ICFP M2 – Selected Topics in Statistical Field Theory TD n^o 6 – Kramers' escape problem, two ways

Kay Wiese & Camille Aron

March 2, 2018

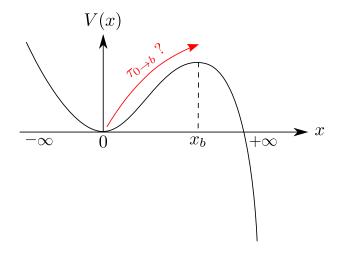


Figure 1: Kramers' escape problem: What is the typical time it takes for thermal fluctuations to help a particle pass the potential barrier?

Let us consider a particle of coordinate x(t) undergoing overdamped dynamics at temperature T in a static one-dimensional potential V(x) such as the one represented in Fig. 1. The corresponding Langevin equation reads

$$\eta \partial_t x(t) = -V'(x) + \xi(t) , \qquad (1)$$

where $\eta > 0$ is a friction coefficient and $\xi(t)$ is a Gaussian white noise: $\langle \xi(t) \rangle = 0$ and $\langle \xi(t)\xi(t') \rangle = 2\eta T \delta(t-t')$ where T is measured in units $k_{\rm B}$. Below, we set $\eta = 1$ by re-scaling time accordingly.

The particle is initially located in a local minimum of the potential at x = 0. The closest local maximum is at $x = x_b$. We aim at computing the typical time $\tau_{0\to b}$ for the particle to escape the local minimum x = 0 and pass the barrier at $x = x_b$.

A – Fokker-Planck's approach

We slightly modify the problem to a situation where the particle is automatically reinjected at $x = -\infty$ each time it reaches $x = x_b$. This consists in setting an absorbing boundary condition at $x = x_b$ and periodic boundary conditions. This non-equilibrium situation corresponds to a finite current of particles, which is expected to reach a nonequilibrium steady-state value, $J_{\text{NESS}} > 0$, and which can be used to deduce the typical escape time *via* the relation $\tau_{0\to b} \sim J_{\text{NESS}}^{-1}$. (1) Write down the Fokker-Planck equation governing the evolution of the probability distribution P(x, t). Express the absorbing boundary condition.

(2) Identify the current J(x,t) defined such that the Fokker-Planck equation reads as a probability conservation equation

$$\partial_t P(x,t) + \partial_x J(x,t) = 0, \qquad (2)$$

(3) In the non-equilibrium steady-state, P(x,t) and J(x,t) converge to the constant $P_{\text{NESS}}(x)$ and J_{NESS} , respectively. Solve for $P_{\text{NESS}}(x)$ in terms of J_{NESS} and another constant α_0 to be determined by the absorbing boundary condition.

(4) Use the normalization of $P_{\text{NESS}}(x)$ to express J_{NESS} , and Kramers' escape time $\tau_{0\to b}$, in terms of two nested integrals.

(5) Restricting the analysis to temperatures T much smaller than the typical variations of V(x), perform the following saddle-point approximations,

$$V(x) \simeq V(0) + \frac{1}{2} V''(0) x^2 \text{ around } x = 0,$$
 (3)

$$V(x) \simeq V(x_b) + \frac{1}{2} V''(x_b) (x - x_b)^2 \text{ around } x = x_b ,$$
 (4)

to simplify the expression of $\tau_{0 \rightarrow b}$ into nested Gaussian integrals.

(6) Decouple the nested Gaussian integrals and arrange their boundaries of integration in order to obtain an explicit formula for $\tau_{0\to b}$, Kramers' escape time.

(7) Comment and discuss the domain of validity of the final result.

B – Martin-Siggia-Rose's approach

(1) Write down the MSR action functional $S[x, \hat{x}]$ corresponding to the dynamics in Eq. (1).

(2) Write down $P_{0\to b}(\tau)$, the probability for the particle to go from x = 0 to $x = x_b$ in a given time τ , in terms of a MSR path integral.

(3) Write down the Euler-Lagrange equations (saddle point equations) on the fields x and $i\hat{x}$.

(4) Identify a trivial pair of solutions, $x_{cl}(t)$ and $i\hat{x}_{cl}(t)$, of the saddle point equations. Compute $S[x_{cl}, \hat{x}_{cl}]$, and the corresponding probability $P_{0\to b}(\tau)$.

(5) There is another pair of solutions of the saddle point equations, $x_q(t)$ and $i\hat{x}_q(t)$. If you manage to guess it (and check it is indeed a solution), go directly to question (8). Otherwise, we make an analogy with Quantum Mechanics by replacing $x \to q$ and $i\hat{x} \to p$ where q and p will be interpreted as position and momentum. Show that the MSR action functional can be re-written in a quite standard Lagrangian formulation

$$S[x,\hat{x}] \to S[q,p] = \int_0^\tau \mathrm{d}t \ [p\dot{q} - H(q,p)] \tag{5}$$

where H(p,q) is a Hamiltonian to be expressed. Note that we started from dissipative and stochastic dynamics and mapped them onto a Hamiltonian problem with purely unitary dynamics.

(6) Show that the trivial pair of solution corresponds to the zero-energy ground state H(p,q) = 0. Show that there is another solution to H(q,p) = 0.

(7) Draw the phase portrait of H(q, p) -the lines of equal energy in the p-q plane- at zero energy. Represent the two pairs of solutions and analyze their stability in the p-q plane. Compute the action S[q, p] of both solutions.

(8) Deduce the second non-trivial solution of the original saddle point equations, $x_q(t)$ and $i\hat{x}_q(t)$. Compute $S[x_q, \hat{x}_q]$, and the corresponding probability $P_{0\to b}(\tau)$.

(9) Extract the expression for Kramers' escape time, $\tau_{0\to b}$.

C - Challenge

Write down the first law of thermodynamics for the non-equilibrium steady state considered in Section A. Identify the work and the heat in this Kramers' problem.