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In many applications in biology, engineering, and economics, identifying similarities and differences between
distributions of data from complex processes requires comparing finite categorical samples of discrete counts.
Statistical divergences quantify the difference between two distributions. However, their estimation is very
difficult and empirical methods often fail, especially when the samples are small. We develop a Bayesian
estimator of the Kullback-Leibler divergence between two probability distributions that makes use of a mixture
of Dirichlet priors on the distributions being compared. We study the properties of the estimator on two
examples: probabilities drawn from Dirichlet distributions and random strings of letters drawn from Markov
chains. We extend the approach to the squared Hellinger divergence. Both estimators outperform other estimation
techniques, with better results for data with a large number of categories and for higher values of divergences.
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I. INTRODUCTION

Understanding of the structure and function of a large
number of biological systems requires comparison between
two probability distributions of their states or activities, gen-
erated under different conditions. For example, one may be
interested in how the distribution of neural firing patterns un-
derlying typical vocalizations in a song bird is different from
patterns used to drive atypical, exploratory vocal behaviors
[1]. One can similarly ask how different are the distributions
of stimuli encoded by two different firing patterns; the differ-
ence then can be viewed as a measure of semantic similarity
between these patterns [2]. In the context of immunology, one
is often interested in information theoretic quantities to quan-
tify diversity or to assess differences between distributions of
immune receptors [3,4]. In these and similar examples, the
Kullback-Leibler (KL) divergence DKL, also known as relative
entropy, is often used as a measure of dissimilarity. It is a non-
symmetric measure of the difference between two probability
distributions with a wide range of applications in information
theory [5]. While not a distance in the mathematical sense,
it is often the choice measure of dissimilarity since it can
be applied to categorical (nonordinal) data, when the usual
statistical moments such as the mean and variance are not well
defined. Indeed, like other “information theoretic quantities,”
the KL divergence is not associated to the category itself, but
rather to the underlying probability distribution [6].

Estimation of information theoretic quantities is a hard
problem, with a lot of attempts in the recent literature. Most
of these have focused on the entropy and mutual information,

*These authors contributed equally to this work.

but estimation of the KL divergence has also been investigated
[7]. When faced with data without any knowledge of the true
underlying distribution, empirical approaches (typically re-
ferred to as “naive” [8] or “plug-in” [9]) are often used. These
methods approximate the true probabilities of events with
their empirical frequencies, with an optional pseudocount.
These types of estimators have been investigated thoroughly.
The consensus is that, for all entropic quantities, these esti-
mates are typically strongly biased [9–12]. To overcome this
limitation, other approaches have been proposed to estimate
the Shannon entropy (or the mutual information) of categori-
cal data. These techniques include Bayesian methods [13,14],
coverage adjusted methods [15] and bias corrected methods
[10,11,16]. In the case of the KL divergence, the cross-entropy
term, which diverges due to contributions where one distri-
bution has samples and the other does not, makes it difficult
to extend these methods in the absence of information about
the joint distribution. The bias-corrected “Z-estimator” [7],
proposed for KL divergence estimation, tackles these issues.
However, it has a strong dependence on the sample size.

Here we propose a Bayesian estimator of the DKL for
systems with finite number of categories using a mixture of
symmetric Dirichlet priors [Dirichlet prior mixture (DPM)].
This approach is the generalization of the main idea from
Ref. [13] that, to produce unbiased estimators, one needs
to start with Bayesian priors that are (nearly) uniform not
on the space of probability distributions, but directly on the
quantity being estimated. Here we extend this idea beyond
the estimation of entropy, for which it was first developed.
We check that, for data distributed according to a Dirichlet
prior, our new approach for estimation of the KL divergence
consistently converges faster to the true value than other
methods. We provide an algebraically equivalent expression
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for the Z-estimator (following Ref. [17]), which makes it ap-
plicable to large sample sizes. We also test the DPM technique
on sequences generated by Markov chains, which are not
typical within the DPM prior, obtaining better performance
for datasets with many categories. We then focus our analysis
on another measure of similarity between categorical distribu-
tions, the Hellinger divergence [18], which, unlike the DKL,
is a well defined bounded distance between distributions. To
show the generality of our approach, we also develop a DPM
estimator for the squared Hellinger divergence. In compu-
tational tests, we show the DPM approach to be accurate
for this quantity as well. Since no estimation method can
be guaranteed to estimate entropic quantities without a bias
for an arbitrary underlying probability distribution, we finish
by discussing the method’s reliability when applied to real
experimental data, where the true values of the divergences
are not known a priori.

II. RESULTS

A. Bayesian framework for the estimation of the divergence

Our goal is to derive an estimate of the Kullback-Leibler
divergence between the distributions of categorical vari-
ables t and q, DKL(q‖t ). We consider a discrete set of K
categories labeled with i = 1, . . . , K . Examples of categorical
variables include “words” defined as sequences of neuron fir-
ing patterns (spike counts in time windows), sets of coexisting
ecological or molecular species or a sequence of amino acids
or nucleotides. Each category i has a certain (unknown) prob-
ability qi in the first condition, and ti in the second condition.
We observe this category ni times in an experiment done
in the first condition, and collect the data in the histogram
n = {ni}K

i=1, with N ≡ ∑
i ni. An experiment in the second

condition returns the counts m = {mi}K
i=1, with M ≡ ∑

i mi.
We want to estimate the Kullback-Leibler divergence between
t and q [5], defined as

DKL(q‖t ) = H (q‖t ) − S(q) =
K∑

i=1

qi log
qi

ti
, (1)

where we defined the cross-entropy between t and q,
H (q‖t ) = −∑i qi log ti, and the Shannon entropy, S(q) =
−∑

i qi log qi [19].
Taking inspiration from Nemenman et al. [13], we choose

to estimate the DKL in a Bayesian framework. The approach is
summarized in Fig. 1. We do not have access to the true prob-
ability distributions t and q, only to the empirical histograms
n and m. The simple method consisting in approximating
qi ≈ ni/N and likewise for t into Eq. (1) is known to work
very poorly [11,12]. The issue comes from the presence of cat-
egories never observed in one sample, while they are present
in the other, resulting in divergence of the logarithmic term.
To go beyond that, we construct a prior of the true distribu-
tions Pprior (q, t ) and weight the estimate of the divergence by
posterior over q and t:

