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Abstract The central problem of this chapter is temporal coherence ofa three-
dimensional spatially homogeneous Bose-condensed gas, initially prepared at finite
temperature and then evolving as an isolated interacting system. A first theoretical
tool is a number-conserving Bogoliubov approach that allows to describe the system
as a weakly interacting gas of quasi-particles. This approach naturally introduces the
phase operator of the condensate: a central actor since lossof temporal coherence is
governed by the spreading of the condensate phase-change. Asecond tool is the set
of kinetic equations describing the Beliaev-Landau processes for the quasi-particles.
We find that in general the variance of the condensate phase-change at long times
t is the sum of a ballistic term∝ t2 and a diffusive term∝ t with temperature and
interaction dependent coefficients. In the thermodynamic limit, the diffusion coeffi-
cient scales as the inverse of the system volume. The coefficient of t2 scales as the
inverse volume squared times the variance of the energy of the system in the initial
state and can also be obtained by a quantum ergodic theory (the so-called eigenstate
thermalisation hypothesis).

1 Description of the problem

We consider a single-spin state Bose gas prepared in equilibrium. To extract the
relevant physics, we avoid the complication of harmonic trapping present in real
experiments [1, 2, 3] and we consider a spatially homogeneous system in a par-
allelepipedic quantization volumeV with periodic boundary conditions. In all the
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chapter except subsection 4.3 the total particle number is fixed and equal toN. In
all the chapter except in subsection 3.2 the system is three-dimensional. We restrict
to the deeply Bose-condensed regime where the non-condensed fraction is small.
This implies that the temperatureT is much lower than the critical temperatureTc

and that the system is weakly interacting. Interactions between the cold bosons are
characterized by thes-wave scattering lengtha, that we take positive for repulsive
interactions. The microscopic details of the interaction potential are irrelevant here
since the interaction range is much smaller than the typicalde Broglie wavelength
of the particles. The weakly interacting regime, in the considered low temperature
regime, is then defined by(ρa3)1/2 ≪ 1 whereρ = N/V is the mean density.

We assume that the gas is prepared in thermal equilibrium at negative times with
some unspecified experimental procedure generally implying a coupling with the
outer world. For clarity we consider first that the system is prepared either in the
canonical or the microcanonical ensemble, then we apply ourtheory to a more gen-
eral ensemble: a statistical mixture of microcanonical ensembles with weak rela-
tive energy fluctuations. After the preparation phase, at positive times, the system
is supposed to betotally isolatedin its evolution. This implies that the total parti-
cle numberN and the total energyE are exactly conserved in time evolution. This
assumption is realistic for ultra-cold atom experiments: the atoms are hold in con-
servative immaterial traps and the three-body loss rates are very low in the weak
density limit. As we shall see, this has important consequences for the temporal
coherence of the gas.

A first property that we discuss in this chapter is the spatialcoherence of the gas.
This is determined by the first-order coherence function

g1(r)≡ 〈ψ̂†(r)ψ̂(0)〉 (1)

where the bosonic field operatorψ̂(r) annihilates a particle in positionr . The g1

function has been measured using atomic interferometric techniques [4]. In the ther-
modynamic limit,g1(r) tends to the condensate densityρ0 > 0 at large distancesr.
One refers to this property as long-range order.

A second, more subtle property, that we discuss in detail is the temporal coher-
ence of the gas. We define the temporal coherence function of the condensate as

〈a†
0(t)a0(0)〉 (2)

wherea0 is the annihilation operator in the condensate mode that is the plane wave
with k = 0. Contrarily to the case ofg1, here the operators appear in the Heisen-
berg picture at different times. The temporal coherence function of the condensate
is measurable (as we argue in subsection 4.1) but it was not measured yet. The clos-
est analog that has been measured is the relative coherence of two condensates in
different external or internal states at equal times [5, 6].The coherence time of the
condensate is simply the half width of the temporal coherence function. Remarkably
at zero temperature it was shown that the coherence functiondoes not decay at long
times, it rather oscillates [7]
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〈a†
0(t)a0(0)〉 ∼ 〈n̂0〉e

iµ(T=0)t/h̄ (3)

where〈n̂0〉 is the mean number of particles in the condensate andµ(T = 0) is the
ground state chemical potential of the gas. This implies an infinite coherence time.
At finite temperature however one expects a finite coherence time for a finite size
system. We find that in the thermodynamic limit this coherence time diverges with a
scaling with the system volumeV that depends on the statistical ensemble in which
the system is prepared.

This chapter is based on our works [8, 9, 10]1. It is organized as follows. We give
a pedagogical presentation of the number conserving Bogoliubov theory, a central
tool for our problem, in section 2. We apply this theory to thespatial coherence in
section 3. The more involved issue of temporal coherence is treated in section 4.
In subsection 4.1 we discuss how to measure〈a†

0(t)a0(0)〉 with cold atoms. General
considerations are given in 4.2, showing the central role ofcondensate phase-change
spreading, that is then studied for different initial states of the gas. First for a single-
mode model in 4.3 and for the canonical ensemble 4.4, where one of the conserved
quantities (the particle numberN or the energyE) has fluctuations in the initial state.
Then for the microcanonical ensemble 4.5, where none of these conserved quantities
fluctuates. Finally in the already mentioned more general statistical ensemble within
a unified theoretical framework in subsection 4.6.

2 Reminder of Bogoliubov theory

The central result of Bogoliubov theory [11] is that our system can be described
as an ensemble of weakly interactingquasi-particles. The necessity to go from a
particle to a quasi-particle picture to obtain weakly interacting objects is due to the
presence of the condensate that provides a large bosonic enhancement of particle
scattering processes in and out of the condensate mode. In the initial work of Bo-
goliubov the quasi-particles are non-interacting. We willneed to include the inter-
actions among quasi-particles that give them a finite lifetime through the so-called
Beliaev-Landau mechanism [7, 12]. Here we present a powerful formulation of Bo-
goliubov ideas introducing the phase operatorθ̂ for the condensate mode [13]: in
addition to making the theory number conserving [14, 15, 16], θ̂ will play a crucial
role for the study of temporal coherence.

