Spatial and temporal coherence of a
Bose-condensed gas
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Abstract The central problem of this chapter is temporal coherenca thiree-
dimensional spatially homogeneous Bose-condensed gig)yrprepared at finite
temperature and then evolving as an isolated interactistgsy A first theoretical
tool is a number-conserving Bogoliubov approach that adltmdescribe the system
as a weakly interacting gas of quasi-particles. This apgiroaturally introduces the
phase operator of the condensate: a central actor sincefltesaporal coherence is
governed by the spreading of the condensate phase-chasgeoAd tool is the set
of kinetic equations describing the Beliaev-Landau prees$or the quasi-particles.
We find that in general the variance of the condensate pHamage at long times
t is the sum of a ballistic terrfl t2 and a diffusive ternil t with temperature and
interaction dependent coefficients. In the thermodynamiit,Ithe diffusion coeffi-
cient scales as the inverse of the system volume. The ceeffioft? scales as the
inverse volume squared times the variance of the energyedytstem in the initial
state and can also be obtained by a quantum ergodic theergdthalled eigenstate
thermalisation hypothesis).

1 Description of the problem

We consider a single-spin state Bose gas prepared in equitib To extract the
relevant physics, we avoid the complication of harmonipprag present in real
experiments [1, 2, 3] and we consider a spatially homogenaysatem in a par-
allelepipedic quantization volumé with periodic boundary conditions. In all the
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chapter except subsection 4.3 the total particle numbexesl fand equal tiN. In
all the chapter except in subsection 3.2 the system is ttiraensional. We restrict
to the deeply Bose-condensed regime where the non-corgiémstion is small.
This implies that the temperatufieis much lower than the critical temperatufe
and that the system is weakly interacting. Interactiong/eeh the cold bosons are
characterized by thewave scattering length, that we take positive for repulsive
interactions. The microscopic details of the interactioteptial are irrelevant here
since the interaction range is much smaller than the typiedBroglie wavelength
of the particles. The weakly interacting regime, in the idaied low temperature
regime, is then defined kypa®)/? < 1 wherep = N/V is the mean density.

We assume that the gas is prepared in thermal equilibriuraggtive times with
some unspecified experimental procedure generally imglgirtoupling with the
outer world. For clarity we consider first that the systemrispared either in the
canonical or the microcanonical ensemble, then we applyhmary to a more gen-
eral ensemble: a statistical mixture of microcanonicakertdes with weak rela-
tive energy fluctuations. After the preparation phase, sttpe times, the system
is supposed to beotally isolatedin its evolution. This implies that the total parti-
cle numbem and the total energlg are exactly conserved in time evolution. This
assumption is realistic for ultra-cold atom experimerttg: a&toms are hold in con-
servative immaterial traps and the three-body loss raeveny low in the weak
density limit. As we shall see, this has important conseqesgrior the temporal
coherence of the gas.

A first property that we discuss in this chapter is the spatikrence of the gas.
This is determined by the first-order coherence function

au(r) = (@7 () P(0)) (1)

where the bosonic field operatdr(r) annihilates a particle in position The g;
function has been measured using atomic interferometrimiigues [4]. In the ther-
modynamic limit,g; (r) tends to the condensate dengty> 0 at large distances
One refers to this property as long-range order.

A second, more subtle property, that we discuss in detaildgemporal coher-
ence of the gas. We define the temporal coherence functidreafdndensate as

(a}(t)ao(0)) 2)

wheregg is the annihilation operator in the condensate mode thaeiptane wave
with k = 0. Contrarily to the case af;, here the operators appear in the Heisen-
berg picture at different times. The temporal coherencetfan of the condensate
is measurable (as we argue in subsection 4.1) but it was reumed yet. The clos-
est analog that has been measured is the relative coheretwe condensates in
different external or internal states at equal times [5;T8f coherence time of the
condensate is simply the half width of the temporal cohexduiaction. Remarkably
at zero temperature it was shown that the coherence fundties not decay at long
times, it rather oscillates [7]
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(8(t)a0(0)) ~ (o) T=OM/M ©)

where (fip) is the mean number of particles in the condensatergiid= 0) is the
ground state chemical potential of the gas. This impliesénite coherence time.
At finite temperature however one expects a finite coherdneefor a finite size
system. We find that in the thermodynamic limit this coheetitoe diverges with a
scaling with the system volumé that depends on the statistical ensemble in which
the system is prepared.

This chapter is based on our works [8, 9,40 is organized as follows. We give
a pedagogical presentation of the number conserving Bagwli theory, a central
tool for our problem, in section 2. We apply this theory to #ipatial coherence in
section 3. The more involved issue of temporal coherenceeddd in section 4.
In subsection 4.1 we discuss how to meas{a[gét)ao(op with cold atoms. General
considerations are given in 4.2, showing the central romotlensate phase-change
spreading, that is then studied for different initial statéthe gas. First for a single-
mode model in 4.3 and for the canonical ensemble 4.4, whex®bihe conserved
quantities (the particle numbkror the energ¥) has fluctuations in the initial state.
Then for the microcanonical ensemble 4.5, where none oétb@sserved quantities
fluctuates. Finally in the already mentioned more geneagiksical ensemble within
a unified theoretical framework in subsection 4.6.

2 Reminder of Bogoliubov theory

The central result of Bogoliubov theory [11] is that our gystcan be described
as an ensemble of weakly interactiggasi-particlesThe necessity to go from a
particle to a quasi-particle picture to obtain weakly iatding objects is due to the
presence of the condensate that provides a large bosorémesinent of particle
scattering processes in and out of the condensate modee initial work of Bo-
goliubov the quasi-particles are non-interacting. We nwékd to include the inter-
actions among quasi-particles that give them a finite iifetthrough the so-called
Beliaev-Landau mechanism [7, 12]. Here we present a poweriuulation of Bo-
goliubov ideas introducing the phase operador the condensate mode [13]: in
addition to making the theory number conserving [14, 15, @67ill play a crucial
role for the study of temporal coherence.