〈DKL(q, t )|n, m〉 =
∫

dqdt Ppost (q, t )DKL(q‖t ), (2)

FIG. 1. Schematic representation of the Bayesian approach for
the inference of the Kullback-Leibler divergence. Given two inde-
pendent samples n and m of categorical data, we model the true
distribution q and t as drawn from a mixture of Dirichlet distribution
with unknown concentration parameters α and β. The DPM esti-
mation of the DKL is then obtained by averaging over all values of
these parameters, weighted by the likelihood of the samples n and m
(multinomial distributions).

where

Ppost (q, t ) = 1

Z
Pprior (q, t )P(n, m|q, t ), (3)

with Z = P(n, m) = ∫
dqdt Pprior (q, t )P(n, m|q, t ) a

normalization.
The empirical observations n and t are assumed to be

independent samples of q and t respectively, and are thus
distributed according to a multinomial distribution:

P(n, m|q, t ) = Mult(n|q)Mult(m|t ), (4)

with

Mult(n|q) ≡ N!∏
i ni!

K∏
i=1

qi
ni . (5)

A natural choice for the prior on q and t is the Dirichlet
distribution, which is the conjugate prior of the multinomial
distribution, and is defined as

Dir(q|α) ≡ δ
(∑

i qi − 1
)

B(α)

K∏
i=1

qi
α−1, (6)

where B(x) is the multivariate β function:

B(x) ≡
∏

i �(xi)

�(
∑

i xi )
, (7)

where �(x) is the � function. The parameter α ∈ (0,∞) in
Eq. (6) is the “concentration parameter,” α = {α}K

i=1 and δ(x)
is the Dirac’s δ function imposing normalization. Rank plots
associated to Dir(q|α) are shown in Fig. 3(a). For α → ∞,
the prior tends to a uniform distribution qi = 1/K . For small
concentration parameters α, the distribution is peaked with
weights given to just a few categories.

As noted in Ref. [13], entropies of distributions drawn
from a Dirichlet with the same α all have similar entropies,
strongly biasing the Shannon entropy estimate, especially in
the large K limit. To reduce the bias, one then uses a mixture
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of Dirichlet distributions at different α, allowing substantially
different values of the entropy a priori. For a certain choice
of the mixture distribution [the prior over α, ρ(α)], one can
achieve a nearly uniform a priori distribution of entropies and,
consequently, a much smaller estimation bias [13,20]. We ex-
pect DKL also to have very similar values for all distributions
generated from the Dirichlet priors with fixed α and β. We
then expect that a good estimator may be produced by using a
mixture of Dirichlet distribution that allows to span different
values of the expected DKL:

Pprior (q, t ) =
∫ ∞

0

∫ ∞

0
dαdβ ρ(α, β )Dir(q|α)Dir(t|β ), (8)

where ρ(α, β ) is a “hyper-prior,” i.e., a prior over the hyper
parameters α and β. Plugging this prior into Eqs. (2) and (3)
gives

〈DKL|n, m〉

= 1

Z

∫
dαdβ P(n|α)P(m|β )ρ(α, β )〈DKL|n, m; α, β〉,

(9)

where the marginal likelihood P(n|α) is equal to

P(n|α) =
∫

dq Mult(n|q) Dir(q|α) = B(n + α)N!

B(α)
∏

i ni!
(10)

and likewise for P(m|β ). The normalization now reads

Z =
∫

dαdβ P(n|α)P(m|β )ρ(α, β ). (11)

The expected value of the DKL inside the integral in Eq. (9)
may be computed analytically (see Appendix A 1):

〈DKL|n, m; α, β〉

=
∫

dqdtP(q, t|m, n, α, β )DKL(q‖t )

=
K∑

i=1

ni + α

N + Kα
{�ψ (M + Kβ, mi + β )

− �ψ (N + Kα + 1, ni + α + 1)}, (12)

where �ψ (z1, z2) = ψ (z1) − ψ (z2) is the difference of
digamma functions ψ [i.e., polygamma function of order 0,
see Eq. (A5)].

Similarly we can calculate 〈D2
KL|n, m〉, which we can use

to compute the posterior standard deviation of our method
(Appendix A 1). For a given choice of ρ(α, β ), the DPM esti-
mate for DKL in Eq. (9) can be computed numerically [same
for D2

KL in Eq. (A27)], as described in detail in Appendix A 4.
The code is available on github as specified in Appendix A 4 c.

We expect that, in the limit of large data (N, M 
 K), the
integral of Eq. (9) will be dominated by the values of α and β

that maximize the likelihoods P(n|α) and P(m|β ), regardless
of the hyper-prior ρ(α, β ). The dominant role of the likeli-
hood P(n|α) for increasing N was equivalently observed for
the NSB entropy estimator [21]. By contrast, we expect the
prior ρ(α, β ) to play a role in the low-sampling regime, as
can be seen from Fig. 2.

A simplified approach for the estimation of the DKL would
then be to provide a choice for the concentration parameters

FIG. 2. Dependency on the concentration parameters α and β of
the two main factors appearing in the average performed by the DPM
estimator [Eq. (9)]: the posterior ∝ P(n|α)P(m|β )ρ(α, β ), and the
expected value 〈DKL|n, m; α, β〉. For reasons of accuracy, integrals
are numerically computed in logarithmic space, so that it is more
informative to introduce the posterior density in log α and log β, so
that we define: LDPM(α, β ) ≡ log10 P(n|α)P(m|β )ρ(log α, log β ).
We compare it with the logarithm of the marginal likelihoods
LDP(α) ≡ log10 P(n|α) and LDP(β ) ≡ log10 P(m|β ) in the left and
bottom subplots. The central panel shows the relative error associated
to 〈DKL|n, m; α, β〉 as a function of the two concentration parameters
α and β. The samples n and m of sizes N = M = 1

4 K were generated
from two distinct Dirichlet-multinomial processes with concentra-
tion parameters αtrue = 1.0 and βtrue = 1.0 with K = 400 (black star
on the central panel). The dashed black line corresponds to 0 error.
Blue cross: maximum of LDP(α) + LDP(β ). Red circle: maximum
of LDPM(α, β ). Red lines are standard deviations associated to LDPM

around its maximum.

that maximizes the marginal likelihoods P(n|α) [see Eq. (10)]
and P(m|β ) [22]. We refer to the application of Eq. (12) with
such estimated values of α and β as the Dirichlet prior (DP)
estimator.