2.1 Lattice model Hamiltonian:

Commonly a zero range delta potentialV12 = gδ (r1− r2) is used to model particle
interactions with an effective coupling constant

1 Particle losses are not discussed in this chapter. Their effect ontemporal coherence is weak at
relevant times as explicitly shown in [10] for one-body losses inthe canonical ensemble.
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g =
4π h̄2a

m
(4)

(here thes-wave scattering length isa > 0 andm is the mass of a particle). This
however does not lead to a mathematically well defined Hamiltonian problem, even
for two particles. As explained in [17] a convenient way to regularize the theory
while keeping the simplicity of contact interactions is to discretize the coordinate
space on a cubic lattice with lattice spacingb. This automatically introduces a cut-
off in momentum space, since single particle wave vectors are restricted to the first
Brillouin zone (FBZ) of the lattice[−π

b ,
π
b )

3. Then

V12 = g0
δr1,r2

b3 (5)

where nowδ is a discrete Kroneckerδ . The bare coupling constantg0 is adjusted
to reproduce the trues-wave scattering length on the lattice [17],

g0 =
g

1−Ca/b
(6)

whereC = 2.442749. . . is a numerical constant2. The Bogoliubov method is appli-
cable when the zero energy scattering problem is treatable in the Born regime [18]
which requires here thata ≪ b. In this limit g0 ≃ g. For the lattice model to well
describe continuous space physics the lattice spacingb should be smaller than the
macroscopic length scalesξ andλ of the gas. The healing lengthξ is defined as

h̄2

2mξ 2 = ρg (7)

and the thermal de Broglie wavelength as

λ 2 =
2π h̄2

mkBT
(8)

Note that in the weakly interacting and degenerate limit onehasξ ≫ a andλ ≫ a.
The system Hamiltonian in second quantized form is

Ĥ = ∑
r

b3
[

ψ̂†h0ψ̂ +
g0

2
ψ̂†ψ̂†ψ̂ψ̂

]

(9)

whereh0 is the one-body hamiltonian reduced here to the kinetic energy term,h0 =

− h̄2

2m ∆r , with a discrete laplacian reproducing the free wave dispersion relationEk =

h̄2k2/2m when applied over a plane wave. The bosonic field operatorψ̂(r) obeys
the discrete commutation relation

2 This results from the formulag−1
0 = g−1−

∫

FBZ
d3k
(2π)3

m
h̄2k2 .
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[ψ̂(r1), ψ̂†(r2)] =
δr1,r2

b3 (10)

2.2 Bogoliubov expansion of the Hamiltonian

We split the field operator into the condensate field and the non-condensed field
ψ̂⊥(r) orthogonal to the condensate wave functionφ(r):

ψ̂(r) = φ(r)â0+ ψ̂⊥(r) (11)

where ˆa0 is the annihilation operator of a particle in the condensatemode. For the
homogeneous system that we consider,φ(r) = 1/V 1/2. The main idea of the Bogoli-
ubov approach is to use the fact that the non-condensed field is much smaller than
the condensate field to expand the Hamiltonian in powers ofψ̂⊥(r). This becomes
truly operational if one succeeds in eliminating the amplitudeâ0 of the field on the
condensate mode. For the modulus of ˆa0 we can use the identity

n̂0 = N̂ − N̂⊥ (12)

with N̂ the total particle number operator, ˆn0 = â†
0â0 the condensate particle number

operator andN̂⊥ = ∑r b3ψ̂†
⊥ψ̂⊥ the non-condensed particle number operator. The

elimination of the phase of ˆa0 at the quantum level is more subtle, and it was not
performed in the original work of Bogoliubov. We introduce the modulus-phase
representation [13]

â0 = eiθ̂ n̂1/2
0 (13)

with the hermitian phase operatorθ̂ , conjugate to the condensate particle number:

[n̂0, θ̂ ] = i (14)

It is known that the introduction of a phase operator in quantum mechanics is a
delicate matter [19]. As we explain below, our formulation is not exact but it is
extremely accurate in the present case of a highly populatedcondensate mode. As
it appears from (14), there is a formal analogy with the position operator ˆx and
the momentum operator ˆp of a fictitious particle in one spatial dimension. For the
fictitious particle ˆp is the generator of spatial translations so that

[x̂, p̂] = ih̄ =⇒ eip̂/h̄|x〉= |x−1〉

[n̂0, θ̂ ] = i =⇒ eiθ̂ |n0 : φ〉= |n0−1 : φ〉

where|x〉 represents the fictitious particle localized in positionx and|n0 : φ〉 is the
Fock state withn0 particles in the condensate mode. As a consequence the repre-
sentation (13) of ˆa0 has the correct matrix elements in the Fock basis. The operator
exp(iθ̂) is a respectable unitary operator. . . except when the condensate mode is
empty where one gets the meaningless result:
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eiθ̂ |0 : φ〉 ?!
= |−1 : φ〉 (15)

This is in practice not an issue if, in the physical state of the system, the probability
for the condensate mode to be empty is negligible. For a finitesize system the prob-
ability distribution ofn0 was calculated using the Bogoliubov approach and even an
exact numerical approach [20, 21]. In the thermodynamic limit we expect that the
probability of having an empty condensate vanishes exponentially with the system
size atT < Tc.

In order to eliminate the condensate phase we introduce the number conserving
operator [14, 15]

Λ̂(r) = e−iθ̂ ψ̂⊥(r) (16)

The success of the elimination procedure is guaranteed since the Hamiltonian con-
serves the particle number: Injecting the splitting of the field (11) in the Hamiltonian
and expanding, generates a series of terms in which ˆa0 appears either with ˆa†

0 or with
ψ̂†
⊥(r). ExpandingĤ to second order in̂ψ⊥ and using (12) we obtain the Bogoliubov

Hamiltonian

ĤBog=
g0N2

2V
+∑

r
b3
[

Λ̂†(h0−µ0)Λ̂ +µ0

(

1
2

Λ̂2+
1
2

Λ̂†2+2Λ̂†Λ̂
)]

(17)

We have assumed that the total particle number is fixed and equal to N and we
have replaced̂N by N. Still, one obtains a grand canonical ensemble for the non-
condensed modes, with a chemical potentialµ0 = g0ρ . The condensate indeed acts
as a reservoir of particles for the non-condensed modes. Theexpressionµ0 = g0ρ
is in fact the zeroth order approximation (in the non-condensed fraction) to the gas
chemical potential. In what follows we shall take

µ0 = gρ (18)

which is consistent with the Bogoliubov theory at this order. The termsΛ̂†Λ̂ in
(17) represent elastic interactions between the condensate and the non-condensed
particles. They also appear in the simple Hartree-Fock theory. The termsΛ̂†2 and
hermitian conjugate represent inelastic interactions where two condensate particles
collide and are both scattered into non-condensed modes with opposite momenta.
They are absent in the Hartree-Fock theory and they play a crucial role in explaining
the superfluidity of the gas.

2.3 An ideal gas of quasi-particles

To extract the physics contained in the Bogoliubov Hamiltonian one has to identify
the eigenmodes of the system putting the quadratic Hamiltonian in a normal form.
We present here a brief overview, a more detailed discussionwas given in [16, 22].



