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A – Worm-Like Chain: model building

Figure 1: (a) Inextensible filament. (b) Asymmetric inextensible filament.

Consider the inextensible filament represented in Fig. 1(a), the position of which is
given by the 3-dimensional vector r(s) where s ∈ [0, S] is the curvilinear abscissa. The
Landau-Ginzburg Hamiltonian reads

H[r] =

∫ S

0
ds L0[r(s)] ���

��XXXXX+Hint[r] ,

where L0[r(s)] is a non-interacting local energy density and Hint[r] collects the local
and non-local interactions that we hereby neglect. Note that, due to the inextensibility
of the filament, the field r(s) is constrained by the relation |dr/ds|= 1.

(1) Using the symmetries of the system, propose an expression for L0[r(s)]. What is
the most-likely configuration?

(2) When the filament is pulled at one end by a force fex, an external potential −fLx
has to be added to the Landau-Ginzburg Hamiltonian, where Lx ≡ r(S) · ex is the
projected total length. Let us consider the regime of strong enough forces, when the
filament is mostly aligned along ex. Show that the constraint on r(s) can be eliminated
by working with the two-dimensional field T (s) ≡ ty(s)ey + tz(s)ez where t ≡ dr/ds.
Write down the corresponding Landau-Ginzburg Hamiltonian and make the connection
with an O(N) model. Compute the typical angle θ̄ ≡

√
〈θ2〉 where sin θ ∼ θ ∼ ty.

(3) Let us now consider the case of an asymmetric filament which can twist around t,
as represented in Fig. 1(b). Propose an expression for L0.

1



B – Flexible polymers: ideal chain

Let us now consider an ideal flexible polymer in d-dimensional space, composed of N � 1
monomers of size a, and described by the non-interacting Ginzburg-Landau Hamiltonian

H[r] =

∫ N

0
ds

1

2a2
ṙ(s)2 .

Note that, contrary to the previous worm-like chain, the field r(s) is not constrained.
Let us study this simple Gaussian theory by means of a renormalization group approach.

(1) Discuss why this theory is the one of a random walk. What is the most-likely
configuration? Estimate rapidly the scaling exponent ν defined as Rg ∼ Nν where Rg

is the radius of gyration of the polymer.

(2) Coarse graining. Introducing the Fourier modes via r(s) =
∑

k r(k)eiks, write down
the partition function Z by separating the fluctuations into two components as, r(k) =
r̄(k) for 0 < k < Λ/b and r(k) = r̃(k) for Λ/b < k < Λ. Write down the coarse-grained
Hamiltonian H[r̄].

(3) Rescaling. Restore the cutoff Λ by setting k = b−1k′. Express the new (effective)
monomer size ā in terms of the original a.

(4) Amplify the field r̄ = zr′ with z = bD where D has still to be determined, and derive
the flow equation for the parameter a by setting b = el and considering an infinitesimal
δl. Give the condition on D to obtain a fixed point under RG.

C – Flexible polymers: real chain

Let us now consider the Edwards model where long-range hard-core repulsive interac-
tions are added to the ideal chain:

H[r] =

∫ N

0
ds

1

2a2
ṙ(s)2 + λ

∫ N

0
ds

∫ N

0
ds′ δd(r(s)− r(s′)) ,

with λ > 0. Let us perform a poor’s man renormalization group analysis.

(1) Coarse graining and rescaling. Let us assume that H[r̄] is well approximated by

H[r̄] =

∫ N/b

0
ds

1

2ā2
˙̄r(s)2 + λ̄

∫ N/b

0
ds

∫ N/b

0
ds′ δd(r̄(s)− r̄(s′)) .

Do you expect the effective characteristic length scale ā to be larger or smaller than in
the case of the ideal chain? Justify the following relations (guessed by P. G. de Gennes):

ā = a b1/2 (1 +Hb) , (1)

λ̄ = λ b2 (1−Kb) , (2)

where Hb and Kb are positive dimensionless functions of the dimensionless parameters
u ≡ λ/ad, b and d. Justify why Hb → 0 when u→ 0.

(2) Amplify the field r̄ = zr′ with z = bD where D will be determined later, and derive
the flow equations by relating the parameters at the nth RG step, i.e. an+1 and un+1,
in terms of an and un.

(3) Identify the fixed points, a∗ and u∗, and the related conditions on D. Discuss the
stability of the fixed points and the RG flow.
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(4) Scaling law for Rg. Using dimensional analysis (i.e. Buckingham’s π theorem),
relate the radius of gyration Rg with the parameters a, u, and the number of monomers

N . Repeat the dimensional analysis for R(n)
g , the radius of gyration after n RG steps,

where n is large enough to ensure that the RG has converged to a fixed point [i.e.
(a, u)→ (a∗, u∗)] and small enough to ensure a large number of effective monomers (i.e.
N/bn � 1). Deduce the universal scaling law for Rg, and compute the scaling exponent
ν defined as Rg ∼ Nν .

D – Challenge

The real polymer is now pulled with a force fex. The force elongates the polymer along
the x axis, but is assumed to be sufficiently weak such that it does not affect the local
structure of the polymer. Hence, the RG equations on the (local) parameters a and u
are unchanged. Repeating the RG and scaling analysis performed in Section B, show
that the projected total length, Lx ≡ r(N) · ex, is governed by the following scaling law

Lx
Rg

= Ψν (βf/Rg) , (3)

where Ψν(x) is a universal dimensionless function. Considering the regime of very weak
forces, guess the behavior of Ψν(x � 1). In the regime of relatively strong forces, one
expects L ∝ N . Deduce the behavior of Ψν(x� 1).
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