B. Choosing the hyper-prior

To finalize the DKL estimation, we need to choose a func-
tional form for the hyper-prior ρ(α, β ) in such a way that the
resulting ensemble has an evenly distributed DKL. In the limit
of large numbers of categories (K 
 1), both contributions of
the DKL, S(q) and H (q‖t ) are very peaked around their mean
values, which can be computed analytically (Appendix A 1):

A(α) ≡ 〈S|α〉 = �ψ (Kα + 1, α + 1) � log K (13)

and

B(β ) ≡ 〈H |α, β〉 = �ψ (Kβ, β ) � log K (14)

(which only depends on β), at fixed concentration parameters.
These mean values are shown in Fig. 3(b), and the correspond-
ing DKL = H − S in Fig. 3(c) as a function of α and β. We are
interested in finding a hyper-prior such that the resulting prior
over DKL is not peaked. This results in the following inverse
problem for finding the hyper-prior ρz(z), where we denote
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(a) (b)

(d)(c)

FIG. 3. (a) Average rank-frequency plots for probabilities drawn
from a Dirichlet prior Dir(q|α) for different choices of concentration
parameters α. (b) Expected values of the cross-entropy 〈H |β〉 and
the entropy 〈S|α〉 under Dirichlet priors as functions of the concen-
tration parameters. (c) Expected value of the DKL divergence under
Dirichlet priors 〈DKL|α, β〉 as a function of the two concentration
parameters. (d) Log-metaprior log10 ρ(α, β ) as a function of the
two concentration parameters. Dashed black line represents the level
〈DKL|α, β〉 = log K . K = 202 for all plots.

DKL by z:

ρz(z) ≈
∫ ∞

0
dα

∫ ∞

0
dβ ρ(α, β ) δ(B(β ) − A(α) − z), (15)

with the choice ρz(z) to be made. Because we have a one-
dimensional target distribution ρz(z), but a two-dimensional
hyper-prior ρ(α, β ), there are infinitely many solutions to this
inverse problem. Without losing generality, we can make the
change of variable from α and β to A and B:

ρz(z) ≈
∫ log K

0
dA

∫ +∞

log K
dB ρAB(A,B) δ(B − A − z), (16)

with

ρ(α, β ) = |∂αA|∣∣∂βB
∣∣ρAB(A(α),B(β )). (17)

Then a natural choice is to pick the Ansatz imposing that all
values of A and B with the same DKL are equiprobable:

ρAB(A,B) = φ(B − A). (18)

Then φ(z) satisfies

ρ(z) = φ(z)
∫ log K

0
dA θ (z + A − log K )

= φ(z){z θ (log K − z) + log K θ (z − log K )}, (19)

where θ (x) = 1 if x � 1 and 0 otherwise (Heaviside function),
or after inversion:

φ(z) =
⎧⎨⎩ρ(z)z−1 z < log K,

ρ(z)
1

log K
otherwise. (20)

Equations (17), (18), and (20) give us the final form of the
hyper-prior ρ(α, β ). We are left with the choice of the distri-
bution of the DKL, ρ(z). We pick a log-uniform (also known as
“reciprocal”) distribution, ρ(z) ∝ z−1 [23], allowing to evenly
span over different orders of magnitude of the DKL. The result-
ing hyper-prior is represented in Fig. 3(d).

C. Tests on synthetic Dirichlet samples

To assess the properties of the DPM estimator, we test it
on data generated from distributions drawn from Dirichlets
q ∼ Dir(q|α), t ∼ Dir(q|β ) [Eq. (6)], for various values of α

and β. Having in mind applications to polypeptide sequences,
we perform our tests for three different numbers of categories
K = 202, 203, and 204, the numbers of all possible 2-mers,
3-mers, and 4-mers that can be produced with an alphabet
of 20 letters (e.g., amino acids). For each choice of q and
t , samples n and m are generated from these distributions.
This application may be viewed as a the consistency check
for the estimator, since the estimator relied on the Dirichlet
hypothesis, which is satisfied by the data.

We know that standard Bayesian consistency applies, en-
suring that DPM (and DP) estimators converge to the true
value in the limit of large samples. To understand how DPM
estimator converges to the true value, we extract subsam-
ples of increasing sizes N = M from a larger sample of size
2×107. Figure 4 compares our DKL estimate to several state-
of-the-art estimators: the additive smoothing method with
different values of the pseudocount (see below for details),
the Z estimator, and the simplified version of our method, the
DP estimator, obtained by fixing α and β to their maximum-
likelihood values.

Additive smoothing estimators are defined as DKL(q̂‖t̂ ),
with q̂i = (ni + a)/(N + Ka) and t̂i = (mi + b)/(M + Kb).
We use four choices for the pseudocounts a and b, summa-
rized in Table I. To avoid infinite values, in the case b = 0 we
set to zero the terms for which mi = 0.

It has been shown that naive estimators converge to the true
value in the limit of large samples, but have an infinite bias
due to low-probability categories [7]. The “Z-estimator” [7]
was introduced to remove this bias asymptotically. Although
its original definition was given as a series, one can show
following Ref. [17] that its expression reduces to
(Appendix A 2):

D̂(Z )
KL =

K∑
i=1

ni

N
[�ψ (M + 1, mi + 1) − �ψ (N, ni )], (21)

where the first term in the sum corresponds to an es-
timator of H (q‖t ), and the second term is the classic
Schurmann-Grassberger estimator of the entropy S(q) [16].
In Appendix A 2 we observe that 〈DKL|n, m, α, β〉 → D̂(Z )

KL in
the limit α → 0, β → 1, N 
 K and M 
 K .
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(a)

(b) (c)

FIG. 4. Convergence of the DKL estimates for increasing sample
sizes. (a) We draw two independent histograms from Dirichlet-
multinomial distributions with parameters α and β. We obtain
subsamples of different sizes N = M and we estimate the DKL di-
vergence for each of them. We compare the DP and DPM results
to those obtained with the known alternative estimators [Table I and
Eq. (21)], as a function of N/K . Here we plot the average over 100
repetitions for concentration parameters α = β = 1 and K = 202.
The highlighted region in yellow corresponds to an error of ±5%
relative to the average true value, represented by the dashed black
line. (b) Convergence of DKL estimators for different (log-spaced)
concentration parameters α, β. We plot the N∗/K score for the
size at which the best between the DP and DPM estimators reach
the true value up to a relative error of ±5% [highlighted region in
panel (a)]. Lower N∗/K scores correspond to faster converge of the
estimator. (c) The method with the best convergence score among the
alternative methods is represented (first letter of its name). A dash
symbol “-” indicates that no alternative has a score N∗/K < 50. The
DP and DPM estimators shows faster convergence compared to all
other methods for all parameters.