Spatial and temporal coherence of a Bose-condensed gas 7

In the Heisenberg picture the equations of motion of the fieldoperators are linear,
provided one collectŝΛ andΛ̂† into a single unknown:

ih̄∂t

(

Λ̂
Λ̂†

)

=

(

h0+µ0 µ0

−µ0 −(h0+µ0)

)(

Λ̂
Λ̂†

)

≡ L

(

Λ̂
Λ̂†

)

(19)

The matrixL is not hermitian for the usual scalar product, but it is “hermi-
tian” for a modified scalar product of signature(1,−1). It has moreover a symmetry
property ensuring that its eigenvalues come in pairs±εk.

We now expand the field operators over the eigenvectors ofL :

(

Λ̂(r)
Λ̂†(r)

)

= ∑
k 6=0

eik·r

V 1/2

(

Uk

Vk

)

b̂k +
e−ik·r

V 1/2

(

Vk

Uk

)

b̂†
k (20)

with U2
k −V 2

k = 1 (this is the normalization condition for the modified scalar prod-
uct). An explicit calculation gives

Uk +Vk =
1

Uk −Vk
=

(

h̄2k2/2m

2µ0+ h̄2k2/2m

)1/4

(21)

The coefficientsb̂k and b̂†
k obey the usual bosonic commutation relations e.g.

[b̂k , b̂
†
k′ ] = δk,k′ . Injecting the modal decomposition (20) in the Bogoliubov Hamilto-

nian (17) one obtains a Hamiltonian of non-interacting bosons called quasi-particles:

ĤBog = E0(N)+ ∑
k 6=0

εkb̂†
k b̂k with εk =

[

h̄2k2

2m

(

h̄2k2

2m
+2µ0

)]1/2

(22)

The quantityE0(N) is the Bogoliubov approximation of the ground state energy.It
reads

E0(N) =
g0N2

2V
− ∑

k 6=0
εkV

2
k (23)

In the continuous space limitb/ξ → 0, the sum overk has an ultraviolet (k →
∞) divergence. If one replacesg0 by its expression (6) expanded to first order in
a/b, g0 ≃ g(1+Ca/b), this exactly compensates the ultraviolet divergence and one
recovers the Lee-Huang-Yang result

E0(N) =
gN2

2V

[

1+
128

15π1/2
(ρa3)1/2

]

(24)

The Bogoliubov spectrumεk starts linearly at lowk: the quasi-particles are then
phonons. At highk one recovers the free particle spectrum shifted upwards byµ0:
quasi-particles in this limit are just particles. At thermal equilibrium in the canonical
ensemble for the original system the Bogoliubov density operator is
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σ̂ =
1

ZBog
e−β ĤBog with β = 1/kBT (25)

whereZBog is the partition function in the Bogoliubov approximation.This den-
sity operator in the canonical ensemble forparticles, corresponds in fact to a grand
canonical ensemble, with zero chemical potential, for thequasi-particleswhose
number is not conserved.

3 Spatial coherence

In this section we discuss the spatial coherence propertiesof a weakly interacting
Bose-condensed gas, using the Bogoliubov theory. As expected one finds long range
order in the thermodynamic limit. To complete the discussion we briefly address the
case of a low-dimensional system where long range order is ingeneral lost (except
for the 2D gas at zero temperature) but where the ideas of the Bogoliubov method
can be adapted for quasi-condensates [17, 23].

3.1 Non-condensed fraction andg1 function

In a spatially homogeneous gas, the non-condensed fractionis the ratio of the non-
condensed density〈Λ̂†Λ̂〉 and the total densityρ . Using the modal decomposition
(20) and the thermal equilibrium state (25), one obtains in the thermodynamic limit
in 3D:

〈N̂⊥〉

N
=

〈Λ̂†Λ̂〉

ρ
=

1
ρ

∫

d3k
(2π)3

[

U2
k +V 2

k

eβεk −1
+V 2

k

]

(26)

This integral has no ultraviolet (k → ∞) divergence sinceV 2
k = O(1/k4). One can

thus take the continuous space limitb → 0 and integrate over the whole Fourier
space. The integral has no infrared (k → 0) divergence either, sinceU2

k ,V
2
k =

O(1/k). In order for the Bogoliubov theory to be applicable, the non-condensed
fraction should be small. From the result (26) one can check that this is indeed the
case for the degenerateρλ 3 ≫ 1 and weakly interacting(ρa3)1/2 ≪ 1 regime.

The first-order coherence function (1) in the thermodynamiclimit is given in the
Bogoliubov theory by

gBog
1 (r) = ρ −

∫

d3k
(2π)3 (1−cosk · r)

[

U2
k +V 2

k

eβεk −1
+V 2

k

]

(27)

where we used the exact relation〈â†
0ψ̂⊥〉 = 0. In the larger limit, the contribution

of the oscillating term cosk · r vanishes andg1 tends to the condensate density. This
implies that spatial coherence extends over the whole system size.
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3.2 In low dimensions

In a straightforward generalization of (26) to low dimensions, the non-condensed
fraction is infrared divergent in 2D for T > 0, and in 1D for all T : there is no Bose-
Einstein condensate in the thermodynamic limit in agreement with the Mermin-
Wagner-Hohenberg theorem [24, 25]. Nevertheless, in the weakly interacting and
degenerate regime there are weak density fluctuations and weak phase gradients.
This is the so called quasi-condensate regime [23, 26]. The main ideas of the Bo-
goliubov approach can still be applied after the introduction of a modulus-phase
representation of the field operatorψ̂ in each lattice site [27]:

ψ̂(r) = eiθ̂(r)
√

ρ̂(r) (28)

whereρ̂(r)bd and θ̂(r) are conjugate variables similarly to (14) andd is the spa-
tial dimension. As we discussed in subsection 2.2 and in [17], the modulus-phase
representation of the annihilation operator in a given fieldmode is accurate if this
mode has a negligible probability to be empty. This in particular requires that the
mean number of particles per lattice site is large,ρbd ≫ 1. In the weakly interacting
ρξ d ≫ 1 and degenerateρλ d ≫ 1 regime, one can adjustb to satisfy this condition
while keepingb ≪ ξ ,λ so as to well reproduce the continuous space physics. In this
regime one also finds that the probability distribution of the number of particles on
a given lattice site is strongly peaked around the mean valueρbd ≫ 1, with a width
much smaller than the mean value, which legitimates the representation (28).

