Interference in disordered systems: A particle in a complex random landscape

Alexander Dobrinevski, Pierre Le Doussal, Kay Jörg Wiese
CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France.

Abstract

We consider a particle in one dimension submitted to amplitude and phase disorder. It can be mapped onto the complex Burgers equation, and provides a toy model for problems with interplay of interferences and disorder, such as the NSS model of hopping conductivity in disordered insulators and the Chalker-Coddington model for the (spin) quantum Hall effect. The model has three distinct phases: (I) a high-temperature or weak disorder phase, (II) a pinned phase for strong amplitude disorder, and (III) a diffusive phase for strong phase disorder, but weak amplitude disorder. We compute analytically the renormalized disorder correlator, equivalent to the Burgers velocity-velocity correlator at long times. In phase III, it assumes a universal form. For strong phase disorder, interference leads to a logarithmic singularity, related to zeroes of the partition sum, or poles of the complex Burgers velocity field. These results are valuable in the search for the adequate field theory for higher-dimensional systems.


arXiv:1101.2411 [pdf]
Phys. Rev. E 83 (2011) 061116 [pdf]


Copyright (C) by Kay Wiese. Last edited January 13, 2011.