Comparing the convergence of the different estimators to
the true DKL value as a function of the subsample size N/K
for α = β = 1 and K = 202 [Fig. 4(a)], we see that the DPM
performs better than other estimators. To assess how perfor-
mance depends on the concentration parameters, we repeated

TABLE I. List of choices for the pseudocounts used to define
alternative estimators of the DKL [27]. K (obs) � K is the number of
observed categories, for which ni > 0 in each distinct sample.

Name a b Reference

“Naive” 0 0 —
“Jeffreys” 0.5 0.5 [24]
“Trybula”

√
N/K

√
M/K [25]

“Perks” 1/K (obs) 1/K (obs) [26]

this convergence analysis for different values of α and β. We
measure convergence through N∗, defined as the sample size
where the estimator get within 5% of the true value [Fig. 4(b)].
This measure of accuracy has the advantage to be applicable
to all considered estimation methods.

Our estimator consistently performs well and compares
favorably to other methods when data was generated from
distributions drawn from symmetric Dirichlet. In most cases,
the proposed DPM estimator converges faster than all other
considered methods [Fig. 4(c)]. The better performance is
striking also for larger numbers of categories, K = 203 and
204 (Fig. 7).

D. Tests on synthetic Markov chain sequences

To test the performance of DPM on a different synthetic
system that does not satisfy the Dirichlet assumption, we
generated L-long sequences (or “L-grams”) from a Markov
chain described by the transition matrix Ŵ ∈ M20 with 20
states μ = 1, . . . , 20. We choose each transition probability
P(μ → ν) from a uniform distribution in (0,1) and then im-
pose that the transition matrix is a right stochastic matrix,
P(μ → ν) = Wνμ by normalizing to 1 each column of the
transition matrix. An illustration where the states are the 20
amino acids is shown in Fig. 5(a). With this choice for the
Markov transition matrix, all states communicate and are
non absorbing. We verify there exists a stationary probability
vector π = {πμ}L

μ=1 that satisfies π = Ŵ π. The number of
categories is K = 20L and each category i corresponds to the
L-gram (x1, . . . , xL ) with the stationary probability qi equal to
qi = πx1Wx2x1 . . .WxLxL−1 .

We analytically compute the entropy associated to the sta-
tionary distribution q of L-grams to get

S(L)(q) = S(π) − (L − 1)
∑
μν

Wνμπμ logWνμ. (22)

Typical values for the Shannon entropy of L-grams are shown
in Fig. 5(b) along with the convergence curve of the NSB
estimator. We assume that the L-grams of a second system are
generated by a similar Markov process but with a transition
matrix V̂ and stationary probabilities of the σ = {σμ} states.
The cross-entropy between the t and q distributions reads

H (L)(q‖t ) = H (π‖σ ) − (L − 1)
∑
μν

Wνμπμ logVνμ. (23)

Similar to the analysis in the previous section, we generate
a large sample of L-grams from each distribution, with N =
M = 2×108. We subsample this dataset at different sample
sizes and estimate the DKL and its standard deviation for
L = 2, 3, 4. To study the average behavior, we divide the
estimate by the expected result [Eq. (23)] and we average over
30 simulations.

We observe that, in the case of small numbers of categories
[K = 202, Fig. 5(c) top panel], DPM (and DP) perform quite
similar to the best alternative (Jeffreys), but with different
sign biases. However, the DPM estimator performance greatly
improves for larger K [Fig. 5(c) middle and bottom panels].
In all cases, the standard deviation associated to the DPM
estimator [red bars in Fig. 5(c)] captures the spread across
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(a) (c)

(b)

FIG. 5. (a) Schematic representation of the generation process of
a L = 3-gram using a Markov chain with 20 states. (b) We generate
a random Markov matrix and draw a sample of 2 · 108 independent
L-grams, for L = 2, 3, 4. The Shannon entropy S(L) [Eq. (22)] esti-
mated with the NSB method [13] for subsamples of size N , averaged
over 30 repetitions normalized by the true value of the entropy and
rescaled by the asymptotic value. The highlighted yellow region
corresponds to a ±5% error range with respect to the average true
value (dashed black line). (c) DKL estimate and its standard deviation
as a function of relative subsample size N/K , for K = 202, 203, 204.
For K = 202, the DP and DPM estimators perform comparably to
the best alternative (“Jeffreys” for all K), while they work better
for larger K . The error bars represent the average posterior standard
deviation of the DKL estimate associated to the DPM method. The red
shade is the standard deviation of the DPM DKL estimates across the
repetitions.

the different repetitions of the convergence curve [red shade
in Fig. 5(c)].

E. Estimator for the Hellinger divergence

Last, we extend the DPM method to estimate the Hellinger
divergence DH between the discrete distributions q and t [18].
The Hellinger divergence is a symmetric statistical distance
that satisfies the triangular inequality, making it a true distance
in the mathematical sense [28]:

DH(q, t )2 = 1

2

K∑
i=1

(
√

qi − √
ti )

2 = 1 −
K∑

i=1

√
qiti. (24)

Following the same approach as for the Kullback-Leibler
divergence (details in Appendix A 3), we obtain the DPM
estimator for D2

H:〈
D2

H

∣∣n, m
〉

= 1

Z

∫
dαdβ ρH(α, β )P(n|α)P(m|β )

〈
D2

H

∣∣n, m; α, β
〉
,

(25)

(a) (c)

(b)

FIG. 6. Squared Hellinger divergence convergence. (a) Conver-
gence score N∗/K of the DP and DPM D2

H estimators, tested on
the same synthetic data as in Fig. 4(b). We consider 100 pairs of
histograms drawn from Dirichlet-multinomial process with α and
β concentration parameters. (b) We compare to the score of the
best alternative method to the DP and DPM, chosen as pseudocount
estimators with pseudocount given by Table I. These alternative
methods perform worse for all values of the parameters. (c) Con-
vergence of the DP and DPM D2

H estimators tested on the same
Markov datasets as in Fig. 5(c) for different subsample sizes N . Each
repetition is normalized by its true value, averaged and then rescaled
by the asymptotic value (average of the true values). Red shade: the
standard deviation across repetitions.

with

〈
D2

H

∣∣n, m; α, β
〉 = 1 −

K∑
i=1

B
(

1
2 , N + Kα

)
B
(

1
2 , ni + α

) B
(

1
2 , M + Kβ

)
B
(

1
2 , mi + β

) ,

(26)

where Z = ∫
dαdβ ρH(α, β )P(n|α)P(m|β ) and B(x1, x2) =

�(x1)�(x1)/�(x1 + x2) is the two-dimensional Beta function
(see Appendix A 1).

