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Let us consider a particle of mass m subject to a deterministic, possibly time-dependent,
force f and in contact with a thermal bath at temperature T'= 1/3. The dynamics of
its position (here in 1d) is described by the Langevin equation
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where > 0 is a friction coefficient and £(¢) is a Gaussian white noise: (£{(t)) = 0 and
(€(t)E(t)) =2nTo(t — t') where (...) indicates the average over the noise realizations.
At the initial time ¢t = —tg, the particle is prepared in thermal equilibrium at tem-
perature Tj in a confining potential V' (z), i.e. the initial probability distribution is
P(z,i;—tg) = Z Vexp [—E(x, &) /Tp] with the energy &(z, &) = 3mi? + V(x) and the
corresponding partition function Z.

A — Linear response in the MSR formalism

The probability of a given trajectory [z(t),t = —t¢...%o] is expressed in the MSR for-
malism as a Gaussian path-integral over an auxiliary field & (here taken to be real),

P[2]D[z] = Dla] / DlifeSleal 2)

where Sz, ], the MSR action functional, can be decomposed into S[z, &| = Syst[z, T] +
Sbath [JJ, z| with

to
Ssyst|, 2] = In Z + E(x(—to), &(—t0))/To + /_tdt i#(t) [mofz(t) — f(z(),1)] , (3)
Sunler. ] = [ atia(t) 01 (0) ~ Tia(r) (4)

(1) Show that the two-time correlation function is expressed in the MSR formalism as

Ct,t') = (x()x(t) = (z(t)z(t))s (5)

where (...)s indicates the path-integral average [ D[z,4]...e Sl

(2) Kubo formula. Show that the linear response of the average position to a prior
perturbation f — f+Jf can be expressed as the following two-time correlation function

R(t,#) = 2O iy (©)



B — Equilibrium dynamics as a symmetry of MSR field theories

We first consider the case of equilibrium dynamics: (i) the force is assumed to be
time-independent and to derive from the same potential as in the initial preparation:
f(z) = =0,V (x); (ii) the bath temperature is assumed to be the same as in the initial
preparation: T' = Tj.

(1) Show that the functional Spatn[z,Z] in (4) is always invariant under the following
transformation of the fields,

J o) (=)
Tp : { i8(t) s i8(—t) + BOha(—t) - (™)
(2) In equilibrium, show that the whole action functional S{x, ] is symmetric under 7.
(3) Compute the Jacobian of the transformation 7.

(4) The path integrals in [ D[z, #]...e S are performed over real fields = and 7.
Argue that, after the complex transformation 7g of Z, the integration domain of Z(t)
can be returned to real values. Conclude that, in thermal equilibrium, for any functional
A of x and 2, we have the following Ward-Takahashi identities,

(Alz, 2])s = (AlTp2, Tpi))s - (8)

(5) In particular, setting A[x, #] = z(t)z(t') and using the time-translational invariance
of equilibrium dynamics, show the reciprocity relation C'(t —t') = C(t' — t).

(6) Fluctuation-dissipation theorem (FDT). Setting A[z, Z] = x(¢)iz(¢'), show the FDT

Rit—t) =—-BoCEt—1t)fort>t, ©
=0fort<t.

Discuss the profound implications of this theorem. Where are the fluctuations, where is
the dissipation in Eq. (9)?

C — Non-equilibrium dynamics: symmetry breaking

We now consider the non-equilibrium situation in which the particle is subject to a time-
dependent potential force: f(x,t) = —0,V (x, A(t)) where A() is an externally-controlled
protocol (e.g. the push of a piston). Initially, the particle is prepared in thermal equilib-
rium at temperature Ty = 7' in the confining potential V' (z, A(—ty)). The corresponding
distribution function is P(z,d; —to) = Z71(A\(—to)) exp [-8 (3mi? + V (z, A(—t0)))].

(1) Show that the transformation of S[z, Z; A] under the transformation 7z yields
S|z, 23 A = S[z, 2; M + 3 (W[ZE, A — A]:r) (10)

where A(t) = A\(—t) is the time-reversed protocol, AF, = —In Z(\(tp)) + In Z(}\(—to))
is the change in free energy associated to this time-reversed protocol, and Wiz, A is the
external work performed along a given trajectory [z| under a protocol A.

(2) Recalling the first and second law of thermodynamics, argue that the quantity
Wiz, \] — AF corresponds to the total amount of irreversible entropy Si.[z;A] gen-
erated by the protocol A along a given trajectory [z].



(3) Show that, for any functional A of z and &, we have the identities

A (Al &le” VN g1 = (AlTpa, Tad sy - (11)

(4) In particular, setting A[z, Z] = 1, show the so-called Jarzynski equality,

(e=AWlely = o=BAF (12)

(5) Use Jensen’s inequality, (e=%) > e~ X} to show (W[z]) > AF. In which situations
is the inequality an equality?

(6) Work fluctuation theorem. Setting Az, z] = §(W[x; A\] — W), show Crooks’ fluctua-

tion theorem

PA(W) = P(-W) #0V-A7) (13)

where Py (W) is the probability to perform a total external work W with a given protocol
A

(7) Fluctuation theorem (FT). Show and discuss the FT

P)\(Sirr) = PX(_Sirr) eSm , (14)

and show that the positivity of the irreversible entropy production is recovered in aver-
age, (Sirr) > 0.

D — Challenge

Relax the assumption that the system is initially prepared in thermal equilibrium. The
initial state is now simply characterized by the generic probability density P(z,2; —to).
Re-write the corresponding action functional, plug in the transformation 73, and gener-
alize Jarzynski’s equality (to the so-called Kawasaki’s identity) and Crooks’ fluctuation
theorem.



