

Bose-Einstein condensates, phase-coherent dynamics & entangled states: to what extent and for what purpose?

Alice Sinatra

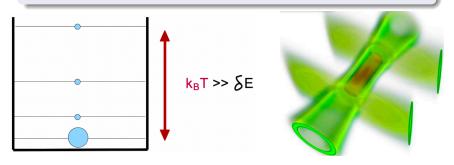
Laboratoire Kastler Brossel, École Normale Supérieure, Paris

Plan

- 1 Introduction
 - BEC Phase coherence
 - Role of the interactions
 - Partition noise and Spin squeezing
- 2 Multiparameter quantum metrology
 - Imaging and compressed sensing
 - First experimental investigation
- **3** Theoretical questions
 - Quantum Josephson equation
 - Squeezing limit due to finite temperature
 - BEC intrinsic coherence time

Bose-Einstein condensate

Bosons $T < T_c$ macroscopic population of a single particle state



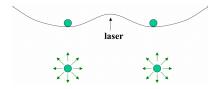
⇒ Macroscopic coherence properties : spatial and temporal

Typical number for a BEC : $\Delta x = 50 \mu m$, $N = 10^6$, T = 100 n K $\lambda_{th} = \sqrt{\frac{2\pi\hbar^2}{mkT}} \sim 0.6 \mu m$, $\rho = 10^{19}$ at/m³, $(\rho \lambda_{th} > 1)$; Lifetime $\tau = 100 s$

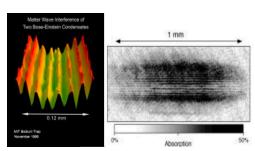
First evidence for phase coherence

Interference between two BEC, MIT 1997

Set-up:



Result:

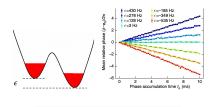


Phase dynamics

For how long do the condensats remember their (relative) phase ?

Two BEC with a well defined relative phase at time t=0

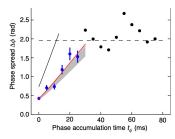
Mean relative phase dynamics



$$\dot{\theta}_{\mathsf{a}} - \dot{\theta}_{\mathsf{b}} = -(\mu_{\mathsf{a}} - \mu_{\mathsf{b}})/\hbar$$

Interferometric measurement of the relative phase at time t

Relative phase spreading



The condensate phase operator $\hat{\theta}$

Modulus-phase representation (condensate mode)

$$\hat{a} = e^{i\hat{ heta}}\sqrt{\hat{n}}$$
 and $\hat{a}^{\dagger} = \sqrt{\hat{n}}e^{-i\hat{ heta}}$ with $[\hat{n},\hat{ heta}] = i$

Correct matrix elements on Fock states except on vacuum

$$\hat{a}|n
angle = \sqrt{n}|n-1
angle \Rightarrow e^{i\hat{ heta}}|n-1
angle \quad ext{for all} \quad n>0$$
 $\hat{a}^{\dagger}|n
angle = \sqrt{n+1}|n+1
angle \Rightarrow e^{-i\hat{ heta}}|n+1
angle \quad ext{for all} \quad n\in\mathbb{N}$

Analogy with position and momentum operator of a particle

$$e^{-i\hat{\rho}}|x\rangle = |x+1\rangle$$
 translations generator $[\hat{x},\hat{\rho}] = i$

One-mode model (mean field, zero temperature)

Hamiltonian with atomic interactions

$$H = \frac{g}{2} \frac{N^2}{V}$$
 chemical potential $\mu(N) = \frac{dE}{dN} = g \frac{N}{V}$

Time derivative of the phase

$$\frac{d\theta}{dt} = \frac{1}{i\hbar}[\theta, H] = -\frac{g}{\hbar}\frac{N}{V} = -\frac{1}{\hbar}\mu(N)$$
 and $N = \text{constant}$

For an initial state state with fluctuations of N

$$\mu(N) = \mu(\bar{N}) + \frac{d\mu}{dN}(N - \bar{N}) + \dots$$

$$\mathsf{Var}(heta)(t) = \mathsf{Var}(heta)(0) + t^2 \left(rac{1}{\hbar} rac{d\mu}{dN}
ight)^2 \mathsf{Var}(N - ar{N})$$

• For a binomial distribution of $(N - \bar{N})$ (gaussian for large N), Phase spreads in time as the particle's gaussian wave packet

