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Bose-Einstein condensate
Bosons T < T, :

macroscopic population of a single particle state J
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box potentials now
= Macroscopic coherence properties :

available in experiments !
spatial and temporal
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BEC : Energy scales
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Role of conserved quantities Microscopic description Bosons harmonic trap

Typical numbers for a BEC
Size: Ax =50 um
Number of atoms: N = 10°

Temperature T = 100 nK

2
(Aen = ;Z:T)

Density p = 10° at/m?3
(PA%h > 1)

Lifetime 7 =100 s

Figure from Burnett et al.,
Nature (2002)
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First evidence of phase coherence

Interference of two BEC, MIT 1997

Set-up :

Result :
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BEC Spatial Coherence : g; correlation function

Spatial coherence of a single Bose-condensed gas

gi(r) = (BT(r)d(0)) "X 95(r)do(0)(3hd0);  P(r) =D dal(r)aa

Spatial coherence J

T < T,

Visibility

o7 =250nK
e7T=310nK A
OT=450nK +
0T =290 nK

T>T.

0 100 200 300 400 500 600 700 .
(for different N)
Az (nm)

Figure from Bloch, Hansch, Esslinger, Nature (2000)
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BEC Time Coherence

Two BEC with a well-defined Interferometric measurement of the
relative phase at time t =0 relative phase at time t
t t
Dol Dels
N N
b 3.0 T T T T
Temporal coherence ) . .
2.5 B
6 L]
g L] L)
% 20_ - - _._._._._ - _._._ -
e
For how long do the condensates & 15 + .
remember their (relative) phase ? .
8 10} _
g (]
0.5F b
Figure from Tarik Berrada et al. 0ol . .

Nat. Comm. (2013) To 20 20 %0 80

Phase accumulation time i (ms)
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Fluctuations of N : T =0 effect already measured

Case of a pure condensate, T = 0, simplest one mode model :

g N2 _gN
H= >V and m==,
condensate phase derivative :
. 1 gN w(N)
N, 0] = 0=—[0,H=->=—-—"
[ ) ] / Ih[ ) ] h\/ h

N is a conserved quantity.

If N fluctuates around N = ballistic spreading of the phase

Nz dN

Sols (1994); Walls; You, Lewenstein (1996); Castin, Dalibard (1997)

Seen in experiments on (af(t)bo(t)) (two-component condensates, equal

time) rather than (a}(t)ao(0)) (one component different times).

T. Berrada, Nat. Comm. (2013)

Var [0(t) — 6(0)] = L ( d“(N)) VarN
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Fluctuations of £ : T # 0 effect not yet measured

Here we fix N. On the other hand T # 0, many modes.
condensate phase derivative under ergodic assumption :
;1 H(E)
0=—[0,H =—-—"—"—=

10, H] W

p(E)=microcanonical chemical potential of the gas.

If the system is isolated during evolution, E is a conserved quantity.

If E fluctuates around E (canonical ensemble) = ballistic
spreading of the phase

2 2
Var [4(t) — 6(0)] ~ % <‘“‘d(§)) VarE

= The spreading effect will be given by thermal fluctuations of p
at fixed N.
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Temporal coherence of a BEC

A fundamental property of BEC, useful for applications

Macroscopic population of a single Well-defined relative phase at time

particle state — macroscopic t =0 : How long do the BECs

coherence remember their (relative) phase ?
SRS

@ W

Spatial coherence of a single condensed gas

g1(r) = (P1(r)i(0))) "~ ¢5(r)do(0)(ag20);

Temporal coherence of a single condensed gas

g1(£,0) = (D (r, ) (r,0)) "X |go(r) [ (ag(t)0(0))

System in equilibrium, isolated, homogeneous, condensed
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BEC versus thermal gas

We all know atoms are useful oscillators

Y

hog, Example : atomic clocks

¥

What about the BEC ?

@ Absence of inhomogenous
broadening

e BEC as a localized probe thermal ensemble condensate in two internal states

@ Use manybody physics : Mott
to suppress the collisional shift

e Engineer correlations for D. Kajtoch, E. Witkowka, A. Sinatra
“quantum metrology” EPL (2018)
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The condensate phase operator 0o

We introduce the following representation for a bosonic mode ¢

N 5 1
35 = Ag\/hy Py =2L3,  Ay=——=3 (af (n) = f(n+1)a)

a
Ve
Agln:¢)=|n—1:¢) for n>0 and Ay0:¢)=0
Alln:¢)=In+1:¢) for neN
A, is “almost unitary” : /2\¢A1; =1 2\;2\¢, =1—-10:¢)(0: ¢|

For a macroscopically populated mode ¢, , we approximate
Ag, =~ €% with 0y an hermitian operator

MODULUS-PHASE REPRESENTATION OF CONDENSATE OPERATOR 3
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Hamiltonian on a lattice (spinless bosons)

