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Bose-Einstein condensate

Bosons T < Tc : macroscopic population of a single particle state

box potentials now
available in experiments !

⇒ Macroscopic coherence properties : spatial and temporal
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BEC : Energy scales

Typical numbers for a BEC

Size: ∆x = 50µm

Number of atoms: N = 106

Temperature T = 100 nK

(λth =
√

2π~2

mkBT
)

Density ρ = 1019 at/m3

(ρλ3
th > 1)

Lifetime τ = 100 s

Figure from Burnett et al.,

Nature (2002)
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First evidence of phase coherence

Interference of two BEC, MIT 1997

Set-up :

Result :
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BEC Spatial Coherence : g1 correlation function

Spatial coherence of a single Bose-condensed gas

g1(r) = 〈ψ̂†(r)ψ̂(0)〉〉 r→∞∼ φ∗0(r)φ0(0)〈â†0â0〉; ψ̂(r) =
∑
α

φα(r)âα

Spatial coherence

T < Tc

T > Tc

(for different N)

Figure from Bloch, Hänsch, Esslinger, Nature (2000)
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BEC Time Coherence

Two BEC with a well-defined
relative phase at time t = 0

Interferometric measurement of the
relative phase at time t

Temporal coherence

For how long do the condensates
remember their (relative) phase ?

Figure from Tarik Berrada et al.
Nat. Comm. (2013)
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Fluctuations of N : T = 0 effect already measured

Case of a pure condensate, T = 0, simplest one mode model :

H =
g

2

N2

V
and µ =

gN

V

condensate phase derivative :

[N, θ] = i θ̇ =
1

i~
[θ,H] = − gN

~V
= −µ(N)

~
.

N is a conserved quantity.

If N fluctuates around N̄ ⇒ ballistic spreading of the phase

Var [θ(t)− θ(0)] =
t2

~2

(
dµ(N̄)

dN

)2

VarN

Sols (1994); Walls; You, Lewenstein (1996); Castin, Dalibard (1997)

Seen in experiments on 〈a†0(t)b0(t)〉 (two-component condensates, equal

time) rather than 〈a†0(t)a0(0)〉 (one component different times).
T. Berrada, Nat. Comm. (2013)
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Fluctuations of E : T 6= 0 effect not yet measured

Here we fix N. On the other hand T 6= 0, many modes.

condensate phase derivative under ergodic assumption :

θ̇ =
1

i~
[θ,H] = −µ(E )

~

µ(E )=microcanonical chemical potential of the gas.

If the system is isolated during evolution, E is a conserved quantity.

If E fluctuates around Ē (canonical ensemble) ⇒ ballistic
spreading of the phase

Var [θ(t)− θ(0)] ∼ t2

~2

(
dµ(Ē )

dE

)2

VarE

⇒ The spreading effect will be given by thermal fluctuations of µ
at fixed N.
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Temporal coherence of a BEC

A fundamental property of BEC, useful for applications

Macroscopic population of a single
particle state → macroscopic
coherence

Well-defined relative phase at time
t = 0 : How long do the BECs
remember their (relative) phase ?

Spatial coherence of a single condensed gas

g1(r) = 〈ψ̂†(r)ψ̂(0)〉〉 r→∞∼ φ∗0(r)φ0(0)〈â†0â0〉;

Temporal coherence of a single condensed gas

g1(t, 0) = 〈ψ̂†(r, t)ψ̂(r, 0)〉 t→∞∼ |φ0(r)|2〈â†0(t)â0(0)〉

System in equilibrium, isolated, homogeneous, condensed



Plan The BEC and its coherence The phase θ̂0 Bosonic case dθ̂0/dt Role of conserved quantities Microscopic description Bosons harmonic trap Conclusions

BEC versus thermal gas

We all know atoms are useful oscillators

Example : atomic clocks

What about the BEC ?