Relative phase dynamics in terms of a collective spin

Two bosonic modes (internal or spatial) with $\bar{N}_2 = \bar{N}_b = N/2$

$$|\psi(0)\rangle = \frac{1}{\sqrt{N}} \left(\frac{a^{\dagger} + b^{\dagger}}{\sqrt{2}}\right)^{N} |0\rangle$$

Collective spin & Relative phase

$$\mathsf{S}_{\mathsf{z}} = \frac{\hat{\mathsf{N}}_{\mathsf{a}} - \hat{\mathsf{N}}_{\mathsf{b}}}{2}$$

$$S_x = \frac{N}{2}$$

$$\mathsf{S}_{\mathsf{y}} = \frac{1}{2i} (\mathsf{a}^{\dagger} \mathsf{b} - \mathsf{b}^{\dagger} \mathsf{a}) \simeq \frac{\mathsf{N}}{2} (\hat{\theta}_{\mathsf{a}} - \hat{\theta}_{\mathsf{b}})$$

RELATIVE PHASE EVOLUTION

$$(\hat{\theta}_a - \hat{\theta}_b)(t) = (\hat{\theta}_a - \hat{\theta}_b)(0) - \chi t(\hat{N}_a - \hat{N}_b)$$
 with $\chi = \frac{1}{\hbar} \frac{d\mu_a}{dN_a}$

$H_{OAT} = \hbar \chi S_z^2$

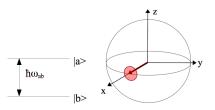
SPIN SQUEEZING FOR

 $1/N \ll \chi t \ll 1/\sqrt{N}$

$$S_{v}(t) = S_{v}(0) - (N\chi t)S_{z}$$

Spin squeezing for phase estimation $\phi = \omega_{ab}t$

N two-level atoms (non correlated) \Rightarrow collective spin N/2

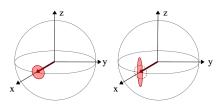


$$\Delta S_y \Delta S_z = \frac{|\langle S_x \rangle|}{2} = \frac{N}{4}$$

Angular position uncertainty

$$(\Delta\phi)_{NC} = \frac{\Delta S_y}{\langle S_x \rangle} = \frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}.$$

Correlations reduce the collective spin fluctuations



Spin squeezed ensemble $\xi < 1$

$$(\Delta \phi)_{\rm SQ} = \frac{\xi}{\xi} (\Delta \phi)_{\rm NC} = \frac{\xi}{\sqrt{N}}$$

and reduce the statistical error in the estimation of ϕ

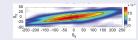
Exemples of experimental realizations

Non linear Hamiltonian $H_{NL} = \hbar \chi S_z^2$

• Two components condensates : $N \simeq 10^2 - 10^3$, $\xi^2 \simeq 0.15$

Oberthaler, Nonlinear atom interferometer surpasses classical precision limit Nat. (2010).

Treutlein, Atom-chip-based generation of entanglement for quantum metrology Nat. (2010).



• Cavity backaction : $N \simeq 10^2 - 10^4$, $\xi^2 \simeq 0.3$

Vuletic, Implementation of cavity squeezing of a collective atomic spin PRL (2010).

Vuletic, Entanglement on an optical atomic-clock transition Nat. (2020).

SPIN SQUEEZING BY QND MEASUREMENT

- Large amount of squeezing : $N \simeq 10^5$, $\xi^2 \simeq 10^{-2}$ Kasevich, Measurement noise 100 times lower than the quantum-projection limit using entangled atoms Nat. (2016).
- Observation of spin squeezed state for one second

Reichel, Self-amplifying spin measurement in a long-lived spin-squeezed state PRXQ (2023).

Quantum technologies: potential and limitations

POTENTIALLY USEFUL

- Miniaturized sensors as $(\delta\omega)_{\mathrm{CSS}}=rac{1}{ au\sqrt{N}}$
- Applications in fundamental physics

From demonstrations to applications if ...

- The quantum advantage becomes "easy" or necessary
- Example: squeezed states of light studied in the 1980 used today in interferometry for gravitational wave detection.