We test the Hellinger divergence DH estimator on the
same synthetic datasets as in Fig. 4(b) (Fig. 6). For datasets
generated with Dirichlet-multinomial distributed samples,
the DPM outperforms all considered plug-in estimators
1 −∑K

i=1

√
q̂it̂i, with q̂i and t̂i defined as before with pseudo-

counts a, b chosen according to Table I [Fig. 6(a)]. As for the
case of KL divergence, the performance improves for larger
categories (Fig. 8). Tests on the synthetic Markovian L-grams
(see previous paragraph) show the DPM estimator performs
better for larger numbers of categories K , with comparable
performance to the best alternative (Jeffreys) for K = 202

[Fig. 6(b)].
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F. Limitations of the DPM method

The Bayesian framework developed so far implicitly as-
sumes that the two distributions q and t are distinct. To test
the impact of this assumption on the performance of the DP
and DPM estimators, we estimate both DKL and D2

H for in-
dependent samples drawn from the same distribution q = t ∼
Dir(q|α). By definition α = β. We show in Fig. 9 that both
DP and DPM methods converge much more slowly towards
the true value DKL = 0 for all α than the best alternative
method (the Z-estimator). A faster convergence is observed
for D2

H = 0, with increased scores for larger α. These results
are independent of the number of categories K .

III. DISCUSSION

Correctly estimating statistical divergences between two
distributions is an open problem in the analysis of categori-
cal systems. Alongside the entropy, divergences such as the
Kullback-Leibler and the Hellinger distance, are an important
tool in the analysis of categorical data [6].

We focused on categorical distributions with finite num-
bers of categories K (bounded domain), where K is a known
quantity. We proposed a way (DPM) to extend the approach
of Nemenman et al. [13] developed for Shannon entropy
estimation, to Kullback-Leibler estimation. DPM introduces
a mixture of symmetric Dirichlet priors with a log-uniform
a priori expected divergence distribution [Eq. (20)]. We re-
stricted our analysis to the case of the two finite samples of
the same size N , although the method works for different
sample sizes. We also propose a simplified estimator (DP),
which assumes a Dirichlet prior with concentration parameter
fixed to the maximum value of the likelihood. This estimator
is faster to compute as it does not require to integrate over the
concentration parameters.

We showed that the DPM method outperforms the tested
empirical plug-in techniques in terms of DKL estimation for
synthetic data sampled from a Dirichlet-multinomial distri-
bution with fixed concentration parameters. The estimation
task gets harder for distributions with larger concentration
parameters, i.e., closer to a uniform distribution, but easier for
large numbers of categories K .

These convergence trends were confirmed by tests on se-
quences of L states generated by Markov chains. In this
case, DPM compares well to the best plug-in estimator in the
low sample size regime of K = 202 and outperforms it for
K � 203. Similar results were obtained for the DPM estimate
of the Hellinger divergence for both Dirichlet-multinomial
and Markov chain datasets. To our knowledge, DPM estimator
of the Hellinger divergence is the first attempt to extend the
ideas of Ref. [13] and to build a uniform prior estimator for a
non-entropy-like quantity.

Our tests were restricted to categorical systems with rank
distributions having exponentially decaying tails. As previ-
ously discussed for the case of the NSB entropy estimator, the
Dirichlet prior has major limitations in capturing the Shannon
entropy if the system rank distribution is not decaying fast
[14,20]. Many real systems exhibit long-tailed rank distri-
butions that decay as power-laws [29], which are not well
captured by a Dirichlet prior. Preliminary (unpublished) tests

of the DPM method for such systems show poor performance.
Similarly to the case of entropy estimates, we speculate that
the limitations of this method are related to issues with the
poor representation of long tails by Dirichlet priors. Intro-
ducing a Pitman-Yor prior [30] could overcome this problem,
as has been shown for entropy estimation by Archer et al.
[14], and offers a direction to generalize the applicability of
the DPM method. Extending the Pitman-Yor prior to the case
of statistical divergences would require to compute expected
values over the probabilities of both systems, but to the best
of our knowledge this is not possible because of the lack of
an analytical expression for the Pitman-Yor distribution. An-
other difficulty may lie in the difficulty to encode correlations
between the ranks of categories in the two distributions. Our
priors assume that the two unknown distributions q and t are
drawn independently. However, in real data they are generally
correlated, which could have an impact on the quality of
estimators when the distribution of frequencies becomes very
broad.

In view of these complications, it is important to have
practical criteria to ascertain if the output of the DPM
estimator can be trusted for a specific dataset, or if it re-
mains biased. Similar questions exist for estimation of many
quantities, and specifically of entropic quantities, on cate-
gorial data since no estimator can be universally unbiased
for them, and the decay of the bias with the sample size
may be excruciatingly slow [9,10]. For entropy and mu-
tual information, the standard approach is to observe if the
empirical output drifts systematically as the sample size
changes. One then declares the estimator trustworthy if the
bias does not drift by more than the posterior standard devia-
tion over about an order of magnitude change in the amount
of data [8,31]. We expect this approach to transfer nearly
verbatim to the DKL and the Hellinger divergence context,
easily detecting whether the DPM approach can be used for
a specific dataset, or if other analysis methods should be
sought.

ACKNOWLEDGMENTS

We thank Antonio C. Costa for helpful discussions. This
work was partially supported by the European Research
Council Consolidator Grant No. 724208 and ANR-19-
CE45-0018 “RESP-REP” from the Agence Nationale de
la Recherche. I.N. was supported in part by the Simons
Foundation Investigator grant, Simons-Emory International
Consortium on Motor Control, and by the U.S. NSF Grant
No. 2209996.