Absence of inhomogenous
broadening

BEC as a localized probe

Use manybody physics : Mott
to suppress the collisional shift

Engineer correlations for
“quantum metrology”

D. Kajtoch, E. Witkowka, A. Sinatra

EPL (2018)
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The condensate phase operator θ̂0

We introduce the following representation for a bosonic mode φ

âφ = Âφ
√
n̂φ n̂φ = â†φâφ Âφ =

1√
n̂φ + 1

âφ (af (n) = f (n+1)a)

Âφ|n : φ〉 = |n − 1 : φ〉 for n > 0 and Âφ|0 : φ〉 = 0

Â†φ|n : φ〉 = |n + 1 : φ〉 for n ∈ N

Âφ is “almost unitary” : ÂφÂ
†
φ = 1 Â†φÂφ = 1− |0 : φ〉〈0 : φ|

For a macroscopically populated mode φ0 , we approximate

Âφ0 ' e i θ̂0 with θ̂0 an hermitian operator

Modulus-phase representation of condensate operator â0

â0 = e i θ̂0

√
N̂0 , [n̂0, θ̂0] = i
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Hamiltonian on a lattice (spinless bosons)

Ĥ = b3
∑

r

ψ̂†(r)

(
− ~2

2m
∆r

)
ψ̂(r) + g0b

3
∑

r

ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

Space discretisation step b, consequent cut-off in k ∈ D ≡ [−πb ,
π
b [3

Commutators [ψ̂(r), ψ̂†(r′)] =
δr,r′

b3
; Kinetic energy ∆r〈r|k〉 = −k2〈r|k〉

Contact Interaction potential V = g0
δr,0

b3
with g0 6= g =

4π~2a

m
g0 adjusted to obtain scattering length a on the lattice

1

g0
=

1

g
−
∫
D

d3k

(2π)3

m

~2k2

∫
D

d3k

(2π)3

m

~2k2
=

C

g

( a
b

)
ξ =

√
~2

mρg
Bogoliubov :

a

ξ
∝
√
ρa3 → 0 Lattice :

b

ξ

fixed
= η < 1 (Born)

Ground state energy expansion in powers of a/ξ at fixed η :

E0

N
=
ρg

2

(
1 + C (1)

η

a

ξ
+ . . .

)
Then η → 0 in the coeff (no divergence)
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Bogoliubov theory (homogeneous φ0 = 1/
√
V )

Splitting of the field operator

ψ̂(r) =
â0√
V

+ ψ̂⊥(r) N̂ = N̂0 +
∑

r

|ψ̂⊥(r)|2

Orthogonal number-conserving field Λ̂

Λ̂(r) = e−i θ̂0 ψ̂⊥(r) [Λ̂, θ̂0] = [Λ̂†, θ̂0] = 0, [N̂, θ̂] = i

Elimination of the condensate variables from the Hamiltonian

H(ψ̂, ψ̂†)→ H(N̂, Λ̂, Λ̂†) N̂0 = N̂ −
∑

r

|Λ̂(r)|2

The Bogoliubov Hamiltonian is quadratic in Λ̂ and Λ̂†

HBog(N̂) =
g0N̂

2

2V
+
∑

r

b3

[
Λ̂†

(
h0 +

g0N̂

V

)
Λ̂ +

g0N̂

2V

(
Λ̂2 + Λ̂† 2

)]
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Explicit calculation : coarse-grain time average dθ̂0

dt

t

Heisenberg picture : i~dθ̂0

dt = −i ∂HBog(N̂,Λ̂,Λ̂†)
∂N |Λ,Λ†

dθ̂0

dt
= −1

~

{
g0N̂

V
+

g0

V

∑
r

b3

[
Λ̂†Λ̂ +

1

2

(
Λ̂2 + Λ̂† 2

)]}

Expansion over eigenmodes of linear equations of motion for Λ,Λ†(
Λ̂(r)

Λ̂†(r)

)
=
∑
k6=0

e ik·r

V 1/2

[(
Uk

Vk

)
b̂k +

(
Vk

Uk

)
b̂†−k

]

Coarse-grain time average of dθ̂0/dt

−~dθ̂0

dt

t

= µ0(N̂) +
∑
k6=0

∂εk
∂N

n̂k

with µ0(N̂) = dE0(N)
dN and E0(N) = g0N

2

2V −
∑

k6=0 εkV
2
k

Uk ± Vk =
(

Ek

εk

)±1/2

; εk =
√
Ek(Ek + 2ρg0) ; Ek = ~2k2

2m ; ρ = N
V
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Physical interpretation of dθ̂0

dt

t

: contribution of
thermal excitations

Canonical ensemble

σ̂can =
e−βĤBog

Z
with ĤBog = E0(N)+

∑
k6=0

εk n̂k n̄k =
1

eβεk − 1

Free energy of ideal bose gas (Bogoliubov quasi particles)

F = E0(N) + kBT
∑

k

ln(1− eβεk )

µcan =

(
dF

dN

)
V ,T

= µ0(N̂) +
∑
k6=0

∂εk
∂N

n̄k = −~

〈
dθ̂0

dt

t〉
can

phase derivative ↔ “chemical potential operator”

d θ̂0

dt

t

= − µ̂
~
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Time coherence and condensate phase

Time correlation of condensate amplitude 〈a†0(t)a0(0)〉 :

thermally popolated
modes = noisy
environnement

→
decay of the
correlation function,
spreading of the
condensate phase

Equivalently, we can consider the variance of the condensate
phase difference Var [θ(t)− θ(0)] as a function of time t.

