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Figure 1: Kramers’ escape problem: What is the typical time it takes for thermal
fluctuations to help a particle pass the potential barrier?

Let us consider a particle of coordinate x(t) undergoing overdamped dynamics at tem-
perature T in a static one-dimensional potential V (x) such as the one represented in
Fig. 1. The corresponding Langevin equation reads

η∂tx(t) = −V ′(x) + ξ(t) , (1)

where η > 0 is a friction coefficient and ξ(t) is a Gaussian white noise: 〈ξ(t)〉 = 0 and
〈ξ(t)ξ(t′)〉 = 2ηTδ(t − t′) where T is measured in units kB. Below, we set η = 1 by
re-scaling time accordingly.
The particle is initially located in a local minimum of the potential at x = 0. The closest
local maximum is at x = xb. We aim at computing the typical time τ0→b for the particle
to escape the local minimum x = 0 and pass the barrier at x = xb.

A – Fokker-Planck’s approach

We slightly modify the problem to a situation where the particle is automatically re-
injected at x = −∞ each time it reaches x = xb. This consists in setting an absorbing
boundary condition at x = xb and periodic boundary conditions. This non-equilibrium
situation corresponds to a finite current of particles, which is expected to reach a non-
equilibrium steady-state value, JNESS > 0, and which can be used to deduce the typical
escape time via the relation τ0→b ∼ J−1NESS.
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(1) Write down the Fokker-Planck equation governing the evolution of the probability
distribution P (x, t). Express the absorbing boundary condition.

(2) Identify the current J(x, t) defined such that the Fokker-Planck equation reads as a
probability conservation equation

∂tP (x, t) + ∂xJ(x, t) = 0 , (2)

(3) In the non-equilibrium steady-state, P (x, t) and J(x, t) converge to the constant
PNESS(x) and JNESS, respectively. Solve for PNESS(x) in terms of JNESS and another
constant α0 to be determined by the absorbing boundary condition.

(4) Use the normalization of PNESS(x) to express JNESS, and Kramers’ escape time τ0→b,
in terms of two nested integrals.

(5) Restricting the analysis to temperatures T much smaller than the typical variations
of V (x), perform the following saddle-point approximations,

V (x) ' V (0) +
1

2
V ′′(0)x2 around x = 0 , (3)

V (x) ' V (xb) +
1

2
V ′′(xb) (x− xb)2 around x = xb , (4)

to simplify the expression of τ0→b into nested Gaussian integrals.

(6) Decouple the nested Gaussian integrals and arrange their boundaries of integration
in order to obtain an explicit formula for τ0→b, Kramers’ escape time.

(7) Comment and discuss the domain of validity of the final result.

B – Martin-Siggia-Rose’s approach

(1) Write down the MSR action functional S[x, x̂] corresponding to the dynamics in
Eq. (1).

(2) Write down P0→b(τ), the probability for the particle to go from x = 0 to x = xb in
a given time τ , in terms of a MSR path integral.

(3) Write down the Euler-Lagrange equations (saddle point equations) on the fields x
and ix̂.

(4) Identify a trivial pair of solutions, xcl(t) and ix̂cl(t), of the saddle point equations.
Compute S[xcl, x̂cl], and the corresponding probability P0→b(τ).

(5) There is another pair of solutions of the saddle point equations, xq(t) and ix̂q(t).
If you manage to guess it (and check it is indeed a solution), go directly to question
(8). Otherwise, we make an analogy with Quantum Mechanics by replacing x→ q and
ix̂ → p where q and p will be interpreted as position and momentum. Show that the
MSR action functional can be re-written in a quite standard Lagrangian formulation

S[x, x̂]→ S[q, p] =

∫ τ

0
dt [pq̇ −H(q, p)] (5)

where H(p, q) is a Hamiltonian to be expressed. Note that we started from dissipative
and stochastic dynamics and mapped them onto a Hamiltonian problem with purely
unitary dynamics.

(6) Show that the trivial pair of solution corresponds to the zero-energy ground state
H(p, q) = 0. Show that there is another solution to H(q, p) = 0.
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(7) Draw the phase portrait of H(q, p) –the lines of equal energy in the p− q plane– at
zero energy. Represent the two pairs of solutions and analyze their stability in the p− q
plane. Compute the action S[q, p] of both solutions.

(8) Deduce the second non-trivial solution of the original saddle point equations, xq(t)
and ix̂q(t). Compute S[xq, x̂q], and the corresponding probability P0→b(τ).

(9) Extract the expression for Kramers’ escape time, τ0→b.

C – Challenge

Write down the first law of thermodynamics for the non-equilibrium steady state con-
sidered in Section A. Identify the work and the heat in this Kramers’ problem.
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