If one blindly applies the plain Bogoliubov result (27) in the absence of a con-
densate3, one finds that the first-order coherence functiongBog

1 (r)→−∞ at infinity,
logarithmically withr in 2D (T > 0) and in 1D (T = 0), and even linearly inr in
1D at T > 0. One may believe at this stage thatgBog

1 (r) is simply meaningless in
those cases. The extension of the Bogoliubov theory to quasi-condensates however
produces the remarkable result [27]:

gQC
1 (r) = ρ exp

[gBog
1 (r)

ρ
−1
]

(29)

The quasi-condensate first-order coherence functiongQC
1 (r) tends to zero forr → ∞

as a power law in 2D (T > 0) and in 1D (T = 0), and exponentially forT > 0 in 1D,
as expected [23]. The gas has then a finite coherence lengthlc (e.g. the half-width of
g1) much larger thanξ or λ in the weakly interacting and degenerate regime. Over
distancesr ≪ lc, phase fluctuations are small, and the system gives the illusion of
being a condensate: one can linearize the exponential in Eq.(29), to obtaingQC

1 (r)≃
gBog

1 (r). The phase and density fluctuation properties of the quasi-condensates at

3 One may wonder in 2D about the value ofµ0 = g0ρ , sinceg0 logarithmically depends on the
lattice spacingb [27], and dimensionality reasons prevent from forming a coupling constantg
(such thatgρ is an energy) from the quantities̄h, m anda, wherea is now the 2D scattering length,
given in [26, 28] . According to [27] one simply has to take forµ0 the gas chemical potentialµ(T ).
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nonzero temperature have been studied experimentally withcold atoms in 1D [29,
30, 31] and in 2D [32, 33] and confirm the theoretical picture.

4 Temporal coherence

In this section we discuss the temporal coherence properties of a finite size Bose-
condensed gas, defined by the coherence function〈â†

0(t)â0(0)〉 already introduced in
equation (2). Although, strictly speaking, this coherencefunction was not measured
yet with cold atoms, we argue in section 4.1 that it is in principle measurable. In
subsection 4.2 we show that the condensate coherence function (2) can be related to
the condensate phase-change during the time intervalt. The loss of temporal coher-
ence is thus due to the spreading in time of this phase-change, which is the quantity
that we actually calculate. Whenever one of the conserved quantities (total particle
numberN or total energyE) fluctuates in the initial state from one realization to
the other, the phase-change spreads ballistically. Once the effect of fluctuations of
N is understood (subsection 4.3), the more involved effect ofenergy fluctuations
for fixed N can be understood by analogy. The resulting guess for the phase-change
spreading can be justified within the quantum ergodic theory(subsection 4.4). The
only case in which pure phase diffusion is found is when the conserved quantitiesN
andE are fixed, that is in the microcanonical ensemble (subsection 4.5). For fixedN
and a general statistical ensemble for energy fluctuations,we finally give in subsec-
tion 4.6 the expression for the variance of the phase-changein the long time limit,
that includes both a ballistic term and a diffusive term.

4.1 How to measure the temporal coherence function

We give here an idea of how to measure the condensate temporalcoherence function
〈â†

0(t)â0(0)〉 in a cold atom experiment [10]. The scheme uses two long-lived atomic
internal states|a〉 and|b〉 and it is a Ramsey experiment as in [5], with the notable
difference that the pulses are arbitrarily weak instead of beingπ/2 pulses.

The Bose-condensed gas is prepared in equilibrium in the internal state|a〉 and
the state|b〉 is initially empty. At time zero one applies a very weak electromagnetic
pulse, of negligible duration, coherently coupling the twointernal states. After the
pulse, the system evolves during a timet in presence of interactions only among
atoms in|a〉: we assume no interactions betweena and b components4 and neg-
ligible interactions within theb component due to the very weak density in that
component. At timet one applies a second pulse of the same amplitude, and one
measures the particle number in state|b〉 in the plane wavek = 0.

4 This can be realized experimentally either using a Feshbach resonance [34] or spatially separating
the two components [35].
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The scheme can be formalized as follows. The first pulse, att = 0, coherently
mixes the two bosonic fieldŝψa andψ̂b with a real amplitudeη so that

ψ̂a(r ,0+) =
√

1−η2 ψ̂a(r ,0−)+ηψ̂b(r ,0
−) (30)

ψ̂b(r ,0
+) =

√

1−η2 ψ̂b(r ,0
−)−ηψ̂a(r ,0−) (31)

In between time 0+ and timet− the two fields evolve independently. Field̂ψa

evolves in presence of kinetic and interaction terms as in (9). Field ψ̂b evolves with
kinetic and internal energy terms so that its amplitude on thek = 0 mode obeys

b̂0(t
−) = eiδ t b̂0(0

+) (32)

whereδ is the detuning between the electromagnetic field and thea− b atomic
transition (the calculation is performed in the rotating frame). The second pulse
at time t mixes again the two fields with the same mixing amplitudes as in (30),
(31). After the second pulse one measuresNb0(t) = 〈(b̂†

0b̂0)(t+)〉. Using the mixing
relations and (32) one expressesb̂0(t+) as a function of̂b0(0−), â0(0−) andâ0(t−).
Since the initial state for componentb is the vacuum, the contribution ofb̂0(0−)
vanishes and one obtains the exact relation:

Nb0(t) = η2
{

(1−η2)〈(â†
0â0)(0

−)〉+ 〈(â†
0â0)(t

−)〉pulse

+
√

1−η2
[

eiδ t〈â†
0(t

−)â0(0
−)〉pulse+c.c.

]}

(33)

that we expand for vanishingη :

Nb0(t) = 2η2
{

〈n̂0〉+Re
[

eiδ t〈â†
0(t)â0(0)〉

]}

+O(η4) (34)

In particular, the subscript〈. . .〉pulse on the expectation values, indicating that they
are taken for a system having experienced the first pulse, wasremoved5. The desired
correlation function〈â†

0(t)â0(0)〉 can be extracted from the contrast of the fringes
obtained by varying the electromagnetic field frequency. The signalNb0(t) itself is
small (it is proportional toη2) but the contrast of the fringes is independent ofη in
the smallη limit, and it starts at unity att = 0.

5 The expectation values〈. . .〉pulse differ from the original ones〈. . .〉 in the absence of pulse by
O(η2): To first order inη , the perturbation of̂ψa due to the pulse is linear in̂ψb(0−) and has a
zero contribution to the expectation values since componentb is initially in vacuum.
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4.2 General considerations about〈â†
0(t)â0(0)〉

4.2.1 Phase-change spreading

Here we go through a sequence of transformations that relates the temporal co-
herence function〈â†

0(t)â0(0)〉 to the variance of the condensate phase-change
θ̂(t)− θ̂(0). We use the modulus-phase representation (13) of the annihilation op-
erator ˆa0. Since the non-condensed fraction is very small, we simply neglect the
fluctuations of the modulus of ˆa0 i.e. we replace ˆn0 with its mean value in equation
(13). We then obtain6

〈â†
0(t)â0(0)〉 ≃ 〈n̂0〉〈e

−i[θ̂(t)−θ̂(0)]〉 (35)

If the phase-changêθ(t)− θ̂(0) has a Gaussian distribution, which may be checked
a posteriori, the application of Wick’s theorem yields

〈â†
0(t)â0(0)〉 ≃ 〈n̂0〉e

−i〈θ̂(t)−θ̂(0)〉e−Var[θ̂(t)−θ̂(0)]/2 (36)

This remarkable formula quantitatively relates the loss oftemporal coherence in an
isolated Bose-condensed gas to the spreading of the condensate phase-change.

