, t), it reads

∂th(x, t) = ∇2h(x, t) +
λ

2
[∇h(x, t)]2 + ζ(x, t) (1)

where h(x, t) is assumed to be single valued, λ ≥ 0, and ζ(x, t) is a Gaussian white
noise,

〈ζ(x, t)〉 = 0 , 〈ζ(x, t)ζ(x′, t′)〉 = 2D δ(x− x′)δ(t− t′) . (2)

A – Scaling analysis

(1) Write down the Martin-Siggia-Rose (MSR) action functional, S[h, ĥ], associated to
the dynamics of the KPZ equation.

(2) Measuring lengths in units of [x] = Λ−1, compute the scaling dimensions for the
fields h and ĥ, and the coupling constant λ. In which dimensions is λ relevant? When
is λ = 0 expected to be a stable fixed point?

(3) Edwards-Wilkinson model. At λ = 0, notice that the dynamics coincides with those
of a Gaussian Model A at criticality. Compute the steady-state probability distribution
Pt→∞[h], and the correlation function C0(k, ω).

(4) The scaling law for a critical correlation function generically reads

C∗(x, t) = |x|2χfC∗(t/|x|z) , (3)

where fC∗(y) is a dimensionless function, z the dynamical exponent, and we introduced
the static exponent χ = −(d − 2 + η)/2. Express the behavior of fC∗(y) when y → 0
and y →∞. Discuss why χ is called the roughness exponent. Compute χ and z in the
Edwards-Wilkinson model. In which dimensions does one get a rough surface?

(5) For λ > 0, check that the KPZ equation is invariant under the infinitesimal tilting
of the surface

h(x, t) 7→ h′(x′, t′) = h(x− λ δv t, t)− δv · x . (4)

Applying the scale transformations x → bx , t → bz t to Eq. (4). Show that at any
finite fixed point (0 < λ∗ <∞), we have the relation

χ+ z = 2 , (5)

which reduces the number of independent exponents to one.
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B – Mapping to linear diffusion

For λ > 0, we can eliminate the non-linear term by the so-called Cole-Hopf transforma-
tion, i.e. working in terms of the field

Z(x, t) = exp

[
λ

2
h(x, t)− λ2D

4
t

]
. (6)

(1) Using stochastic calculus, show that the KPZ equation maps onto the following Itô
stochastic differential equation,

∂tZ(x, t) = ∇2Z(x, t) +
1

2
V (x, t)Z(x, t) , (7)

where V is a Gaussian white noise with 〈V (x, t)V (x′, t′)〉 = 2λ2Dδ(x − x′)δ(t − t′).
Equation (7) is a linear diffusion equation with multiplicative noise.

(2) Show that the MSR action functional associated to the dynamics of the equation (7)
reads

S[Z, Ẑ] =

∫
dt

∫
ddx iẐ(x, t)

[
∂tZ(x, t)−∇2Z(x, t)

]
− g

2

[
iẐ(x, t)Z(x, t)

]2
, (8)

with the coupling g ≡ λ2D/2.

C – Roughening transition via RG

Let us now calculate the β-equation associated to the renormalization of the coupling g
in d > 2 by concentrating on the vertex

[
iẐ(x, t)Z(x, t)

]2
= . (9)

(1) Show that

exp g = 1 + g + g2 + g3 . . . (10)

where the higher-order vertices may be discarded since the only divergencies they may
contain are sub-chains as those depicted in Eq. (10).

(2) By resuming the series in Eq. (10), show that the effective 4-point function is

Γ(k, ω) = g
1

1− g (k, ω)
. (11)

(3) Show that

(k, ω) =
1

(8π)d/2
Γ(1− d/2)

(
1

2
k2 + iω

)d/2−1
. (12)

(4) The theory is renormalizable if we can make the 4-point function finite as a function
of gR instead of g by setting

g = Zg gR Λ−ε with Zg ≡
1

1 + agR
and ε ≡ d− 2 , (13)
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where Λ is an arbitrary scale. Fix a by demanding that Γ(k, ω) evaluated at Λ2 =
1
2k

2 + iω be equal to gR. Show that

gR =
g

Λ−ε − ag
. (14)

(5) Derive the β-equation

β(gR) = (d− 2)gR −
2

(8π)d/2Γ(2− d/2)
g2R , (15)

and show that there is a non-trivial unstable perturbative fixed point in d > 2 which
separates a smooth Edwards-Wilkinson phase from a rough phase at strong coupling.
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