APPENDIX

1. Mathematical relations

We first introduce mathematical relations and notations
that are used for the computation of the DP and DPM esti-
mators for DKL and DH

2.

a. Wolpert-Wolf integrals

Given a vector x = {xi}K
i=1, where xi ∈ (0,∞) for all

i = 1, . . . , K , where K is a finite number of categories, the
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Wolpert-Wolf [32] integral is a multivariate Beta function
B : RK

+ → R+ in x:∫
dq δ

(
K∑

i=1

qi − 1

)
K∏

j=1

q j
x j−1 =

∏K
j=1 �(x j )

�(X )
= B(x),

(A1)

where X = ∑
i xi and � is the � function:

�(x) ≡
∫ ∞

0
dt e−t t x−1. (A2)

All Bayesian calculations with multinomial likelihoods and
multivariate Dirichlet priors involve the integral:∫

dq δ

(
K∑

i=1

qi − 1

)
K∏

j=1

f j (q j )

= L−1

⎡⎣ K∏
j=1

L[ f j (q)](s)

⎤⎦(q′ = 1), (A3)

where the fi are regular functions, L is the Laplace transform
in q (which is a function of s) and L−1 is the inverse Laplace
transform (which is a function of q′).

b. Partial derivative operation

The “partial derivative operator” for the ith dimension
∂i = ∂

∂xi
applied to the Beta function B returns

(∂iB)(x) =
∫

dq δ(‖q‖1 − 1)
K∏

j=1

q j
x j−1 log qi

= B(x)[ψ (xi ) − ψ (X )], (A4)

where the function ψ is the polygamma function of order 0.
The polygamma function of order � is defined as

ψ�(x) ≡ d�

dy�
log �(y)

∣∣∣∣
y=x

. (A5)

To simplify the calculations, we define the following quan-
tities related to the partial derivative operation [Eq. (A4)]:

�i(x) ≡ (∂iB)(x)

B(x)
= �ψ (xi, X ), (A6)

where we make use of the contraction �ψ (z1, z2) = ψ (z1) −
ψ (z2). Iterating this derivation on the function B, one can
express the second partial derivative as follows:

�i j (x) ≡ (∂i∂ jB)(x)

B(x)
=
(
∂i
(
B� j

))
(x)

B(x)

= �i(x)� j (x) + (
∂i� j

)
(x), (A7)

where the derivative ∂i� j (x) = δi jψ1(xi ) − ψ1(X ) is a conse-
quence of Eq. (A6), and δi j is the Kronecker δ.

c. Shift operation

We introduce the “shift operator” eλ∂i of parameter λ ∈ R
for the ith dimension, with the condition xi + λ > 0. The shift

operator acts on the function B as follows:

(eλ∂i B)(x) = B(x + λ̂i)

=
∫

dq δ

(
K∑

i=1

qi − 1

)
K∏

j=1

q j
x j−1qi

λ

= B(x)
B(λ, X )

B(λ, xi )
, (A8)

where î = {δi j}K
j=1 indicates the ith versor in the

K-dimensional space of categories. The function B(z1, z2) is
the regular (two-dimensional) Beta function:

B(z1, z2) = �(z1)�(z2)

�(z1 + z2)
. (A9)

When λ = n ∈ N+, the shift simplifies to

(en∂i B)(x) = B(x)
n−1∏
n′=0

xi + n′

X + n′ (A10)

as an immediate consequence of the recurrence relation
�(x + 1) = x�(x). Similarly to the case of partial derivatives,
we introduce a class of functions to deal with the shift:

�i(x) ≡ (e∂i B)(x)

B(x)
= xi

X
, (A11)

from which we compute two-dimensional shifts

�i j (x) ≡ (e∂i e∂ j B)(x)

B(x)
= e∂i (B� j )(x)

B(x)

= �i(x)� j (x + î) = xi

X

(x j + δi j )

X + 1
. (A12)

d. Composed operations

Composing all these operations on the multivariate Beta
function, we can obtain all the quantities presented in this
work. We start computing the composition between shift
[Eq. (A11)] and derivative operators [Eq. (A6)]:

(e∂i∂ jB)(x)

B(x)
= (e∂i� jB)(x)

B(x)

= � j (x + î)(e∂i B)(x)

B(x)
= �i(x)� j (x + î).

(A13)

We point out that since the shift and derivative operators
commute, the order of their application is not important. Using
the same approach, we obtain the following results:

(e∂i e∂ j ∂kB)(x)

B(x)
= �i j (x)�k (x + î + ĵ), (A14)

and

(e∂i e∂ j ∂k∂hB)(x)

B(x)
= �i j (x)�kh(x + î + ĵ). (A15)

e. A priori and a posteriori expected values

The operations presented in the previous sections are used
compute the posterior expected values 〈F (q, t )|n, m; α, β〉 for
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all the functions that can be expressed as

F (q, t ) =
K∑

i=1

fi(q)gi(t ). (A16)

Since the concentration parameters α, β are independent,
for fixed concentration parameters the expected value of F
factorizes

〈F (q, t )|n, m; α, β〉 =
K∑

i=1

〈 fi|n; α〉〈gi|m; β〉, (A17)

with

〈 fi|n; α〉B(n + α)N!

B(α)
∏

j n j

=
∫

dq δ

⎛⎝ K∑
j=1

q j − 1

⎞⎠Dir(q|α)Mult(n|q) fi(q)

=
∫

dq δ

⎛⎝ K∑
j=1

q j − 1

⎞⎠N!
∏

j q j
ni+α−1

B(α)
∏

j n j
fi(q). (A18)

For all functions fi that can be expressed in terms of partial
derivative [Eq. (A4)] and/or shift operators [Eq. (A8)], a
factor B(n + α) appears and the expected value is obtained
explicitly simplifying the constant factors. Specifically,

〈qi|n; α〉 = (e∂i B)(n + α)

B(n + α)
, (A19)

〈log qi|n; α〉 = (∂iB)(n + α)

B(n + α)
, (A20)

〈qi log qi|n; α〉 = (e∂i∂iB)(n + α)

B(n + α)
, (A21)

〈qiq j |n; α〉 = (e∂i e∂ j B)(n + α)

B(n + α)
, (A22)

〈qiq j log qi|n; α〉 = (e∂i e∂ j ∂iB)(n + α)