2.1 Lattice model Hamiltonian:

Commonly a zero range delta potent@b = gd(r1 —r») is used to model particle
interactions with an effective coupling constant

1 Particle losses are not discussed in this chapter. Their effettroporal coherence is weak at
relevant times as explicitly shown in [10] for one-body losseth@canonical ensemble.
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(4)

(here thes-wave scattering length ia > 0 andm is the mass of a particle). This
however does not lead to a mathematically well defined Hamnidin problem, even
for two particles. As explained in [17] a convenient way tgularize the theory
while keeping the simplicity of contact interactions is teatetize the coordinate
space on a cubic lattice with lattice spacimgrhis automatically introduces a cut-
off in momentum space, since single particle wave vect@sestricted to the first
Brillouin zone (FBZ) of the latticé—{I, F)3. Then

Viz = o &g’;z (5)

where nowd is a discrete Kroneckead. The bare coupling constagg is adjusted
to reproduce the trugwave scattering length on the lattice [17],

g

B 1-Ca/b ©)

Jo

whereC = 2.442749 .. is a numerical constait The Bogoliubov method is appli-
cable when the zero energy scattering problem is treatalileeiBorn regime [18]
which requires here that < b. In this limit gg ~ g. For the lattice model to well
describe continuous space physics the lattice spazsigpuld be smaller than the
macroscopic length scalésandA of the gas. The healing lengéis defined as

ﬁ2

W = pg (7)

and the thermal de Broglie wavelength as

2mh?

mkgT

Note that in the weakly interacting and degenerate limitlvasf > aandA > a.
The system Hamiltonian in second quantized form is

A= (8)

A=y @'how+ Lo g o 9)

wherehg is the one-body hamiltonian reduced here to the kineticgynterm,hg =
—%A,, with a discrete laplacian reproducing the free wave d&parelationE, =

h2k?/2m when applied over a plane wave. The bosonic field operfol obeys
the discrete commutation relation

2 This results from the formulgy® = g% — frp, % -
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B(r). 9 (r2)] = 2422 (10)

2.2 Bogoliubov expansion of the Hamiltonian

We split the field operator into the condensate field and theaomdensed field
(¥, (r) orthogonal to the condensate wave functjgn):

@(r) = o(r)do+ . (r) (11)

whered is the annihilation operator of a particle in the condensabele. For the
homogeneous system that we consigér) = 1/V1/2. The main idea of the Bogoli-
ubov approach is to use the fact that the non-condensed dietdich smaller than
the condensate field to expand the Hamiltonian in poweid df ). This becomes
truly operational if one succeeds in eliminating the aropliayp of the field on the
condensate mode. For the modulug@ive can use the identity

fio=N—N_ (12)

with N the total particle number operatog = égéo the condensate particle number

operator and\, = St b3$ILZIL the non-condensed particle number operator. The
elimination of the phase dp at the quantum level is more subtle, and it was not
performed in the original work of Bogoliubov. We introdudeetmodulus-phase
representation [13]

4o = &on/? (13)
with the hermitian phase operatér conjugate to the condensate particle number:
[fio, O] =i (14)

It is known that the introduction of a phase operator in quantnechanics is a
delicate matter [19]. As we explain below, our formulati@nniot exact but it is
extremely accurate in the present case of a highly poputaierdensate mode. As
it appears from (14), there is a formal analogy with the pasibperatorx”and
the momentum operatqy of a fictitious particle in one spatial dimension. For the
fictitious particlep’is the generator of spatial translations so that

% ] =i = €M) = [x—1)

[0, 0] =i = €°Ing: @) =no—1: )
where|x) represents the fictitious particle localized in positoand|ng : @) is the
Fock state withng particles in the condensate mode. As a consequence the repre
sentation (13) ofg has the correct matrix elements in the Fock basis. The aperat

exp(if) is a respectable unitary operatorexcept when the condensate mode is
empty where one gets the meaningless result:
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é%0:p)2|-1:9) (15)

This is in practice not an issue if, in the physical state efgjstem, the probability
for the condensate mode to be empty is negligible. For a fiite system the prob-
ability distribution ofng was calculated using the Bogoliubov approach and even an
exact numerical approach [20, 21]. In the thermodynamid kme expect that the
probability of having an empty condensate vanishes exga@ilgrwith the system
size atT < Te.

In order to eliminate the condensate phase we introduceuhwer conserving
operator [14, 15]

Ar)=e"%@.(r) (16)
The success of the elimination procedure is guaranteed fivecHamiltonian con-
serves the particle number: Injecting the splitting of tie&f{11) in the Hamiltonian
and expanding, generates a series of terms in wdyeppears either witlag‘or with

(III(I‘). Expanding to second order i, and using (12) we obtain the Bogoliubov
Hamiltonian

. N2 A A 120 12 AtA
HBogzg"W+zb3 AT (ho — Ho)A + ko (2/\2+2/\T2+2/\T/\)} (17)
r

We have assumed that the total particle number is fixed andl éqUN and we
have replacedl by N. Still, one obtains a grand canonical ensemble for the non-
condensed modes, with a chemical potentat= gop. The condensate indeed acts
as a reservoir of particles for the non-condensed modesedessionuy = gopo

is in fact the zeroth order approximation (in the non-corsgehfraction) to the gas
chemical potential. In what follows we shall take

Ho = gp (18)

which is consistent with the Bogoliubov theory at this ordene termsATA in
(17) represent elastic interactions between the condersat the non-condensed
particles. They also appear in the simple Hartree-Fockrthd@ie termsA 2 and
hermitian conjugate represent inelastic interactionsresh@o condensate particles
collide and are both scattered into non-condensed modésopfiosite momenta.
They are absent in the Hartree-Fock theory and they playaatinole in explaining
the superfluidity of the gas.