NI (—A ) B0 + &b S () ()R

Space discretisation step b, consequent cut-off in k € D = [, 3[3

N Orer -
Commutators [{(r),(r')] = % . Kinetic energy A, (r|k) = —k*(r|k)
S . 4mh?
Contact Interaction potential V =g b730 with gy #g= ﬂm 2
go adjusted to obtain scattering length a on the lattice
1.1 /d3km /d3km_C<a>
g & Jp(2n)® B2k p (2m)3 2k? g \b

K2 a p fixed
¢ = /—— Bogoliubov : — x /pa® — 0 Lattice: — =7<1 (Born
mpg £ £ (Born)
Ground state energy expansion in powers of a/¢ at fixed 7 :

E
fo_re (1 + Cr(zl)g +.. ) Then 1 — 0 in the coeff (no divergence)

N 2
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Bogoliubov theory (homogeneous ¢y = 1/v/V)

Splitting of the field operator
b(r)=—"T=+du(r)  N=Ro+> [di(r)P
r

Orthogonal number-conserving field A
A(r) = e ) (r) A o] = AT, 0] =0,  [N,0] =i
Elimination of the condensate variables from the Hamiltonian

H(, o) — H(N,A,AT) No =N~ IA(N?

The Bogoliubov Hamiltonian is quadratic in A and Af

. N gl gl ~
t 2 12
Hpog(N) = [/\ <h += )/\ o (/\ +A )]
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Explicit calculation : coarse-grain time average d9°
Heisenberg picture : ihd—‘90 = —i%"gg#b\ym

déo 1 goN 20 3
— ==+ = E b [ATA (/\2 /\Tz)
dt { + *3 +
Expansion over eigenmodes of linear equations of motion for A, Af

(hin) - g e () ()2

COARSE-GRAIN TIME AVERAGE OF df/dt

dé, o Oey .
—h—(’ = uo(N) + 3" =5 A

with uo() = 8N and  Ey(N) = B — 50, g e V2

+1/2
Ukivk:(%) v ek =/ Ex(Ex +2pgo) ; Ek:h;::; p:%
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Physical interpretation of d9° : contribution of
thermal excitations

Canonical ensemble

—BHpo
N e € . r R _ 1
Ocan = ——=—— with HBog = EO(N)+ E € Nk ne =

Bex
Z "0 ePer — 1

Free energy of ideal bose gas (Bogoliubov quasi particles)

F = Eo(N +k5TZIn efe)

PHASE DERIVATIVE <> “CHEMICAL POTENTIAL OPERATOR”
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Time coherence and condensate phase

o Time correlation of condensate amplitude (ag(t)ao(O)) :

h " lated decay of the
thermally popolate correlation function,

= noi — _
moclies noisy spreading of the
environnement
condensate phase

o Equivalently, we can consider the variance of the condensate
phase difference Var [0(t) — 6(0)] as a function of time t.

Modulus-phase representation : ag = e\/Ny , [No, 0] =i

For a Gaussian probability distribution of 6(t) — 6(0) and weak
fluctuations of Ny

(301200} = (M) exp { - 3var [o(0) ~ 0(0)]
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Intrinsic sources of the condensate phase spreading

First source : shot to shot fluctuations of conserved quantities, as
N (total number), or E (total energy) in the canonical ensemble.

It gives rise to :
o Ballistic spreading of the phase difference Var [0(t) — 6(0)] ~ At?
o Gaussian decay of (a](t)ap(0))

o Coherence time scaling as v N in a finite system.

Second source (even for fixed £ and N) : fluctuations of
quasiparticle numbers that perturbing the the condensate phase.

It gives rise to :
o Diffusive spreading of the phase difference Var [0(t) — 0(0)] ~ 2Dt
o Exponential decay of (a(t)ao(0))
@ Coherence time scaling as N in a finite system.
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Condensate correlation function

The system state : =3, M[¢)(¥a| with  HJ) = Ex[vn)
Correlation function in a many-body eigenstate ),
gf‘(t) ~ N0<e—i90(t)ei90(0)> — NoeiEkt/h<,¢)\|e—ngt/h‘w>\>

with Fy = e~ e~ where we used efAF(B)e¢A = F(efABe—¢A)
Then we write : I:I@ = H+ W and

~ P ~ A A 1 A~ A A

W = e_IQOHelao — H= _i[607 H]—7[907 [907 H]] + ...