B(n + α)
, (A23)

and

〈qiq j log qi log q j |n; α〉 = (e∂i e∂ j ∂i∂ jB)(n + α)

B(n + α)
. (A24)

The a priori expected values are computed in the same way,
noticing that 〈 f j |α〉 = 〈 f j |n = 0; α〉.

f. KL divergence estimation

We can use the previous results to compute the a posteriori
expected value for the DKL. We start by computing the a
posteriori expected value for the cross-entropy H which is
given by〈

K∑
i=1

H (q‖t )|n, m, α, β

〉
=

K∑
i=1

〈qi|n, α〉〈log ti|m, β〉

=
K∑
i

e∂i B(n + α)

B(n + α)

∂iB(m + β)

B(m + β)

=
K∑
i

ni + α

N + Kα
�ψ (M + Kβ, mi + β ), (A25)

where we took advantage of independence and used
the relations Eqs. (A19) and (A20) to obtain the ex-
plicit expressions in Eqs. (A11) and (A6). Subtracting the
a posteriori expected Shannon entropy 〈S|n, m, α, β〉 =∑

i

ni + α

N + Kα
�ψ (N + Kα + 1, ni + α + 1), we finally obtain

the KL expected value in Eq. (12):

〈DKL|n, m; α, β〉 =
K∑

i=1

ni + α

N + Kα
{�ψ (M + Kβ, mi + β )

− �ψ (N + Kα + 1, ni + α + 1)}.
(A26)

g. Squared KL divergence estimation

To compute the posterior standard deviation of the
Kullback-Leibler divergence estimator, we calculate the ex-
pected value of the squared KL divergence:

〈DKL
2|n, m〉

=
∫

dαdβ P(n, α)P(m|, β )ρ(α, β )〈DKL
2|n, m; α, β〉.

(A27)

Similarly to the case of DKL, we can compute explicitly

〈DKL
2|n, m; α, β〉 =

∑
i j

〈
qiq j log

qi

ti
log

q j

t j

∣∣∣∣n, m; α, β

〉
,

(A28)

which requires to rewrite

qiq j log
qi

ti
log

q j

t j

= qiq j log qi log q j − 2qiq j log qi log t j + qiq j log ti log t j .

(A29)

The explicit expression computed using Wolpert-Wolf
properties [Eqs. (A6), (A7), (A12), (A14), (A15)] is

〈qiq j log
qi

ti
log

q j

t j
|n, m; α, β〉

= xi(x j + δi j )

X (X + 1)
{δi jψ1(xi + 2) − ψ1(X + 2)

+ �ψ (xi + 1 + δi j, X + 2) · (i ↔ j)

− 2�ψ (xi + 1 + δi j, X + 2)�ψ (y j,Y )

+ δi jψ1(yi ) − ψ1(Y ) + �ψ (yi,Y ) · (i ↔ j)}, (A30)

where we have introduced the following notation to contract
the expression: x = n + α, X = N + Kα, y = m + β and Y =
M + Kβ. The factor (i ↔ j) means taking the term that it
multiplies with inverted indexes i and j.
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2. Zhang-Grabchak divergence estimator

In Ref. [7] Zhang and Grabchak proposed an estimator for
the Kullback-Leibler divergence, defined as

D̂(z)
KL =

K∑
i=1

ni

N

{
M−mi∑
v=1

1

v

v∏
s=1

(
1 − mi

M − s + 1

)

−
N−ni∑
v=1

1

v

v∏
s=1

(
1 − ni − 1

N − s

)}
, (A31)

where v and s are dummy variables.

a. Expression of the Z-estimator

Schurmann [17] has shown that, in the entropy term of
Eq. (A31), the summation in v of the ith element can actually
be expressed in a more concise way as

N−ni∑
v=1

1

v

v∏
s=1

(
1 − ni − 1

N − s

)
= �ψ (N, ni ), (A32)

times a factor ni/N . The sum of these terms re-
turns the Shurman-Grassberger entropy estimator ŜSG =∑

i=1
ni
N �ψ (N, ni ) [16].

If we simply plug N = M + 1 and ni = mi + 1 in
Eq. (A32), we can show that the analogous ith cross-entropy
term in Eq. (A31) is equal to the following:

M−mi∑
v=1

1

v

v∏
s=1

(
1 − mi

M − s + 1

)
= �ψ (M + 1, mi + 1).

(A33)

Finally, if we substitute Eqs. (A32) and (A33) in Eq. (A31),
we obtain

D̂(z)
KL =

K∑
i=1

ni

N
[�ψ (M + 1, mi + 1) − �ψ (N, ni )], (A34)

which is the expression in Eq. (21) of the main text.

b. Relation between the DP and the Z-estimator

The Z-estimator can be expressed as an a posteriori ex-
pected value of the DKL at α = 0 and β = 1, up to an additive
constant. We start by showing the following relation

lim
α→0

〈S|n, α〉 =
K∑

i=1

ni

N
�ψ (N + 1, ni + 1)

= 1 − K

N
+

K∑
i=1

ni

N
�ψ (N, ni ), (A35)

which makes use of the fact that ψ (x + 1) = ψ (x) + 1
x .

Considering now the cross-entropy term with β = 1, and
performing the same limit as before, we observe that

lim
α→0

〈H |n, m, α, β = 1〉 =
K∑

i=1

ni

N
�ψ (M + K, mi + 1)

= �ψ (M + K, M + 1) +
K∑

i=1

ni

N
�ψ (M + 1, mi + 1),

(A36)

where we used the fact that �ψ (x, x) = ψ (x) − ψ (x) = 0 to
add the term �ψ (M + 1, M + 1) in the sum.