M. Tse et al., "Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy" Phys. Rev. Lett. 123, 231107 (2019)

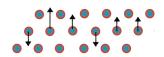
<u>Limitations</u> dues to decoherence

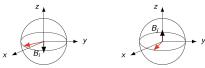
For a squeezed state to be useful, for a measurement time T:

- ullet The uncertainty $\delta\omega$ should be dominated by quantum noise
- ullet Quantum correlations should survive : $\gamma T \ll 1$

Single atoms for sensing an extended field

• Estimation of *N* parameters : $\theta_i \propto B(i)$





With spin squeezing

Encoding the *N* **parameters**

$$\hat{U}(\vec{ heta}) = e^{-i\sum_i \theta_i \hat{\mathbf{s}}_{i,z}}$$

Initial state of the atoms (CSS)

$$|\psi_0\rangle = |Ox\rangle^{\otimes N}$$

Initial state of the atoms (SSS)

$$|\psi_0\rangle = e^{-it\left(\sum \S_z^i\right)^2} \left[|Ox\rangle^{\otimes N}\right]$$

Quantum enhanced multiparameter estimation protocol

Use correlated spins and perform collective measurements

• Mesure N independent linear combinaisons of $\theta_1, \dots \theta_N$

For example, mesure of $\hat{S}_y = \sum \hat{s}_y^i o \sum_k \theta_k$ with quantum gain

Mesure the other combination by spin flips

$$e^{i\pi\hat{s}_x}e^{-i\theta\hat{s}_z}e^{-i\pi\hat{s}_x}=e^{i\theta\hat{s}_z}$$

• Which combinaisons? Those of the Hadamard transf.

$$ilde{ heta}_j = \sum_k [\mathcal{H}_m^{-1}]_{jk} heta_k \quad extbf{et} \quad heta_k = \sum_i [\mathcal{H}_m]_{kj} ilde{ heta}_j$$

size
$$M = N = 2^m$$
, $H_0 = 1$, $H_m = \begin{pmatrix} \mathcal{H}_{m-1} & \mathcal{H}_{m-1} \\ \mathcal{H}_{m-1} & -\mathcal{H}_{m-1} \end{pmatrix}$

Quantum gain in the measurement of a field

Original signal
$$ar{ heta}$$

$$\Rightarrow$$

Original signal
$$\vec{\theta} \Rightarrow \hat{U}(\vec{\theta}) = e^{-i\sum_i \theta_i \hat{s}_{i,z}} \qquad N = 512 \times 512$$

$$N = 512 \times 512$$

Reconstruction: measure N Hadamard coefficients ($\mu_c = 10$ repetitions)

- Coherent spin state CSS: $\Delta \theta_i^{\text{CSS}} = \frac{1}{\sqrt{n}}$
- Spin squeezed state SSS: $H_{NL} = \chi S_z^2$

$$\Delta heta_i^{
m SSS} = rac{\xi}{\sqrt{\mu}} \quad ; \quad t_{
m opt} \sim rac{1}{{\sf N}^{2/3}} \quad ; \quad \xi(t_{
m opt}) \sim rac{1}{{\sf N}^{1/3}} = rac{1}{64}$$

Quantum gain: imperfect squeezing

$$\Rightarrow$$

Original signal
$$\Rightarrow$$
 $\hat{U}(\vec{\theta}) = e^{-i\sum_i \theta_i \hat{s}_{i,z}}$

$$N = 512 \times 512$$

Imperfect spin squeezed SSSD, with collective dephasing $\gamma/\chi=5$

$$\frac{\partial \rho}{\partial t} = -\mathrm{i}[\chi S_z^2, \rho] + \frac{\gamma}{\gamma} \left[S_z \rho S_z - \frac{1}{2} \{ S_z^2, \rho \} \right]$$

$$\Delta heta_i^{
m SSSD} = rac{\xi}{\sqrt{\mu_c}} \quad ; \quad t_{
m opt} \sim rac{1}{ extstyle N^{3/5}} \quad ; \quad \xi(t_{
m opt}) \sim rac{1}{ extstyle N^{1/5}} \simeq rac{1}{12}$$

Compressed sensing : ons mesures only $\mathcal{L}_{\mathcal{H}} < N$ Hadamard coefficients

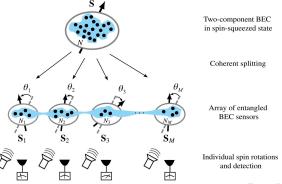


Y. Baamara, M. Gessner, A. Sinatra "Quantum-enhanced multiparameter estimation and compressed sensing of a field", SciPost Physics (2023)

