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Let us consider a particle of mass m subject to a deterministic, possibly time-dependent,
force f and in contact with a thermal bath at temperature T ≡ 1/β. The dynamics of
its position (here in 1d) is described by the Langevin equation

m
d2x(t)

dt2
= f(x(t), t)−ηdx(t)

dt
+ ξ(t)︸ ︷︷ ︸

fbath

, (1)

where η ≥ 0 is a friction coefficient and ξ(t) is a Gaussian white noise: 〈ξ(t)〉 = 0 and
〈ξ(t)ξ(t′)〉 = 2ηTδ(t− t′) where 〈. . .〉 indicates the average over the noise realizations.
At the initial time t = −t0, the particle is prepared in thermal equilibrium at tem-
perature T0 in a confining potential V (x), i.e. the initial probability distribution is
P (x, ẋ;−t0) = Z−1 exp [−E(x, ẋ)/T0] with the energy E(x, ẋ) ≡ 1

2mẋ
2 + V (x) and the

corresponding partition function Z.

A – Linear response in the MSR formalism

The probability of a given trajectory [x(t), t = −t0 . . . t0] is expressed in the MSR for-
malism as a Gaussian path-integral over an auxiliary field x̂ (here taken to be real),

P [x]D[x] = D[x]

∫
D[x̂]e−S[x,x̂] , (2)

where S[x, x̂], the MSR action functional, can be decomposed into S[x, x̂] = Ssyst[x, x̂]+
Sbath[x, x̂] with

Ssyst[x, x̂] = lnZ + E(x(−t0), ẋ(−t0))/T0 +

∫ t0

−t0
dt ix̂(t)

[
m∂2

t x(t)− f(x(t), t)
]
, (3)

Sbath[x, x̂] = η

∫ t0

−t0
dt ix̂(t) [∂tx(t)− T ix̂(t)] . (4)

(1) Show that the two-time correlation function is expressed in the MSR formalism as

C(t, t′) ≡ 〈x(t)x(t′)〉 = 〈x(t)x(t′)〉S , (5)

where 〈. . .〉S indicates the path-integral average
∫
D[x, x̂] . . . e−S[x,x̂].

(2) Kubo formula. Show that the linear response of the average position to a prior
perturbation f → f+δf can be expressed as the following two-time correlation function

R(t, t′) ≡ δ〈x(t)〉
δf(t′)

= 〈x(t)ix̂(t′)〉S (6)
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B – Equilibrium dynamics as a symmetry of MSR field theories

We first consider the case of equilibrium dynamics: (i) the force is assumed to be
time-independent and to derive from the same potential as in the initial preparation:
f(x) = −∂xV (x); (ii) the bath temperature is assumed to be the same as in the initial
preparation: T = T0.

(1) Show that the functional Sbath[x, x̂] in (4) is always invariant under the following
transformation of the fields,

Tβ :

{
x(t) 7→ x(−t)
ix̂(t) 7→ ix̂(−t) + β∂tx(−t) . (7)

(2) In equilibrium, show that the whole action functional S[x, x̂] is symmetric under Tβ.

(3) Compute the Jacobian of the transformation Tβ.

(4) The path integrals in
∫
D[x, x̂] . . . e−S[x,x̂] are performed over real fields x and x̂.

Argue that, after the complex transformation Tβ of x̂, the integration domain of x̂(t)
can be returned to real values. Conclude that, in thermal equilibrium, for any functional
A of x and x̂, we have the following Ward-Takahashi identities,

〈A[x, x̂]〉S = 〈A[Tβx, Tβx̂]〉S . (8)

(5) In particular, setting A[x, x̂] = x(t)x(t′) and using the time-translational invariance
of equilibrium dynamics, show the reciprocity relation C(t− t′) = C(t′ − t).

(6) Fluctuation-dissipation theorem (FDT). Setting A[x, x̂] = x(t)ix̂(t′), show the FDT

R(t− t′) = −β ∂tC(t− t′) for t > t′ ,
= 0 for t ≤ t′ . (9)

Discuss the profound implications of this theorem. Where are the fluctuations, where is
the dissipation in Eq. (9)?

C – Non-equilibrium dynamics: symmetry breaking

We now consider the non-equilibrium situation in which the particle is subject to a time-
dependent potential force: f(x, t) = −∂xV (x, λ(t)) where λ(t) is an externally-controlled
protocol (e.g. the push of a piston). Initially, the particle is prepared in thermal equilib-
rium at temperature T0 = T in the confining potential V (x, λ(−t0)). The corresponding
distribution function is P (x, ẋ;−t0) = Z−1(λ(−t0)) exp

[
−β
(

1
2mẋ

2 + V (x, λ(−t0))
)]

.

(1) Show that the transformation of S[x, x̂;λ] under the transformation Tβ yields

S[x, x̂;λ] 7→ S[x, x̂; λ̄] + β
(
W[x, λ̄]−∆Fr

)
(10)

where λ̄(t) ≡ λ(−t) is the time-reversed protocol, ∆Fr = − lnZ(λ̄(t0)) + lnZ(λ̄(−t0))
is the change in free energy associated to this time-reversed protocol, and W[x, λ̄] is the
external work performed along a given trajectory [x] under a protocol λ̄.

(2) Recalling the first and second law of thermodynamics, argue that the quantity
W[x, λ] − ∆F corresponds to the total amount of irreversible entropy Sirr[x;λ] gen-
erated by the protocol λ along a given trajectory [x].
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(3) Show that, for any functional A of x and x̂, we have the identities

eβ∆F 〈A[x, x̂]e−βW[x;λ]〉S[λ] = 〈A[Tβx, Tβx̂]〉S[λ̄] . (11)

(4) In particular, setting A[x, x̂] = 1, show the so-called Jarzynski equality,

〈e−βW[x]〉 = e−β∆F . (12)

(5) Use Jensen’s inequality, 〈e−X〉 ≥ e−〈X〉, to show 〈W[x]〉 ≥ ∆F . In which situations
is the inequality an equality?

(6) Work fluctuation theorem. Setting A[x, x̂] = δ(W[x;λ]−W), show Crooks’ fluctua-
tion theorem

Pλ(W) = Pλ̄(−W) eβ(W−∆F) , (13)

where Pλ(W) is the probability to perform a total external workW with a given protocol
λ.

(7) Fluctuation theorem (FT). Show and discuss the FT

Pλ(Sirr) = Pλ̄(−Sirr) eSirr , (14)

and show that the positivity of the irreversible entropy production is recovered in aver-
age, 〈Sirr〉 ≥ 0.

D – Challenge

Relax the assumption that the system is initially prepared in thermal equilibrium. The
initial state is now simply characterized by the generic probability density P (x, ẋ;−t0).
Re-write the corresponding action functional, plug in the transformation Tβ, and gener-
alize Jarzynski’s equality (to the so-called Kawasaki’s identity) and Crooks’ fluctuation
theorem.
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