Recognizing the two terms in Eq. (A34) we subtract
Eqs. (A35) and (A36) to obtain that

lim
α→0

〈DKL|n, m, α, β = 1〉

= �ψ (M + K, M + 1) + K − 1

N
+ D̂(z)

KL. (A37)

3. DPM-squared Hellinger divergence estimator

We compute the DPM estimator for the squared Hellinger
divergence D2

H [Eq. (24)]. We do so by starting from the
Bhattacharyya coefficient BC [33],

BC(q, t ) =
K∑

i=1

√
qi

√
ti = 1 − DH

2(q, t ). (A38)

Its a priori expected value under the assumption of the prior

Pprior (q, t ) = p(q, t|α, β ) = Dir(q|α)Dir(t|β ) (A39)

is equal to

〈BC|α, β〉 =
K∑

i=1

(e
1
2 ∂i B)(α)

B(α)

(e
1
2 ∂i B)(β)

B(β)

= K
B( 1

2 , Kα)

B( 1
2 , α)

B( 1
2 , Kβ )

B( 1
2 , β )

, (A40)

where we used the shift property [Eq. (A8)] with parameter
λ = 1

2 . Following the derivation of the DKL in the main text,
we choose a hyper-prior ρH(α, β ) to control the a priori
squared Hellinger divergence 〈DH

2|α, β〉 = 1 − 〈BC|α, β〉:

ρH(z) =
∫

dαdβ ρH(α, β ) δ
(〈

D2
H

∣∣α, β
〉− z

)
. (A41)

We define g(x) = √
KB( 1

2 , Kx)/B( 1
2 , x), which is

a function g : R → [0, 1). Using a similar Ansatz
of the one in the main text, we obtain ρH(α, β ) =
|∂αg(α)||∂βg(β )|φ(〈D2

H|α, β〉), where the condition in
Eq. (A41) imposes

φ(z) = ρH(z)
(1 − z)2

z(2 − z)
. (A42)

We choose ρH(z) to be log-uniform.
Finally, knowing that the calculation for the posterior ex-

pected squared Hellinger divergence is analogous to the a
priori expectation, we obtain the DPM-squared Hellinger es-
timator in Eqs. (25) and (26).

024305-10



BAYESIAN ESTIMATION OF THE KULLBACK-LEIBLER … PHYSICAL REVIEW E 109, 024305 (2024)

4. Numerical implementation

a. Computations with multiplicities

In the low sampling regime (sparse data), there is a limited
number of values the counts can take, which means that many
categories will see the same pairs of values xi = (ni, mi ). To
reduce the computational cost associated to summation over
the K categories, we introduce a set of “multiplicities” [10]
contained in the vector νx, where each entry is the number
of instances that appear n times in the first sample and m in
the second. Since by construction the dimension of νx � K ,
we expressed all summation in terms of the multiplicities
vector. Given a function of the two counts f , the sum over
all categories is

K∑
i=1

f (xi ) =
∑

x

νx f (x), (A43)

where the last sum runs over the ensemble of distinct pairs of
observed counts. In the case of double sums (e.g., for D2

KL),
one needs to re-express the function as

f (xi, x j ) = δi j f‖(xi ) + (1 − δi j ) f⊥(xi, x j ), (A44)

where f‖ and f⊥ is the function f for i = j and i �= j. The
summation over the terms in δi j is calculated as before, and
the double summation is∑

i, j

f⊥(xi, x j ) =
∑
x,x′

νxνx′ f⊥(x, x′). (A45)

These formulas allow us to exploit vectorial expressions in the
numerical calculations.

b. Numerical integrations

Similar to Ref. [21], to compute numerically the quantities
〈DKL|n, m〉 [Eq. (9)] and 〈DKL

2|n, m〉 [Eq. (A27)], we first
seek for the maximum (α∗, β∗) of the quantity L(α, β ) (see
Fig. 2 for further details). For accuracy, we perform this com-
putation in logarithmic space of log α and log β. Rescaling
L(α, β ) by its maximum, integrands are O(1) for (α, β ) ∼
(α∗, β∗). To find the maximum of the log-evidence (mini-
mum of the opposite), we use the “Limited-memory BFGS”
optimization algorithm as coded in the function “minimize,”
module optimize of the Python package scipy (version 1.7.3).

We evaluate the integrals using the trapezoidal rule. From
the Hessian at the maximum of the log-evidence, we compute
the standard deviation in the α and the β-direction as if the
posterior was Gaussian. We use this standard deviation to pick
a range of parameters spanning 3 standard deviations on both
sides of the maximum. We heuristically chose the number
of bins within the ranges for the integration, to be equal to
10( K

N )2 for α (10( K
M )2 for β).

c. Code availability

The software for the DP, DPM and alternative estimators of
the Kullback-Leibler and the Hellinger divergence presented
in this article are collected in a Python package which can be
found in the repository [34]. In addition, the package provides
a Python version for the NSB entropy estimator [13], and a
NSB estimator for the Simpson index [35].

5. Supplementary figures

In this section, we provide supplementary figures for the
main text. We explore the properties of the convergence of the
DP and DPM estimators for larger numbers of categories K ,
where the samples are drawn from distinct Dirichlet distribu-
tions. For both the Kullback-Leibler (Fig. 7) and Hellinger
(Fig. 8) divergences, the DP and DPM method show the
best performances. We then restrict to the case of samples
drawn from the same distribution, showing poor performance
(Fig. 9).

(a) (b)

(d)(c)

FIG. 7. The convergence of the DKL estimates for different con-
centration parameters α, β. We use the same synthetic data of
Fig. 4(b) to plot the best score N∗/K between DP and DPM for each
combination of parameters. We choose as a score N∗/K , where N∗ is
the size N = M, at which the bias of the average estimate is smaller
than 5%. The average is computed over 30 repetitions. (a) Case
K = 203. (b) The first letter of the name of best alternative method
or a symbol “-” if no method converges for N∗/K < 50. The DP and
DPM always outperforms the best alternative in the tested cases. (c)
DP and DPM convergence of Fig. 7(a) for the case K = 204. (d)
Analogous of Fig. 7(b) for the case K = 204.
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(a) (b)

(d)(c)

FIG. 8. The convergence of the D2
H estimates for different con-

centration parameters α, β. These figures use the same synthetic
samples as in Fig. 6(a) and correspond to the case K = 203 and
K = 204. Captions to panels (a)–(d) are analogous to Fig. 7.

(a) (b)

(d)(c)

FIG. 9. The convergence of divergence estimates for samples
drawn from the same Dirichlet distribution, i.e., q = t , at different
concentration parameters α = β. (a) The best between DP and DPM
estimates converges to the true value DKL = 0 only for N∗/K ∈
[10, 50]. (b) For all concentration parameters the best alternative is
the Z-estimator, which provides a faster convergence to the expected
value. (c) Analogous results for the DP and DPM methods in the
case of DH

2 = 0. (d) The best alternative is in all cases the Jeffreys
estimator.
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