Joint parameter estimation experiment: P. Treutlein

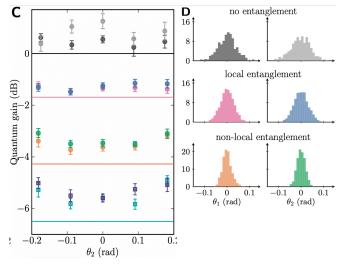
Many atoms per site and local measurements

- Spin-squeezed ensemble with N atoms distributed in M = 2 or M = 3 modes
- ullet μ repetitions where the θ_k are locally imprinted and the collective spins S_k are locally manipulated and measured



Experimental results for M = 2 **entangled sensors**

Joint measurement of two parameters with quantum gain



Quantum version of the 2nd Josephson equation

Bogoliubov theory for weakly interacting, low T spinless bosons

A. Sinatra, Y. Castin, E. Witkowska PRA (2009), PRA (2010).

"Condensate phase derivative" = "chemical potential"

$$-\hbarrac{d\hat{ heta_0}}{dt}=\mu_0(\hat{N})+\sum_{\mathsf{k}
eq0}\left(\partial_N\epsilon_k
ight)\hat{ extbf{n}}_\mathsf{k}\equiv\hat{\mu}$$

 $\hat{\mu}$ is the "adiabatic derivative" of \hat{H}_{Bog} with respect to N

$$\hat{H}_{\mathrm{Bog}} = E_0(N) + \sum_{k \neq 0} \epsilon_k \hat{n}_k$$
 and $\hat{\mu} = \left. \frac{\partial \hat{H}_{\mathrm{Bog}}}{\partial N} \right|_{V,S}$

Other frames in which we could derive the QJ equation

H. Kurkjian, Y. Castin, A. Sinatra PRA (2013), C. R. Physique (2016).

- **Q** Pairs of fermions (time-dependent BCS theory including moving pairs Blaizot-Ripka 1985). Bosonic and fermionic excitations in $d\hat{\theta}/dt$.
- Quantum hydrodymamics Landau and Khalatnikov 1949: low T, linear dispersion relation, exact equation of state (non mean field).

Quantum version of the 2nd Josephson equation

"Condensate phase derivative" = "chemical potential"

$$-\hbarrac{d\hat{ heta_0}}{dt}=\mu_0(\hat{N})+\sum_{\mathsf{k}
eq0}\left(\partial_N\epsilon_k
ight)\hat{ extit{n}}_\mathsf{k}\equiv\hat{\mu}$$

• Limit of spin squeezing due to finite temperature Interactions via $\mu(N)$ generate squeezing. Fluctuations of \hat{n}_k perturb the phase evolution and limit the squeezing.

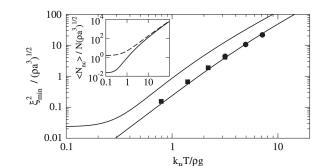
② Time coherence of a condensate at finite temperature Even in a single realization of the experiment, with N and E fixed, BEC coherence time is determined by the dynamics of the n_k .

Spin squeezing limit at finite temperature

Condensate relative phase (mutually non interacting BEC, $\chi = \frac{g}{\hbar V}$)

$$heta_a(t) - heta_b(t) \mathop{\simeq}_{ ext{large } t} - \overbrace{rac{\partial_{\langle \mathsf{N}_a
angle} \mu_{oldsymbol{\Phi}}}{\hbar}}^{\chi t} \left[N_a - N_b + \overbrace{\sum_{\mathsf{k}} \partial_{\mu_{oldsymbol{\Phi}}} \epsilon_{\mathsf{k}} (\mathsf{n}_{\mathsf{k}a} - \mathsf{n}_{\mathsf{k}b})}^D
ight]$$

$$\xi_{\min}^2 = \frac{\langle D^2 \rangle}{N} = \sqrt{\rho a^3} \, F(k_B T / \rho g)$$



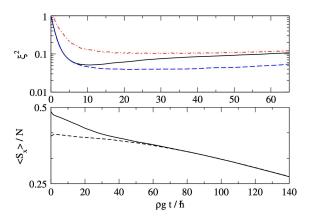
Lower line: classical field simulation (symbols) and analytics

Upper line : quantum result for ξ_{\min}^2

Inset : ξ_{\min}^2 and the non condensed fraction

Evolution of spin squeezing and contrast

Thermalization due to interactions among Bogoliubov quasi particles



Top: Black Solid line = classical field simulation; Blue dashed = Bogoliubov; Red dotted = ergodic.