2.3 Anideal gas of quasi-particles

To extract the physics contained in the Bogoliubov Hamilarone has to identify
the eigenmodes of the system putting the quadratic Hanmltoin a normal form.
We present here a brief overview, a more detailed discusgésngiven in [16, 22].
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In the Heisenberg picture the equations of motion of the figlerators are linear,
provided one collectd andAT into a single unknown:

()= ( ) ()= (2) e

The matrix.Z is not hermitian for the usual scalar product, but it is “hierm
tian” for a modified scalar product of signatute —1). It has moreover a symmetry
property ensuring that its eigenvalues come in paigg

We now expand the field operators over the eigenvectorg’of

gkr efik-r Vo \ ~
(A0) =g ()3t ()8

with U2 — V{2 = 1 (this is the normalization condition for the modified scaleod-
uct). An explicit calculation gives

1 mk2/2m  \Y*
Uk +W = = 21
KT Ui <2uo+h_2k2/2m> (21)

The coefﬁcientsf)k and BT obey the usual bosonic commutation relations e.g.

[bk, k,] O k- Injecting the modal decomposition (20) in the Bogoliubaankilto-
nian (17) one obtains a Hamiltonian of non-interacting Insszalled quasi-particles:

R N _ ﬁZkZ ﬁ2k2 1/2
Heog = Eo(N) + ; bbb with g = [2 ( o 2110)} (22)
K70

The quantityEg(N) is the Bogoliubov approximation of the ground state eneltgy.
reads
goN?

Bo(N) ==~ — 5 & (23)

KFZ0
In the continuous space limii/§ — O, the sum ovek has an ultravioleti —

) divergence. If one replacagp by its expression (6) expanded to first order in
a/b, go ~ g(1+Ca/b), this exactly compensates the ultraviolet divergence aed o
recovers the Lee-Huang-Yang result

~gN? 128 12
Eo(N) = N {1‘# 1572 (pa®) (24)
The Bogoliubov spectrung starts linearly at lowk: the quasi-particles are then
phonons. At highk one recovers the free particle spectrum shifted upwardsyby

quasi-particles in this limit are just particles. At thettrequilibrium in the canonical

ensemble for the original system the Bogoliubov densityratoe is
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e Peos with B =1/kgT (25)
Zpog

6' =
where Zgoq is the partition function in the Bogoliubov approximaticrhis den-
sity operator in the canonical ensemble farticles corresponds in fact to a grand
canonical ensemble, with zero chemical potential, for dfoasi-particlesvhose
number is not conserved.

3 Spatial coherence

In this section we discuss the spatial coherence propetiasveakly interacting
Bose-condensed gas, using the Bogoliubov theory. As eggecte finds long range
order in the thermodynamic limit. To complete the discussie briefly address the
case of a low-dimensional system where long range ordergstieral lost (except
for the 2D gas at zero temperature) but where the ideas of the Bogelintathod
can be adapted for quasi-condensates [17, 23].

3.1 Non-condensed fraction ang; function

In a spatially homogeneous gas, the non-condensed frasttoe ratio of the non-
condensed densityATA) and the total densitp. Using the modal decomposition
(20) and the thermal equilibrium state (25), one obtainsiéthermodynamic limit

in 3D: R o
(NL)y  (ATAY 1 B [UZ+V2 \2
N p p/(2n>3 [e‘“’k—l "}

This integral has no ultraviolek (— ) divergence sinc®? = O(1/k%). One can
thus take the continuous space lirhit» 0 and integrate over the whole Fourier
space. The integral has no infrareki-¢ 0) divergence either, since?,Vj2 =
O(1/K). In order for the Bogoliubov theory to be applicable, the qvondensed
fraction should be small. From the result (26) one can chieakthis is indeed the
case for the degenergtd 3 > 1 and weakly interactingpa®)'/? < 1 regime.

The first-order coherence function (1) in the thermodyndimiit is given in the
Bogoliubov theory by

(26)

- d3k UZ+V2
0 =p- [ grai-cosken |k gl e

where we used the exact relati(ﬁgclm = 0. In the larger limit, the contribution
of the oscillating term cds- r vanishes and; tends to the condensate density. This
implies that spatial coherence extends over the whole sysitze.
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3.2 In low dimensions

In a straightforward generalization of (26) to low dimemsipthe non-condensed
fraction is infrared divergent inR2for T > 0, and in D for all T: there is no Bose-
Einstein condensate in the thermodynamic limit in agre¢meéth the Mermin-
Wagner-Hohenberg theorem [24, 25]. Nevertheless, in theklyenteracting and
degenerate regime there are weak density fluctuations aal please gradients.
This is the so called quasi-condensate regime [23, 26]. Taie ideas of the Bo-
goliubov approach can still be applied after the introductdf a modulus-phase
representation of the field operatrin each lattice site [27]:

@(r) =€/p(r) (28)

wherep(r)b? and é(r) are conjugate variables similarly to (14) adds the spa-

tial dimension. As we discussed in subsection 2.2 and in, fhé] modulus-phase
representation of the annihilation operator in a given fralntle is accurate if this
mode has a negligible probability to be empty. This in pat&c requires that the
mean number of particles per lattice site is laggje > 1. In the weakly interacting
p&9 > 1 and degeneraeA® >> 1 regime, one can adjubtto satisfy this condition
while keepingb < &, A so as to well reproduce the continuous space physics. In this
regime one also finds that the probability distribution e tumber of particles on

a given lattice site is strongly peaked around the mean \aitdes 1, with a width
much smaller than the mean value, which legitimates theesgmtation (28).