The operational way to determine the condensate phase-change spreading is to

work with the phase derivative: contrarily tôθ , ˙̂θ is asingle-valued hermitian oper-
ator that has a simple expression within the Bogoliubov approach. The correlation
function of the phase derivative

C(t) = 〈 ˙̂θ(t) ˙̂θ(0)〉−〈 ˙̂θ〉2 (37)

gives access to the variance of the phase-change by simple integration:

Var[θ̂(t)− θ̂(0)] = 2t
∫ t

0
dτ CR(τ)−2

∫ t

0
dτ τ CR(τ) (38)

whereCR is the real part ofC. One obtains a single integral (rather than a double

integral) using the fact that the real part of〈 ˙̂θ(t1) ˙̂θ(t2)〉 is a function of|t1 − t2|
only, for a system at equilibrium. The long-time behavior ofCR determines how the
phase-change spreads at long times as summarized in Fig. 1.

At finite temperature, one might expect that˙̂θ(t) decorrelates froṁ̂θ(0) at long
times so thatCR → 0 and the phase-change spreading is diffusive. As we will see,
this is however not the case, except if the system is preparedin the microcanonical
ensemble. This is a consequence of energy conservation between times 0 andt in our

6 Here we have neglected the non-commutation ofθ̂(t) and θ̂(0). From the Baker-Campbell-
Hausdorff formula, and to zeroth order in the non-condensed fraction, see equation (45), the cor-

rection is a factore−
it
2h̄ µ ′(N)+O(N−2) which is irrelevant for our discussion.
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isolated system. This point was overlooked in the early studies of [36, 37, 38] where
the non-condensed modes were treated as a Markovian reservoir and phase diffu-
sion was predicted. A subsequent study [39] based on a many-body Hamiltonian
approach showed that phase-change spreading is ballistic for a system prepared in
the canonical ensemble. The coefficient oft2 in [39] was however calculated within
the pure Bogoliubov approximation, neglecting the interactions between the Bo-
goliubov quasi-particles, which is illegitimate in the long time limit as we shall see.

diffusive regime
CR(τ) =

τ→+∞
o(1/τ)

Var[θ̂(t)− θ̂(0)]∼ 2Dt

ballistic regime
limτ→+∞ CR(τ) = A 6= 0
Var[θ̂(t)− θ̂(0)]∼ At2

τ

C
R
(τ)

Var [θ(t)-θ(0)] ~ 2 t ∫
0

∞
 dτ C

R
(τ)

0
0

^ ^

τ

C
R
(τ)

Var [θ(t)-θ(0)] ~ A t
2

0
0

A

^ ^

Fig. 1 Different regimes of the condensate phase-change spreading at long times.CR is the real
part of the correlation functionC defined in (37).

4.2.2 Key ingredients of the theory

In order to correctly determine the phase-change spreadingin the long time limit, we
shall use two key ingredients in our theoretical treatment:an accurate expression of
the phase derivative and the inclusion of the interactions among Bogoliubov quasi-
particles, to which we add the constraint of strict energy conservation during the
system evolution.
Time derivative of condensate phase operator:The commutator of̂θ with Ĥ given
by (9) is calculated exactly using

[θ̂ , ψ̂(r)] =−â0
iφ(r)
2n̂0

(39)

and its hermitian conjugate, with the condensate wave function φ(r) = 1/V 1/2. The
exact result is given in equation (67) of [8]. Expanding up tosecond order in the
non-condensed field̂Λ and using the modal decomposition (20), one obtains for
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fixed N: 7

˙̂θ =
1
ih̄
[θ̂ , Ĥ]≃−

1
h̄

µ(T = 0)−
g0

h̄V ∑
k 6=0

(Uk +Vk)
2n̂k (40)

We have introduced the zero-temperature chemical potential µ(T = 0) = d
dN E0(N),

whereE0(N) is given in (23), and the quasi-particle number operators

n̂k = b̂†
k b̂k (41)

The expression (40) of the phase derivative differs from theone heuristically intro-

duced in [37, 38]:˙̂θ is not simply equal to−gn̂0/h̄V .

Interactions between quasi-particles: Pushing one step further the Bogoliubov ex-
pansion of section 2, that is including terms up to third order in the non-condensed
field, one obtains

Ĥ ≃ ĤBog+ Ĥ3 (42)

whereĤBog is the Bogoliubov Hamiltonian (22) and

Ĥ3 = g0ρ1/2∑
r

b3Λ̂+(Λ̂ + Λ̂†)Λ̂ (43)

The HamiltonianĤ3 is cubic in the fieldΛ̂ and it corresponds to interactions be-
tween quasi-particles. WhilêHBog is integrable (all the ˆnk are conserved quantities),
the HamiltonianĤBog+Ĥ3 is not integrable, which plays a central role in condensate
dephasing. By replacinĝΛ with its modal decomposition (20) in̂H3, two types of
resonant processes appear, that do not conserve the total number of quasi-particles:
the b̂†b̂†b̂ Beliaev process and thêb†b̂b̂ Landau process. In the Beliaev process
one quasi-particle decays into two quasi-particles, whilein the Landau process two
quasi-particles merge into another quasi-particle. The processes involvinĝb†b̂†b̂†

and b̂b̂b̂ are non-resonant (they do not conserve the Bogoliubov energy) and they
cannot induce real transitions at the present order.

4.3 If N fluctuates

In this subsection we allow fluctuations of the total number of particles and we
investigate their effect on temporal coherence. The effectis already present in the
case of a pure condensate, so that we restrict to a one-mode model in this subsection:
identifying the condensate particle number ˆn0 with the total particle number̂N, we
obtain the model Hamiltonian

7 We have neglected oscillating terms inb̂b̂ and b̂†b̂†: after time integration of˙̂θ they give a
negligible contribution tôθ(t)− θ̂(0).
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Ĥone mode=
g

2V
N̂2 (44)

The condensate phase derivative is

˙̂θ(t) =
1
ih̄
[θ̂ , Ĥone mode] =−µ(N̂)/h̄ (45)

where the chemical potential for the system withN particles is simplyµ(N)= gN/V
for the one-mode model. SincêN is a constant of motion, temporal integration is
straightforward:

θ̂(t)− θ̂(0) =−µ(N̂) t/h̄ (46)

If N is fixed there is no phase-change spreading. If the initial state is prepared with
fluctuations inN then the phase-change spreads ballistically [40, 41]:

Var[θ̂(t)− θ̂(0)] = (t/h̄)2
(

dµ
dN

)2

VarN̂ (47)

Correspondingly the temporal coherence function〈â†
0(t)â0〉 decays as a Gaussian

in time8[42, 43]. A similar phenomenon was observed experimentally[44, 45, 46]
not for the temporal correlation of a single condensate but for equal-time coherence
〈â†

0(t)b̂0(t)〉 between two condensates prepared in different modes or internal states
with a well defined relative phase and fluctuations in the relative particle number.