Parameters : $N = 3 \times 10^4$, $k_B T / \rho g = 3.16$, $\sqrt{\rho a^3} = 1.32 \times 10^{-2}$

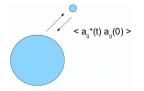
Bottom : Black Solid line = Total contrast $\langle S_x \rangle$;

Dashed line = condensate contrast $\operatorname{Re}\langle b_0^* a_0 \rangle$.

A. Sinatra, E. Witkowska, J.-C. Dornstetter, Yun Li, Y. Castin, PRL (2011)

FONCTION DE CORRELATION $g_1(t) = \langle \hat{a}_0^{\dagger}(t) \hat{a}(0) \rangle$

$$g_1(t) \simeq e^{-i\langle \hat{\theta}_0^{\dagger}(t) - \hat{\theta}(0) \rangle} e^{-\frac{1}{2} \mathsf{Var}[\hat{\theta}_0^{\dagger}(t) - \hat{\theta}(0)]}$$



$${\bf System \ state} \quad \hat{\rho} = \sum_{\lambda} \Pi_{\lambda} |\psi_{\lambda}\rangle \langle \psi_{\lambda}| \quad {\bf with} \quad \hat{H} |\psi_{\lambda}\rangle = E_{\lambda} |\psi_{\lambda}\rangle$$

In a single manybody eigenstate ψ_{λ} , at long times \hat{n}_{k} decorrelate

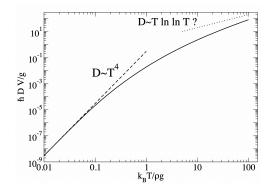
Quantum ergodicity holds (ETH) $\langle \psi_{\lambda} | \hat{\mu} | \psi_{\lambda} \rangle = \mu_{\rm mc}(E_{\lambda}, N_{\lambda})$

- Phase factor: $\langle \hat{\theta}_0^{\dagger}(t) \hat{\theta}(0) \rangle = \mu_{mc}(E_{\lambda}, N_{\lambda})$ (source of ballistic spreading if N or E fluctuate).
- Phase diffusion in the microcanonical ensemble

Phase Diffusion : D universal function of $k_BT/(\rho g)$

From kinetic equations for the \hat{n}_k , for $T \ll T_c$, $\sqrt{\rho a^3} \ll 1$

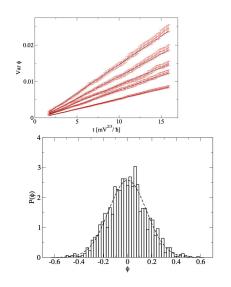
$$\frac{\hbar DV}{g} = G(k_B T/\rho g) \sim 0.36 \left(\frac{k_B T}{\rho g}\right)^4$$



A. Sinatra, Y. Castin, E. Witkowska PRA (2009)

Test against Classical field simulations

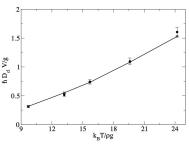
Classical field simulations in the microcanonical ensemble



Diffusion coefficient

Squares with error bars: from numerics

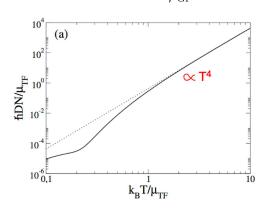
Crosses linked by segments : from the classical field version of kinetic equations



Phase Diffusion coefficient in a trap

Thermodynamic limit in the (unisotropic) harmonic trap

$$N o \infty$$
 with μ_{GP} and T fixed $\to \omega_{\alpha} \propto 1/N^{1/3}$



Y. Castin, A. Sinatra, C. R. Physique (2018)

Different scaling with T from the homogeneous case

Conclusions

Partition noise + interactions

- \rightarrow squeezing at short times
- → phase spreading at long times
- Distributed squeezing can be used for imaging and compressed sensing
- First joint multi-parameter estimation with quantum gain
- Equation for the phase operator derivative (multimode description)
- Limit to spin squeezing and to the BEC coherence time for a large system at $T \neq 0$