If one blindly applies the plain Bogoliubov result (27) irethbsence of a con-
densaté, one finds that the first-order coherence functgf(r) — —c at infinity,
logarithmically withr in 2D (T > 0) and in D (T = 0), and even linearly im in
1D atT > 0. One may believe at this stage tkﬁ{’g(r) is simply meaningless in
those cases. The extension of the Bogoliubov theory to euaagliensates however
produces the remarkable result [27]:

Bog
9 ()
07°(r) = pexp| =1 1] (29)

The quasi-condensate first-order coherence fungﬁ’&r@r) tends to zero for — oo

as a power law inR (T > 0) and in D (T = 0), and exponentially fof > 0in 1D,

as expected [23]. The gas has then a finite coherence Iergtly. the half-width of

g1) much larger thag or A in the weakly interacting and degenerate regime. Over
distances < l¢, phase fluctuations are small, and the system gives théoitlud
being a condensate: one can linearize the exponential (2®gqto obtairg(fc(r) ~

95°%(r). The phase and density fluctuation properties of the quarsiensates at

3 One may wonder in 2 about the value ofiy = gop, sincego logarithmically depends on the
lattice spacingo [27], and dimensionality reasons prevent from forming a cogptonstanty
(such thagp is an energy) from the quantitiBsmanda, wherea is now the D scattering length,
given in [26, 28] . According to [27] one simply has to take f@rthe gas chemical potentig(T).
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nonzero temperature have been studied experimentallyoelthatoms in D [29,
30, 31] and in B [32, 33] and confirm the theoretical picture.

4 Temporal coherence

In this section we discuss the temporal coherence propestia finite size Bose-
condensed gas, defined by the coherence fun(ﬁhn)éo(O» already introduced in
equation (2). Although, strictly speaking, this coherefuretion was not measured
yet with cold atoms, we argue in section 4.1 that it is in pplemeasurable. In
subsection 4.2 we show that the condensate coherencedii2jican be related to
the condensate phase-change during the time interVak loss of temporal coher-
ence is thus due to the spreading in time of this phase-charyeh is the quantity
that we actually calculate. Whenever one of the conserventijgs (total particle
numberN or total energyE) fluctuates in the initial state from one realization to
the other, the phase-change spreads ballistically. Orceffhct of fluctuations of
N is understood (subsection 4.3), the more involved effecnargy fluctuations
for fixed N can be understood by analogy. The resulting guess for theepttaange
spreading can be justified within the quantum ergodic thésupsection 4.4). The
only case in which pure phase diffusion is found is when threseoved quantitieN
andE are fixed, that is in the microcanonical ensemble (subsedt). For fixed\
and a general statistical ensemble for energy fluctuatisedinally give in subsec-
tion 4.6 the expression for the variance of the phase-chante long time limit,
that includes both a ballistic term and a diffusive term.

4.1 How to measure the temporal coherence function

We give here an idea of how to measure the condensate tengpbiience function
(ég(t)éo(0)> in a cold atom experiment [10]. The scheme uses two longtatemic
internal statesa) and|b) and it is a Ramsey experiment as in [5], with the notable
difference that the pulses are arbitrarily weak insteadewridprr/2 pulses.

The Bose-condensed gas is prepared in equilibrium in tleeriat statga) and
the statgb) is initially empty. At time zero one applies a very weak efentagnetic
pulse, of negligible duration, coherently coupling the twiernal states. After the
pulse, the system evolves during a titne presence of interactions only among
atoms inja): we assume no interactions betweeandb components and neg-
ligible interactions within theb component due to the very weak density in that
component. At timdé one applies a second pulse of the same amplitude, and one
measures the particle number in stgein the plane wavé = 0.

4 This can be realized experimentally either using a Feshbachaase [34] or spatially separating
the two components [35].
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The scheme can be formalized as follows. The first pulse=a0, coherently
mixes the two bosonic field, and i, with a real amplitude) so that

'l’a(r70+) =V 1—'72¢’a(ra07)+'7¢b(ra07) (30)
Bo(r,07) = V/1-n2d(r,07) —nPa(r,07) (31)

In between time 0 and timet™ the two fields evolve independently. Fielf
evolves in presence of kinetic and interaction terms as)irH@ld (i, evolves with
kinetic and internal energy terms so that its amplitude erkth- 0 mode obeys

bo(t™) = €°bo(0") (32)

where d is the detuning between the electromagnetic field andatheéb atomic
transition (the calculation is performed in the rotatingnfie). The second pulse
at timet mixes again the two fields with the same mixing amplitudesna80),
(31). After the second pulse one measWMgs(t) = ((bjbo)(t*)). Using the mixing
relations and (32) one expresdmét ) as a function oby(0~),8(0~) andap(t ).
Since the initial state for componehtis the vacuum, the contribution d%(0~)
vanishes and one obtains the exact relation:

Nbo(t) = 12 { (1= 1)((8540)(07)) + ((80) (t))putse
+ /1= 02 [ (&](t)80(0))puse+ .|} (33)

that we expand for vanishing:
Neo(t) = 212 { (fo) +Re | (a(t)a0(0)) | | +O(1°) (34)

In particular, the subscrigt . .)puse ON the expectation values, indicating that they
are taken for a system having experienced the first pulseramasved. The desired
correlation function(é{')(t)éo(O)) can be extracted from the contrast of the fringes
obtained by varying the electromagnetic field frequencye FignalNy(t) itself is
small (it is proportional ta)?) but the contrast of the fringes is independentdh

the smalln limit, and it starts at unity at= 0.