4.4 N fixed,E fluctuates: Canonical ensemble

We assume in this subsection that the gas is prepared in equilibrium at finite tem-
peratureT in the canonical ensemble withN particles. We first treat this case by
analogy with the previous subsection, and then we expose a systematic derivation
of the result based on quantum ergodicity.

4.4.1 Using an analogy with the case of fluctuatinĝN

Similarly to N̂ in the previous subsection, herêH is a conserved quantity that fluc-
tuates in the initial state. Indeed the canonical ensemble is a statistical mixture of
energy eigenstates with different eigenenergies. By analogy with (46) we expect that

θ̂(t)− θ̂(0)∼−µmc(Ĥ) t/h̄ (48)

whereµmc(E) is the chemical potential of the microcanonical ensemble ofenergyE.
As relative energy fluctuations are vanishingly small for a large system, we can lin-

8 The phase revivals at macroscopic times multiples of 2π h̄V/g [42, 43] are absent here due to the
Gaussian hypothesis used to obtain (36).
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earizeµmc(E) around the mean energȳE to obtain aballistic phase-change spread-
ing

Var[θ̂(t)− θ̂(0)]∼ (t/h̄)2
[

dµmc

dE
(Ē)

]2

VarĤ (49)

The coefficient oft2 is proportional to the variance of the energy in the initial state
and scales as the inverse of the system volume in the thermodynamic limit. For con-
venience, one can reexpress this coefficient in terms of canonical ensemble quanti-
ties usingµmc[Ē(T )] = µ(T ) (for a large system) so thatddE µmc(Ē) = d

dT µ/ d
dT Ē,

whereµ(T ) andĒ(T ) are the chemical potential and mean energy in the canonical
ensemble at temperatureT . An explicit expression of the coefficient oft2 is given in
Eq. (73) of [8] using Bogoliubov theory to evaluate the partition function,Ē(T ) and
µ(T ). The obtained formula forµ(T ) also gives the intuitive and interesting side
result

〈 ˙̂θ〉=−µ(T )/h̄ (50)

4.4.2 From quantum ergodic theory

In the previous analogy leading to (49) there is a strong implicit hypothesis. The
fact that the phase-change is a function of the Hamiltonian only, see Eq. (48), is in
general true only for an ergodic system in the long time limit. For example if the
Hamiltonian was truly equal tôHBog, θ̂(t)− θ̂(0) would depend on the set of all
occupation number operators ˆnk and Eqs. (48,49) would not apply.

We now derive Eq. (49) using quantum ergodic theory. To this end we calculate
the asymptotic value of the correlation functionC(t). To eliminate oscillations of
C(t) we evaluate its time average. By inserting a closure relation over exact eigen-
states|Ψλ 〉 with eigenenergiesEλ of the interacting many-body system, we obtain

1
t

∫ t

0
dτ C(τ) →

t→∞ ∑
λ

pλ |〈Ψλ |
˙̂θ |Ψλ 〉|

2−

(

∑
λ

pλ 〈Ψλ |
˙̂θ |Ψλ 〉

)2

(51)

wherepλ is the probability to find the system in the eigenstate|Ψλ 〉. In the canonical
ensemblepλ = exp(−βEλ )/Z. In (51) we have assumed that there are no degenera-
cies consistently with the non-integrability of the system9. For a classical system,
ergodicity implies that the time average over a trajectory of energyE coincides with
the microcanonical average at that energy. The extension ofthis concept to a quan-
tum system is the so-called eigenstate thermalization hypothesis [47, 48, 49]: the
mean value of a few-body observableÔ in a singleeigenstate|Ψλ 〉 is very close to
the microcanonical average at the same energy:

9 For a large system the level-spacingδE vanishes exponentially with the system size, and one
may fear that an exponentially long timet > h̄/δE is needed to reach the limit (51). However, the

corresponding off-diagonal matrix elements of˙̂θ also vanish exponentially with the system size in
the eigenstate thermalization hypothesis [47].
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〈Ψλ |Ô|Ψλ 〉 ≃
¯̂Omc(E = Eλ ) (52)

We apply this hypothesis to the operatorÔ = ˙̂θ . The last step is to realize that

within the Bogoliubov theory, the microcanonical average of ˙̂θ is proportional to
the microcanonical chemical potential10

¯̂̇θ mc(E) =−µmc(E)/h̄ (53)

One then obtains

Var[θ̂(t)− θ̂(0)] ∼
t→∞

t2

h̄2 Varµmc(Ĥ) (54)

Linearizingµmc(Ĥ) in (54) for small relative energy fluctuations aroundĒ one re-
covers (49).

4.4.3 Physical implications

A consequence of (49) is that, for a system prepared in the canonical ensemble,
the correlation functionC(τ) of θ̇ does nottend to zero whenτ → +∞. The same
conclusion is reached for the correlation function of ˆn0, whose long time limit can
be calculated with the quantum ergodic theory [8]. This qualitatively contradicts
[36, 37, 38]. It only qualitatively agrees with [39] since the system Hamiltonian̂H
in [39] was eventually replaced by the integrable HamiltonianĤBog.

In [36, 37, 38] the non-condensed modes were treated as a Markovian reservoir.
This approximation is excellent to calculate temporal correlation functions of “mi-
croscopic” observables such as the quasiparticle numbers.For example, this gives
for k,k′ 6= 0 [8]:

〈n̂k(t)n̂k′(0)〉−〈n̂k〉〈n̂k′〉
Markov
= δk,k′〈n̂k〉(1+ 〈n̂k〉)e

−Γk t (55)

where the damping rateΓk is due to the Beliaev-Landau processes. However quan-
tum ergodic theory shows that the exact long time limit of this correlation function
is nonzero (even fork 6= k′) but rather a quantity of order 1/N. In the double sum
overk andk′ that appears inC(τ), this introduces a macroscopic correction of order
N missed by the Markovian approximation.