—— 2

| —

O(NO) O(N—l)

CORRELATION FUNCTION IN A MANY-BODY EIGENSTATE P

8(8) = Roe™/ e M/ W = h0 4 o( 1)

For a large system, W < H = O(N)
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Link with the problem of a state weakly coupled to
a continuum (Resolvant and projectors method)

e gi(t) x probability amplitude that the system, initially
prepared in state [¢)), is still there at time ¢t for the perturbed
evolution of Hamiltonian H + W

@ In the thermodynamic limit (quasi-continuous spectrum), the
perturbation has two effects:

o energy shift: angular frequency (Ex + (¥x|W/|)) + O(N~1))/h

o exponential decay with a rate (Fermi golden rule) :

=2 0 Wl W) 6(Ex — E,)

HFEX

CORRELATION FUNCTION IN A MANY-BODY EIGENSTATE (N

g)(8) = Fye—taiv/ng-ne = 9% 4 L)
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Gaussian decay of g{\(t) (dominant contribution)

COARSE GRAIN PHASE DERIVATIVE : FOR hi/ell < t < v}

Generalization - to the quantum case and T # 0 - of the second
Josephson equation

dé o dey
—h— = po(N — = [
g = Ho(N) + i = b

Indeed /i is the adiabatic derivative of the Hp,, with respect to N

Hpog = Eo(N) + Z €k hix
K

(AIWD) = —time(Ex, Na)

o we now have to average gi(t) ~ Noe it¥AIWIvx)/h gyer 1))
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Coherence time for ballistic spreading
o Linearizing fiy.(Ex, Ny) around (E, N),
o The averaging gi\(t) =~ Ng e #me(Ex.N\)t/h gyer |4y ) gives :

TIME CORRELATION FUNCTION

g1(t) = Noeitme(E-N)t/ho—t /26,

SPREADING OF THE CONDENSTATE PHASE

Var [6(t) — 6(0)] "=° A2 + ...

e Characteristic time

BLURRING TIME FOR BALLISTIC SPREADING
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Physical origin of ergodicity

The system is described by weakly interacting quasi particles

H=E + Z Gkblbk + cubic terms + quartic terms

k40
Interactions among Bogoliubov modes ensure ergodicity
a k
S—— e
—_— s
) —F K q T~—a o

Landau and Beliaev processes

The populations ny fluctuate — the condensate phase spreads

PHASE DERIVATIVE 6(t):

9(1’) = —,U,q,/h aF Z (8N€k) Nk
k40
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Phase diffusion (subdominant)

e On can rewrite

a2
+oo d(g()( )deo( ) d90
= R — R —
B /0 de e< dt  dt dt
A A
o thus this is the phase diffusion coefficient :

N oy D(E\, Ny) ~ D(E, N)

MAIN RESULT AFTER ENSEMBLE AVERAGE

gi(t) ~ NOeZiumc(E,N)t/heftz/h%refD(l_E,N)t

Var [A(t) — 6(0)] "=° At? + 2Dt

Phase diffusion occurs even in the absence of energy fluctuations

Equation for %ﬁt) + kinetic equations describing the

quasi-particles collisions allow us to calculate v,
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The system
o Harmonically trapped Bosons with zero-range interactions.
a = s-wave scattering length

@ The gas is in equilibrium in the deeply condensed regime

o State of the system (generalized ensemble) :

&= Z Pxltx(Nax, Ex))(ox(Ny, Ex)|

A
Var(E) = O(E) and Var(N) = O(N) in the thermodynamic limit.
o Thermodynamic limit in the trap :
N — oo, with pgp and T fixed — w,oc1/NY3
Considered regime : hw, < ucp, kg T

o Collisionless regime for the quasi-particles (opposite to
hydrodynamic regime)

Yeoll € Wa Where ~_j = collision time between thermal Bogolibov QP
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Ballistic phase spreading coefficient A

Var [A(t) — 6(0)] "=° At% + ...

o For a statistical mixture of canonical ensembles (same T,
different N) with Poissonian fluctuations of N

A= APois + Acan
~—— —~—

AT:[](]- + 0(f110)) ACan(T) = O(fl’lC)

o Unless fluctuations of N are reduced/suppressed, the T =0
contribution to the ballistic coefficient dominates

FORrR POISSONIAN FLUCTUATIONS OF NN

v (Qupre )’ AanlT) 30B) ( T\’
h Apbois ks T>>pre 4((4) T‘SO)
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Phase diffusion coefficient in a trap

Var [d(t) — 6(0)] "= At? + 2Dt + ...

; (2)

1
kg T/,

_5§ L
1097 10

Independent of the ensemble and of the trap frequencies
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Conclusions

We calculate the intrinsic coherence time of a condensate in thermal
equilibrium.

Coherence time < phase dynamics, and déo/dt x “chemical
potential operator” including pair-breaking and pair-motion
excitations.

As 0o(t) ~ —pimc(E)t/h, energy fluctuations from one realization to
the other — Gaussian decay of the coherence t,, oc N/2.

In the absence of energy fluctuations, the coherence time scales as
N due to the diffusive motion of 6.

Var [0(t) — 6(0)] “=° At? +2D(t — t5) + o(1)
Calculated A, D and tp in a harmonic trap, for w, < purr, kg T,

collisionless regime .01 < w, and ergodic motion of quasiparticles
(anisotropic trap)

If properly rescaled, Ao 1/N, D < 1/N and t, are universal
functions of kg T /e
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