5 The expectation values. .)puise differ from the original ones...) in the absence of pulse by
O(n?): To first order inn, the perturbation offi, due to the pulse is linear i, (0~) and has a
zero contribution to the expectation values since compdméeninitially in vacuum.
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4.2 General considerations abo&ﬁg(t)éo(ow

4.2.1 Phase-change spreading

Here we go through a sequence of transformations that setagetemporal co-
herence function(ég(t)éo(O)) to the variance of the condensate phase-change
é(t) — é(O). We use the modulus-phase representation (13) of the &atrohi op-
eratorap. Since the non-condensed fraction is very small, we simplylett the
fluctuations of the modulus @b i.e. we replaceg with its mean value in equation
(13). We then obtaif

(&b (t)(0)) ~ (fig) (e 16-0(01) (35)

If the phase-changé(t) — 6(0) has a Gaussian distribution, which may be checked
a posteriori, the application of Wick’s theorem yields

<é$(t)éo(0)> ~ <ﬁ0>efi<é(t)7é(0)>e7Var[é(t)—é(O)]/2 (36)

This remarkable formula quantitatively relates the losteaiporal coherence in an
isolated Bose-condensed gas to the spreading of the catdgiigse-change.

The operational way to determine the condensate phas@etsgneading is to
work with the phase derivative: contrarily & Ois asi ngle-valued hermitian oper-
ator that has a simple expression within the Bogoliubov aagi. The correlation
function of the phase derivative

C(t) = (6(1)6(0)) — (6)? (37)

gives access to the variance of the phase-change by sintgdgation:

~ - t t
Var[e(t)fe(O)]:Zt/o drCR(r)fZ/O dTTCR(T) (38)

whereCx is the real part oC. One obtains a single integral (rather than a double

integral) using the fact that the real part @(t1)6(t2)) is a function of|t; — tp|
only, for a system at equilibrium. The long-time behavioCafdetermines how the
phase-change spreads at long times as summarized in Fig. 1.

At finite temperature, one might expect ti4t) decorrelates frond(0) at long
times so thaCr — 0 and the phase-change spreading is diffusive. As we wi|l see
this is however not the case, except if the system is prepards® microcanonical
ensemble. This is a consequence of energy conservatioe®etimes 0 antin our

6 Here we have neglected the non-commutatiorf () and 8(0). From the Baker-Campbell-
Hausdorff formula, and to zeroth order in the non-condenseatidra see equation (45), the cor-

. . dt -2 . .. . .
rection is a factoe™ 2i# (N)+ON"*) which is irrelevant for our discussion.
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isolated system. This point was overlooked in the earlyistuiof [36, 37, 38] where
the non-condensed modes were treated as a Markovian resandophase diffu-

sion was predicted. A subsequent study [39] based on a mashy4damiltonian

approach showed that phase-change spreading is balbsticSystem prepared in
the canonical ensemble. The coefficient?in [39] was however calculated within
the pure Bogoliubov approximation, neglecting the intdoas between the Bo-
goliubov quasi-patrticles, which is illegitimate in the ptime limit as we shall see.

diffusive regime ballistic regime
Cr(1) = 0(1/1) M wCr(1T) =A#0
Var[8(t) — 6(0)] ~ 2Dt Var[6(t) — 6(0)] ~ At?
RO ar [B(t)-8(0)] ~ 2 tf; dt C(1) CrD var [B(1)-8(0)] ~A
A
0 0
0 T 0 T

Fig. 1 Different regimes of the condensate phase-change spreadioggatiinesCr is the real
part of the correlation functio@ defined in (37).

4.2.2 Key ingredients of the theory

In order to correctly determine the phase-change spreauthg long time limit, we
shall use two key ingredients in our theoretical treatmantaccurate expression of
the phase derivative and the inclusion of the interactionsray Bogoliubov quasi-
particles, to which we add the constraint of strict energgseovation during the
system evolution. .

Time derivative of condensate phase operdfbe commutator o8 with H given
by (9) is calculated exactly using

A _ A g(r)

[6,0(r)] = —a 28 (39)
and its hermitian conjugate, with the condensate wave iiomgi(r ) = 1/V1/2. The
exact result is given in equation (67) of [8]. Expanding upsézond order in the
non-condensed field and using the modal decomposition (20), one obtains for
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fixed N: 7

Jo

- 116,A) ~ —%u(T 0

(Uk +Vi)?h (40)

We have introduced the zero-temperature chemical potgnfia= 0) = %EO(N),
whereEp(N) is given in (23), and the quasi-particle number operators

ik = Bl [ (41)

The expression (40) of the phase derivative differs fromoathe heuristically intro-
duced in [37, 38]8 is not simply equal to-gfp/hV.

Interactions between quasi-particl®ushing one step further the Bogoliubov ex-
pansion of section 2, that is including terms up to third oidehe non-condensed
field, one obtains o .

H~ HBogJF H3 (42)

wherel—AIBOg is the Bogoliubov Hamiltonian (22) and

Ha =gop™?y AT (A+AT)A (43)
r

The HamiltonianHs is cubic in the fieldA and it corresponds to interactions be-
tween quasi-particles. Wh||e!BOg is integrable (all the are conserved quantities),
the Ham|lton|arHBog+ H3 is notintegrable, which plays a central role in condensate
dephasing. By replacing with its modal decomposition (20) i3, two types of
resonant processes appear, that do not conserve the tothenof quasi-particles:
the b'b'b Beliaev process and the'bb Landau process. In the Beliaev process
one quasi-particle decays into two quasi-particles, whikhe Landau process two
quasi-particles merge into another quasi-particle. Tlregsses involvind™b'b’
andbbb are non-resonant (they do not conserve the Bogoliubov ghargl they
cannot induce real transitions at the present order.