We illustrate this discussion in Fig.2 with a classical fieldmodel [8]. The ex-
act numerical result (black squares linked by a solid line) confirms the ergodic re-
sult (dash-dot-dotted blue curve). The flat red dashed line is the Bogoliubov theory
where thenk are constants of motion. It is close to the numerical result only at short
times. The dash-dotted violet curve that tends rapidly to zero is a Markovian model
based on (55).

10 See reference [45] of [8]. In fact for a large system it is sufficient to prove the equality in the
canonical ensemble of mean energyE, as already given by Eq. (50).
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Fig. 2 For a gas prepared
in the canonical ensemble,
correlation function of˙̂θ for
the classical field model. The
equation of motion is the non-
linear Schr̈odinger equation.
This corresponds to Fig. 6 in
[8]. V is the volume. See text
for the meaning of the various
curves and symbols.
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4.5 N fixed,E fixed: Microcanonical ensemble

In this section we assume that the gas is prepared in the microcanonical ensemble of
energyE. According to (54) the coefficient of the ballistic spreading of the phase-
change is zero. It was found in [10] thatC(τ) = O(1/τ3) at long times, so that the
phase-change spreads diffusively, with a diffusion coefficient defined by

Var[θ̂(t)− θ̂(0)]∼ 2Dt with D =
∫ ∞

0
dτ CR(τ) (56)

To determineD we thus need the whole time dependence ofC(τ). From (40),C(τ)
can be deduced from all the correlation functions〈n̂k(τ)n̂k′(0)〉 of the quasi-particle
number operators. Within the Bogoliubov approximation forthe initial equilibrium
state, the gas is prepared in a statistical mixture of Fock states|{n0

q}〉 of quasi-
particleswhere, in any given Bogoliubov mode of wave vectorq, there are exactly
n0

q quasi-particles (n0
q is an integer). One can then calculate the correlation functions

for an initial Fock state|{n0
q}〉 and average over the microcanonical probability

distribution for the{n0
q}.

For a given initial Fock state, one then simply needs

nk(τ)≡ 〈{n0
q}|n̂k(τ)|{n0

q}〉 (57)

In the thermodynamic limit, the evolution of such mean numbers of quasi-particles
are given by quantum kinetic equations including the Beliaev-Landau processes due
to Ĥ3 [50]:

ṅk =−
g2ρ
h̄π2

∫

d3q [nknq −nk+q(1+nq +nk)]
(

A
|k+q|

q,k

)2
δ (εk + εq − ε|k+q|)

−
g2ρ
2h̄π2

∫

d3q [nk(1+nq +nk−q)−nqnk−q]
(

A
k

q,|k−q|

)2
δ (εq + ε|k−q|− εk)(58)
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with the Beliaev-Landau coupling amplitudes:

A
q

k,k′ =UqUkUk′ +VqVkVk′ +(Uq +Vq)(VkUk′ +UkVk′) (59)

The first line in (58) describes Landau processes and the second line describes Beli-
aev processes. In practice we linearize the kinetic equation (58) around the equilib-
rium solutionn̄k

11 and we solve the resulting linear system numerically. We refer
to [10] for technical details.

The phase diffusion coefficient is shown in Fig.3 as a function of the temperature
T such that the mean canonical energyĒ(T ) is equal to the microcanonical energy
E. Remarkably, whenD andT are properly rescaled (as in the figure), the curve
is universal. In particular this shows thatD vanishes as the inverse of the system
volume in the thermodynamic limit. Interestingly, at low temperature,D vanishes
with the same power-lawT 4 as the normal fraction of the gas:

h̄DV
g

∼ 0.3036

(

kBT
ρg

)4

(60)

We performed classical field simulations in the microcanonical ensemble [9].
As expected we found that the phase-change has a diffusive behavior: its variance
increases linearly in time at long times (not shown) and the phase-change probability
distribution is well adjusted by a Gaussian as we show in the left panel of Fig. 4. In
the right panel Fig. 4 we show that the diffusion coefficient is well reproduced by a
classical field version of the kinetic theory.

Fig. 3 Solid line: universal
result for the phase diffusion
coefficient in the Bogoliubov
limit (ρa3)1/2 ≪ 1, T ≪ Tc.
Dashed line: low-T analyt-
ical result (60). The high-T
behavior is only conjectured,
and the dotted line is an arbi-
trary linear function ofT to
guide the eye.V is the volume
andg the effective coupling
constant (4).

0.01 0.1 1 10 100
k

B
T/ρg

10
-9

10
-7

10
-5

10
-3

10
-1

10
1

/ h
 D

 V
/g D~T

4

D~T ln ln T ?

11 For an infinite system, the stationary solution of (58) is ensemble independent and corresponds
to the Bose formula ¯nk(E) = 1/(expβεk − 1), whereβ is adjusted to give the mean energyE.
Finite size effects on the ¯nk , that can be calculated from Eq. (61) of [8], are here not relevant.
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4.6 A general statistical ensemble

We now consider a generalized ensemble at fixedN that includes both the micro-
canonical and the canonical ensembles as particular cases.This is a statistical mix-
ture of microcanonical ensembles with a probability distributionP(E) of the system
energyE that depends on the particular experimental procedure to prepare the ini-
tial state of the gas. Remarkably the approach of the previous subsection based on
kinetic equations can be extended to this case.

4.6.1 General result for the phase-change spreading

Provided that the relative energy fluctuations vanish in thethermodynamic limit, we
find the long time limit [10]

Var[θ̂(t)− θ̂(0)] =
t→+∞

Var(E)

[

dµmc

h̄dE
(Ē)

]2

t2+2D(t − toff)+O

(

1
t

)

(61)

For the coefficientA of the ballistict2 term we recover theform of the quantum
ergodic result (49). This is not surprising as the reasoningof subsection 4.4 does not
rely on the fact that the system is prepared in the canonical ensemble. On the other
hand thevalueof the coefficient does depend on the statistical ensemble through the
mean energȳE and the variance of the energy. A physical derivation of thisresult
within kinetic theory is given in the next subsection.