Modulus-phase representation : a0 = e iθ
√
N0 , [N0, θ] = i

For a Gaussian probability distribution of θ(t)− θ(0) and weak
fluctuations of N0

|〈a†0(t)a0(0)〉| ' 〈N0〉 exp

{
−1

2
Var [θ(t)− θ(0)]

}
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Intrinsic sources of the condensate phase spreading

First source : shot to shot fluctuations of conserved quantities, as
N (total number), or E (total energy) in the canonical ensemble.

It gives rise to :

Ballistic spreading of the phase difference Var [θ(t)− θ(0)] ∼ At2

Gaussian decay of 〈a†0(t)a0(0)〉
Coherence time scaling as

√
N in a finite system.

Second source (even for fixed E and N) : fluctuations of
quasiparticle numbers that perturbing the the condensate phase.

It gives rise to :

Diffusive spreading of the phase difference Var [θ(t)− θ(0)] ∼ 2Dt

Exponential decay of 〈a†0(t)a0(0)〉
Coherence time scaling as N in a finite system.
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Condensate correlation function

The system state : ρ̂ =
∑
λ Πλ|ψλ〉〈ψλ| with Ĥ|ψλ〉 = Eλ|ψλ〉

Correlation function in a many-body eigenstate ψλ

gλ1 (t) ' N̄0〈e−i θ̂0(t)e i θ̂0(0)〉 = N̄0e
iEλt/~〈ψλ|e−i Ĥθt/~|ψλ〉

with Ĥθ = e−i θ̂0Ĥe−i θ̂0 where we used eξÂF (B̂)e−ξÂ = F (eξÂB̂e−ξÂ)

Then we write : Ĥθ = Ĥ + Ŵ and

Ŵ ≡ e−iθ̂0Ĥeiθ̂0 − Ĥ = −i[θ̂0, Ĥ]︸ ︷︷ ︸
O(N̂0)

−1

2
[θ̂0, [θ̂0, Ĥ]]︸ ︷︷ ︸
O(N̂−1)

+ . . .

Correlation function in a many-body eigenstate ψλ

gλ1 (t) ' N̄0e
iEλt/~〈ψλ|e−i(Ĥ+Ŵ )t/~|ψλ〉 Ŵ = ~

d θ̂0

dt
+ O(

1

N
)

For a large system, Ŵ � Ĥ = O(N̂)
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Link with the problem of a state weakly coupled to
a continuum (Resolvant and projectors method)

gλ1 (t) ∝ probability amplitude that the system, initially
prepared in state |ψλ〉, is still there at time t for the perturbed
evolution of Hamiltonian Ĥ + Ŵ

In the thermodynamic limit (quasi-continuous spectrum), the
perturbation has two effects:

energy shift: angular frequency (Eλ + 〈ψλ|Ŵ |ψλ〉+ O(N−1))/~

exponential decay with a rate (Fermi golden rule) :

γλ =
π

~
∑
µ6=λ

|〈ψµ|Ŵ |ψλ〉|2 δ(Eλ − Eµ)

Correlation function in a many-body eigenstate ψλ

gλ1 (t) ' N̄0 e
−it〈ψλ|Ŵ|ψλ〉/~ e−γλt Ŵ = ~

d θ̂0

dt
+ O(

1

N
)
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Gaussian decay of gλ1 (t) (dominant contribution)

Coarse grain phase derivative : for ~/εthk � t � γ−1
coll

Generalization - to the quantum case and T 6= 0 - of the second
Josephson equation

−~d θ̂
dt

= µ0(N̂) +
∑
k

dεk
dN

n̂k ≡ µ̂

Indeed µ̂ is the adiabatic derivative of the HBog with respect to N

HBog = E0(N̂) +
∑
k

εk n̂k

〈ψλ|Ŵ |ψλ〉 '
ETH
−µmc(Eλ,Nλ)

we now have to average gλ1 (t) ' N̄0 e
−it〈ψλ|Ŵ |ψλ〉/~ over |ψλ〉
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Coherence time for ballistic spreading

Linearizing µmc(Eλ,Nλ) around (Ē , N̄),

The averaging gλ1 (t) ' N̄0 e
−iµmc(Eλ,Nλ)t/~ over |ψλ〉 gives :

Time correlation function

g1(t) ' N̄0e
iµmc(Ē ,N̄)t/~e−t2/2t2

br

Spreading of the condenstate phase

Var [θ̂(t)− θ̂(0)]
t→∞

= At2 + . . .