4.3 If N fluctuates

In this subsection we allow fluctuations of the total numbgparticles and we
investigate their effect on temporal coherence. The effeatready present in the
case of a pure condensate, so that we restrict to a one-matid maohis subsection:
identifying the condensate particle numipgwith the total particle numbeX, we
obtain the model Hamiltonian

7 We have neglected oscillating terms b and b'b': after time integration oé they give a
negligible contribution td(t) — 6(0).
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~ g ~2
H = —N 44
one mode— Y] ( )

The condensate phase derivative is

é(t) = %[év |:|0ne modé = _U(N)/ﬁ (45)

where the chemical potential for the system viNtparticles is simplyu(N) =gN/V
for the one-mode model. Sind¢ is a constant of motion, temporal integration is
straightforward: . . A

6(t)—6(0) = —u(N)t/R (46)

If N is fixed there is no phase-change spreading. If the initéédss prepared with
fluctuations inN then the phase-change spreads ballistically [40, 41]:

Var[@(t) — 6(0)] = (t/h)? (j{;‘l)z varN (47)

Correspondingly the temporal coherence funct@é@(t)é@ decays as a Gaussian
in time®[42, 43]. A similar phenomenon was observed experimenfaly 45, 46]
not for the temporal correlation of a single condensate dugdual-time coherence

<ég(t)bo(t)> between two condensates prepared in different modes onaitstates
with a well defined relative phase and fluctuations in thetikedgarticle number.

4.4 N fixed, E fluctuates: Canonical ensemble

We assume in this subsection that the gas is prepared inteqguit at finite tem-
peratureT in the canonical ensemble witk particles. We first treat this case by
analogy with the previous subsection, and then we exposetarsgtic derivation
of the result based on quantum ergodicity.

4.4.1 Using an analogy with the case of fluctuatiny

Similarly to N in the previous subsection, hefeis a conserved quantity that fluc-
tuates in the initial state. Indeed the canonical ensensbdestatistical mixture of
energy eigenstates with different eigenenergies. By gyaldth (46) we expect that

B(t) — 6(0) ~ —pmc(H)t/R (48)

wherepmnc(E) is the chemical potential of the microcanonical ensembénefgyE.
As relative energy fluctuations are vanishingly small foat@é system, we can lin-

8 The phase revivals at macroscopic times multiplesrgig/g [42, 43] are absent here due to the
Gaussian hypothesis used to obtain (36).
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earizelmc(E) around the mean ener@to obtain aballistic phase-change spread-
ing

dpme

Var([f(t) — 6(0)] ~ (t/h)? { (E )} VarH (49)

The coefficient ot? is proportional to the variance of the energy in the inittate

and scales as the inverse of the system volume in the themaaody limit. For con-
venience, one can reexpress this coefficient in terms ofrcealcensemble quantl—
ties usingumc[E (I)] = u(T) (for a large system) so th@%umc = dTu/dTE
whereu(T) andE(T) are the chemical potential and mean energy in the canonical
ensemble at temperatufe An explicit expression of the coefficient tfis given in

Eq. (73) of [8] using Bogoliubov theory to evaluate the gati function,E(T) and
u(T). The obtained formula fop(T) also gives the intuitive and interesting side
result

(6) = —u(T)/h (50)

4.4.2 From quantum ergodic theory

In the previous analogy leading to (49) there is a strong igiighypothesis. The
fact that the phase-change is a function of the Hamiltonidy, see Eq. (48), is in
general true only for an ergodic system in the long time lifadr example if the
Hamiltonian was truly equal tbiBog, 6(t) — 6(0) would depend on the set of all
occupation number operatang and Eqgs. (48,49) would not apply.

We now derive Eq. (49) using quantum ergodic theory. To thiswe calculate
the asymptotic value of the correlation functi@ft). To eliminate oscillations of
C(t) we evaluate its time average. By inserting a closure relaiier exact eigen-
stated¥, ) with eigenenergiek, of the interacting many-body system, we obtain

2
1t
L[ arem =, zpﬂwem (zpmlew) (51)

wherep, is the probability to find the system in the eigensté{g). In the canonical
ensemble, = exp(—BE,)/Z. In (51) we have assumed that there are no degenera-
cies consistently with the non-integrability of the sysfeffor a classical system,
ergodicity implies that the time average over a trajectdmrergyE coincides with

the microcanonical average at that energy. The extensitdtnio€oncept to a quan-
tum system is the so-called eigenstate thermalization thygses [47, 48, 49]: the
mean value of a few-body observalfdn a singleeigenstateé¥, ) is very close to

the microcanonical average at the same energy:

9 For a large system the level-spaciéif vanishes exponentially with the system size, and one
may fear that an exponentially long tirhe- h/SE is needed to reach the limit (51). However, the
corresponding off-diagonal matrix elementsédlso vanish exponentially with the system size in
the eigenstate thermalization hypothesis [47].
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(H2[0|%3) ~ Omc(E =E)) (52)

We apply this hypothesis to the operatﬁr: é The last step is to realize that

within the Bogoliubov theory, the microcanonical averageéds proportional to
the microcanonical chemical potentfdl

D>

me(E) = —tmc(E) /R (53)
One then obtains
2
Varld(t) - 6(0)] ~ %Varumc(lfl) (54)

Linearizing tmc(H) in (54) for small relative energy fluctuations arouficne re-
covers (49).

4.4.3 Physical implications

A consequence of (49) is that, for a system prepared in thenieal ensemble,
the correlation functioil©(1) of 6 does notend to zero whem — 4. The same
conclusion is reached for the correlation functiomgfwhose long time limit can
be calculated with the quantum ergodic theory [8]. This takely contradicts
[36, 37, 38]. It only qualitatively agrees with [39] sinceeteystem Hamiltoniaki
in [39] was eventually replaced by the integrable HamilaxnrﬁlBog.

In [36, 37, 38] the non-condensed modes were treated as eoMarkreservoir.
This approximation is excellent to calculate temporal elation functions of “mi-
croscopic” observables such as the quasiparticle numbBersexample, this gives
for k, k' £ 0[8]:

(A (V) (0)) — (k) (i) " & o (i) (L+ (i) )& 1w (55)

where the damping rat® is due to the Beliaev-Landau processes. However quan-
tum ergodic theory shows that the exact long time limit o$ ttorrelation function

is nonzero (even fok # k') but rather a quantity of order/N. In the double sum
overk andk’ that appears i€(1), this introduces a macroscopic correction of order
N missed by the Markovian approximation.