A remarkable result is that, in the general ensemble, the phase derivative correla-
tion functionC(τ) is the sum of its long time limitA and of the correlation function
Cmc(τ) in the microcanonical ensemble of energyĒ:
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Fig. 4 Classical field simulations in the microcanonical ensemble. Left panel (taken from [9]):
Probability distributionP(φ) of the condensate phase-change fluctuationsφ = θ(t)− θ(0)−
〈θ(t)−θ(0)〉 at a large timet. The dashed line is the expected Gaussian. Right panel (taken from
[10]): Diffusion coefficient as a function of the temperature,extracted from the numerics (bullets
with error bars) and calculated by the classical field version of the kinetic equations (58) (crosses
linked by segments).
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C(τ) = A+Cmc(τ) (62)

As a consequence the diffusion coefficientD of Eq. (61) is the same as the one
for the microcanonical ensemble of energyĒ. The same conclusion holds for the
constant time offsettoff

12:

D =
∫ ∞

0
dτ CR,mc(τ) (63)

toff =

∫ ∞
0 dτ τ CR,mc(τ)
∫ ∞

0 dτ CR,mc(τ)
(64)

whereCR,mc is the real part ofCmc. The physical origin of the time offsettoff is
apparent in Eq.(64): it is due to the finite width of the phase derivative correlation
function. AsCR,mc(τ) is found to be positive,toff can be simply interpreted as the
correlation time of the phase derivative in the microcanonical ensemble. The formal
expressions forD andtoff , in terms of the matrix of the linearized kinetic equations,
are given in [10].

These results are made more concrete by Fig. 5: for a quantum system in the
thermodynamic limit, we show the microcanonical correlation functionCmc(t) as
a function of time, and the variance of the phase-change either in the canonical
ensemble of temperaturekBT = 10ρg or in the microcanonical ensemble with the
same mean energy. This reveals in particular that the asymptotic expression (61)
becomes rapidly accurate.

4.6.2 Recovering the ballistic spreading from kinetic theory

Due to energy conservation, the linearized kinetic equations have a zero-frequency
undamped mode. We will show that, in presence of energy fluctuations in the initial
state, the amplitude over this mode is nonzero, so that the phase derivative correla-
tion functionC(τ) does not tend to zero at long times and the phase-change variance
shows at2 term as in Eq. (61). The derivation presented here was significantly sim-
plified with respect to the original one of [10].

We introduce the notation

n̄k(E) = ¯̂nk mc(E) (65)

for the average number of quasi-particles in modek in the microcanonical ensemble
of energyE. The kinetic equations (58), linearized around the stationary solution
{n̄q(Ē)}, can be put in the form

~̇x(τ) = M~x(τ) (66)

12 This is true to leading order in the system size since our linearized kinetic approach cannot
access the subleading terms.



22 Yvan Castin and Alice Sinatra

0 4 8 12 16 20
g t / (/hξ3

)

-20

0

20

40

60

80

100

V
ar

[θ
(t

)-
θ(

0)
] V

/ξ
3

-0.2

C
m

c (t) V
 /h

2ξ
3 /g

2

^
^

0

0.2

0.4

0.6

0.8

1

Fig. 5 For a quantum system in the thermodynamic limit, the microcanonical phase derivative cor-
relation functionCmc(t) (red solid line, right vertical axis) and the variance of the phase-change
(black lines, left vertical axis) are shown as functions of time.For the variance, the upper (lower)
solid line is for the canonical (microcanonical) ensemble, and the dashed lines are the correspond-
ing asymptotic forms of Eq. (61).kBT = 10ρg, V is the system volume,g is the effective coupling
constant (4) andξ is the healing length (7). This is Fig. 3 of [10]. In atomic condensatesξ is in the
µm range and the time unit of the figure is in the ms range.

where we have collected all the unknownsnk(τ)− n̄k(Ē) in a single vector~x(τ) and
M is a matrix. The existence of a zero frequency mode can be understood in two
different ways that we explain.
First reasoning: Consider an energyE close toĒ. In the same way as{n̄k(Ē)}, the
set of occupation numbers{n̄k(E)} constitutes a stationary solution of the full ki-
netic equations (58). Since the solutions are close, their difference{n̄k(E)− n̄k(Ē)}
obeys the linear system (66) so that the vector~e0 of components

e0,k =
d

dE
n̄k(Ē) (67)

is a zero-frequency eigenmode ofM.
Second reasoning: The Bogoliubov energy∑k 6=0 εknk(τ) is conserved by the kinetic
equations. An a consequence~ε ·~x(τ) is a constant (the vector~ε has components
εk) and its time derivative is zero. This holds for all initial values of~x , and thus
implies that~ε is a left eigenvector ofM with zero eigenvalue. A basic theorem
of linear algebra then implies the existence of a right eigenvector ofM with zero
eigenvalue. Actually we already found it: it is~e0 of components (67). Such left
and right eigenvectors are called adjoint vectors. For our normalization choice, their
scalar product~ε ·~e0 =

d
dE E = 1 as it should be.

We now go back to the correlation functionC(τ). We introduce the (zero-mean)
fluctuation operators

δ̂nk = n̂k − n̄k(Ē) (68)
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where we have neglected the difference between〈n̂k〉 andn̄k(Ē) in the large system
size limit. The correlation functionC(τ) is then obtained as

C(τ) = ~A ·~x(τ) with xk(τ) =−〈δ n̂k(τ) ˙̂θ(0)〉 (69)

where we have collected in a vector~A, the coefficients iṅ̂θ given by Eq. (40):

Ak ≡
g0

h̄V
(Uk +Vk)

2 (70)

Following the reasoning of subsection 4.5 on finds that~x(τ) obeys Eq. (66). Splitting
~x(τ) = γ~e0+~X (τ) we have in the long time limit that~X (τ)→ 0 due to the Beliaev-
Landau damping processe whereasγ =~ε ·~x(0) is a constant. At long times one then
has

C(τ) →
τ→∞

[~ε ·~x(0)](~A ·~e0) (71)

Taking the microcanonical average of (40) and using (53) on obtains the Bogoliubov
expression for the microcanonical chemical potential:

µmc(E) = µ(T = 0)(N)+ ∑
k 6=0

h̄Ak n̄k(E) (72)

Using the expression of~e0 this leads to~A ·~e0 =
d

dE µmc(Ē)/h̄. We now evaluate the
expectation value〈. . .〉 appearing in~ε ·~x(0) in two steps. We first take the expec-
tation value in the microcanonical ensemble of energyE: one can then replace the
operator∑k εkδ̂nk(0) with E − Ē, since the total Bogoliubov energy is fixed toE.

One is left with a microcanonical average of˙̂θ(0) at energyE, an average already
given by Eq. (53), and that one can expand aroundĒ to first order inE − Ē. The
last step is to average overE with the probability distributionP(E) defining the
ensemble, to obtain

~ε ·~x(0) = Var(E)
dµmc

h̄dE
(Ē) (73)

Collecting all the results, we exactly recover the coefficient of t2 in Eq. (61).
After this last reasoning, it becomes apparent that, contrarily to the zero-frequency

componentγ~e0, the contribution of the damped component~X(τ) of ~x(τ) can be
treated to zeroth order in the energy fluctuations: one can directly takeE = Ē with-
out getting a vanishing contribution toC(τ) and to Eq. (61). This explains why both
the diffusion coefficientD and the time offsettoff , that purely originate from~X(τ),
are essentially ensemble independent.
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