Characteristic time

Blurring time for ballistic spreading

1

2t2
br

= A = Var

(
N
∂µmc

∂N
(Ē , N̄) + E

∂µmc

∂E
(Ē , N̄)

)
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Physical origin of ergodicity

The system is described by weakly interacting quasi particles

H = E0 +
∑
k6=0

εkb
†
kbk + cubic terms + quartic terms

Interactions among Bogoliubov modes ensure ergodicity

Landau and Beliaev processes

The populations nk fluctuate → the condensate phase spreads

Phase derivative θ̇(t):

θ̇(t) ' −µΦ/~ +
∑
k6=0

(∂Nεk) nk
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Phase diffusion (subdominant)

On can rewrite

γλ =

∫ +∞

0

dt

Re

〈
dθ̂0(t)

dt

dθ̂0(0)

dt

〉
λ

−

〈
dθ̂0

dt

〉2

λ


thus this is the phase diffusion coefficient :

γλ =
ETH

D(Eλ,Nλ) ' D(Ē , N̄)

Main result after ensemble average

g1(t) ' N̄0e
2iµmc(Ē ,N̄)t/~e−t2/2t2

bre−D(Ē,N̄)t

Var [θ̂(t)− θ̂(0)]
t→∞

= At2 + 2Dt

Phase diffusion occurs even in the absence of energy fluctuations

Equation for dθ̂0(t)
dt + kinetic equations describing the

quasi-particles collisions allow us to calculate γλ
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The system

Harmonically trapped Bosons with zero-range interactions.
a = s-wave scattering length

The gas is in equilibrium in the deeply condensed regime

State of the system (generalized ensemble) :

σ̂ =
∑
λ

Pλ|ψλ(Nλ,Eλ)〉〈ψλ(Nλ,Eλ)|

Var(E ) = O(Ē ) and Var(N) = O(N̄) in the thermodynamic limit.

Thermodynamic limit in the trap :

N →∞, with µGP and T fixed → ωα ∝ 1/N1/3

Considered regime : ~ωα � µGP , kBT

Collisionless regime for the quasi-particles (opposite to
hydrodynamic regime)

γcoll � ωα where γ−1
coll = collision time between thermal Bogolibov QP
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Ballistic phase spreading coefficient A

Var [θ̂(t)− θ̂(0)]
t→∞

= At2 + . . .

For a statistical mixture of canonical ensembles (same T ,
different N) with Poissonian fluctuations of N

A = APois︸ ︷︷ ︸ + Acan︸︷︷︸
AT=0(1 + O(fnc)) Acan(T) = O(fnc)

Unless fluctuations of N are reduced/suppressed, the T = 0
contribution to the ballistic coefficient dominates

For Poissonian fluctuations of N

APois = N̄

(
∂NµTF

~

)2
Acan(T )

APois
∼

kBT�µTF

3ζ(3)

4ζ(4)

(
T

T
(0)
c

)3
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Phase diffusion coefficient in a trap

Var [θ̂(t)− θ̂(0)]
t→∞

= At2 + 2Dt + . . .

Independent of the ensemble and of the trap frequencies
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Conclusions

We calculate the intrinsic coherence time of a condensate in thermal
equilibrium.

Coherence time ↔ phase dynamics, and d θ̂0/dt ∝ “chemical
potential operator” including pair-breaking and pair-motion
excitations.

As θ̂0(t) ' −µmc(E )t/~, energy fluctuations from one realization to
the other → Gaussian decay of the coherence tbr ∝ N1/2.

In the absence of energy fluctuations, the coherence time scales as
N due to the diffusive motion of θ̂0.

Var [θ̂(t)− θ̂(0)]
t→∞

= At2 + 2D(t − t0) + o(1)

Calculated A, D and t0 in a harmonic trap, for ωα � µTF, kBT ,
collisionless regime γcoll � ωα and ergodic motion of quasiparticles
(anisotropic trap)

If properly rescaled, A ∝ 1/N, D ∝ 1/N and t0 are universal
functions of kBT/µTF
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