We illustrate this discussion in Fig.2 with a classical fiedddel [8]. The ex-
act numerical result (black squares linked by a solid lir@)ficms the ergodic re-
sult (dash-dot-dotted blue curve). The flat red dashed $itled Bogoliubov theory
where theng are constants of motion. It is close to the numerical resuit at short
times. The dash-dotted violet curve that tends rapidly to iea Markovian model
based on (55).

10 See reference [45] of [8]. In fact for a large system it is suffiti® prove the equality in the
canonical ensemble of mean enekyas already given by Eq. (50).
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linear Schodinger equation. ‘|
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4.5 N fixed, E fixed: Microcanonical ensemble

In this section we assume that the gas is prepared in the caicomical ensemble of
energyE. According to (54) the coefficient of the ballistic spreagliof the phase-
change is zero. It was found in [10] th@att) = O(1/1%) at long times, so that the
phase-change spreads diffusively, with a diffusion coefficdefined by

var[f(t)— 6(0)] ~ 2Dt with D= /0 " drCr(1) (56)

To determineD we thus need the whole time dependenc€(@af). From (40),C(1)
can be deduced from all the correlation functidig 1)f/ (0)) of the quasi-particle
number operators. Within the Bogoliubov approximationtfa@ initial equilibrium
state, the gas is prepared in a statistical mixture of Foatest{ng}) of quasi-
particleswhere, in any given Bogoliubov mode of wave veatpithere are exactly
ng quasi-particlesng is an integer). One can then calculate the correlation fonst
for an initial Fock statg{n3}) and average over the microcanonical probability
distribution for the{n3}.

For a given initial Fock state, one then simply needs

Me(1) = ({ng}HA(T) [ {ng}) (57)

In the thermodynamic limit, the evolution of such mean nuralzé quasi-particles
are given by quantum kinetic equations including the Belisendau processes due
to Hs [50]:

2 2
M = —%/d3q[nknq—nk+q(1+ Ng + Nk)] (%}qu‘) O(&k+ &g — Ek4q)

2 2
_% /d3q [Nk (14 ng +Nk—q) — NgNk—q] (%'f\k—q\) O(€g+ &g — &) (58)
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with the Beliaev-Landau coupling amplitudes:
«!ka?w = UgUUy +VgViVie + (Uq -‘rVq)(VkUk/ +UVe) (59)

The first line in (58) describes Landau processes and theddio@ describes Beli-
aev processes. In practice we linearize the kinetic equési8) around the equilib-
rium solutionn, 1 and we solve the resulting linear system numerically. Werref
to [10] for technical details.
The phase diffusion coefficient is shown in Fig.3 as a fumctibthe temperature
T such that the mean canonical eneEyy) is equal to the microcanonical energy
E. Remarkably, whe> andT are properly rescaled (as in the figure), the curve
is universal. In particular this shows th@tvanishes as the inverse of the system
volume in the thermodynamic limit. Interestingly, at lowrtperatureD vanishes
with the same power-la* as the normal fraction of the gas:
4
ﬁ[;v ~ 0.3036( keT )

(60)

We performed classical field simulations in the microcanahensemble [9].
As expected we found that the phase-change has a diffusheavize: its variance
increases linearly in time at long times (not shown) and tresp-change probability
distribution is well adjusted by a Gaussian as we show indftghnel of Fig. 4. In
the right panel Fig. 4 we show that the diffusion coefficienvell reproduced by a
classical field version of the kinetic theory.

Fig. 3 Solid line: universal D~TIn'n T") AAAAA B
result for the phase diffusion ;
coefficient in the Bogoliubov
limit (pa®)¥? < 1,T < Te.
Dashed line: lowF analyt-
ical result (60). The high-
behavior is only conjectured,
and the dotted line is an arbi-
trary linear function ofT to
guide the eyeV is the volume
andg the effective coupling 1
constant (4). kgTlPg

11 For an infinite system, the stationary solution of (58) is ensemblegiendent and corresponds
to the Bose formulay (E) = 1/(expBex — 1), wheref is adjusted to give the mean energy
Finite size effects on they, that can be calculated from Eq. (61) of [8], are here novegle
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4.6 A general statistical ensemble

We now consider a generalized ensemble at fiXetthat includes both the micro-
canonical and the canonical ensembles as particular CHsisss a statistical mix-
ture of microcanonical ensembles with a probability disttionP(E) of the system
energyE that depends on the particular experimental procedureetogpe the ini-
tial state of the gas. Remarkably the approach of the prevsabsection based on
kinetic equations can be extended to this case.

4.6.1 General result for the phase-change spreading

Provided that the relative energy fluctuations vanish irttleemodynamic limit, we
find the long time limit [10]

92
(;_ZEC(E)} t2+2D(tt0ﬁ)+O<t1> (61)

Var[6(t) — 6(0)] =, Var(E) {

For the coefficienfA of the ballistict? term we recover théorm of the quantum
ergodic result (49). This is not surprising as the reasoofraybsection 4.4 does not
rely on the fact that the system is prepared in the canonitsrable. On the other
hand thevalueof the coefficient does depend on the statistical enseminegh the
mean energf and the variance of the energy. A physical derivation of thi&ult
within kinetic theory is given in the next subsection.

A remarkable result is that, in the general ensemble, thegptiarivative correla-
tion functionC(7) is the sum of its long time limi& and of the correlation function
Cmc(T) in the microcanonical ensemble of eneigy

1.5~ -

L
hbD,Vig
[
T
L

L L | L | L | L | L |
0.6 0 12 5 18 21 24
k;T/pg

Fig. 4 Classical field simulations in the microcanonical ensemble. Lafepéaken from [9]):
Probability distributionP(¢) of the condensate phase-change fluctuatipns 06(t) — 6(0) —
(8(t) — 6(0)) at a large timé. The dashed line is the expected Gaussian. Right panel (taden fr
[10]): Diffusion coefficient as a function of the temperatwegtracted from the numerics (bullets
with error bars) and calculated by the classical field versiomekinetic equations (58) (crosses
linked by segments).
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C(T) = A+ Cino(T) (62)

As a consequence the diffusion coefficiétof Eqg. (61) is the same as the one
for the microcanonical ensemble of enei§y The same conclusion holds for the
constant time offset 12:

D= / " 4t Crme(T) (63)
0
~Jo dTTCrm(T)
tOff - }Jooo dTCR_mc(T) (64)

whereCrmc is the real part ofCnc. The physical origin of the time offses is
apparent in Eq.(64): it is due to the finite width of the phasgwative correlation
function. ASCrmc(T) is found to be positively can be simply interpreted as the
correlation time of the phase derivative in the microcanahnénsemble. The formal
expressions foD andtyg, in terms of the matrix of the linearized kinetic equations,
are given in [10].

These results are made more concrete by Fig. 5: for a quantstans in the
thermodynamic limit, we show the microcanonical correlatiunctionCmc(t) as
a function of time, and the variance of the phase-changereiththe canonical
ensemble of temperatukg T = 10pg or in the microcanonical ensemble with the
same mean energy. This reveals in particular that the agyim@xpression (61)
becomes rapidly accurate.

4.6.2 Recovering the ballistic spreading from kinetic theoy

Due to energy conservation, the linearized kinetic equatltave a zero-frequency
undamped mode. We will show that, in presence of energy fitictos in the initial
state, the amplitude over this mode is nonzero, so that thegtierivative correla-
tion functionC(1) does not tend to zero at long times and the phase-changecaria
shows &? term as in Eq. (61). The derivation presented here was signifiy sim-
plified with respect to the original one of [10].

We introduce the notation

n(E) =

>|

kme(E) (65)

for the average number of quasi-particles in mkdie the microcanonical ensemble
of energyE. The kinetic equations (58), linearized around the statiprsolution

{ng(E)}, can be put in the form

X(1) =MX(1) (66)

12 This is true to leading order in the system size since our linedrkinetic approach cannot
access the subleading terms.
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Fig. 5 For a quantum system in the thermodynamic limit, the microcanbplzese derivative cor-
relation functionCmc(t) (red solid line, right vertical axis) and the variance of thagichange
(black lines, left vertical axis) are shown as functions of tifer the variance, the upper (lower)
solid line is for the canonical (microcanonical) ensemble, &ediashed lines are the correspond-
ing asymptotic forms of Eq. (61ksT = 10pg, V is the system volumey is the effective coupling
constant (4) and is the healing length (7). This is Fig. 3 of [10]. In atomic cendateg is in the
um range and the time unit of the figure is in the ms range.

where we have collected all the unknowng1) — Nk (E) in a single vectog(t) and

M is a matrix. The existence of a zero frequency mode can berstode in two
different ways that we explain. B _

First reasoningConsider an energl close toE. In the same way a& (E)}, the
set of occupation numbefsy (E)} constitutes a stationary solution of the full ki-
netic equations (58). Since the solutions are close, tliféérence{ny(E) —n«(E)}
obeys the linear system (66) so that the vegganf components

d
eok = 5= k(E) (67)

is a zero-frequency eigenmodeldf
Second reasoninghe Bogoliubov energy .o &Nk () is conserved by the kinetic
equations. An a consequenéeX(T) is a constant (the vect@ has components
&) and its time derivative is zero. This holds for all initisdlues ofX , and thus
implies thaté is a left eigenvector oM with zero eigenvalue. A basic theorem
of linear algebra then implies the existence of a right eigetor of M with zero
eigenvalue. Actually we already found it: it & of components (67). Such left
and right eigenvectors are called adjoint vectors. For oamalization choice, their
scalar product - & = d%E =1 as it should be.

We now go back to the correlation functi@{rt). We introduce the (zero-mean)
fluctuation operators

3ny = fi — i (E) (68)
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where we have neglected the difference betw@gihandng (E) in the large system
size limit. The correlation functio€(1) is then obtained as

C(r)=A-X(1) with x(1) = — (8 (1)8(0)) (69)
where we have collected in a vectrthe coefficients i given by Eq. (40):

_ % 2
=== Vi 7
Ac= i (Ut V) (70)
Following thqreasoning of subsection 4.5 on finds_!i}ﬁa} obeys Eq. (66). Splitting
X(7) = y&+ X (1) we have in the long time limit thaf (1) — O due to the Beliaev-
Landau damping processe whergas € - X(0) is a constant. At long times one then
has
C(1) — [£-X(0))(A-&) (71)

T—0

Taking the microcanonical average of (40) and using (53)ktains the Bogoliubov
expression for the microcanonical chemical potential:

Hne(E) = H(T =O)(N)+ 5 AACK(E) (72)
k0

Using the expression @ this leads toA & = %umc(E)/ﬁ. We now evaluate the
expectation valué. ..) appearing irg - X(0) in two steps. We first take the expec-
tation value in the microcanonical ensemble of endfgpne can then replace the
operatory  £dnk (0) with E — E, since the total Bogoliubov energy is fixed Eo

One is left with a microcanonical averageéb(fO) at energyE, an average already
given by Eg. (53), and that one can expand arolnid first order inE — E. The
last step is to average over with the probability distributiorP(E) defining the
ensemble, to obtain

- dHme , =
€-X(0) = Var(E) FdE (E) (73)
Collecting all the results, we exactly recover the coeffitiaf t* in Eq. (61).

After this last reasoning, it becomes apparent that, calytta the zero-frequency
componenty&, the contribution of the damped componétitr) of X(1) can be
treated to zeroth order in the energy fluctuations: one carcitly takeE = E with-
out getting a vanishing contribution @7) and to Eq. (61). This explains why both
the diffusion coefficienD and the time offsetys, that purely originate frorﬁ((r),
are essentially ensemble independent.
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