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Universal low-T limit for a superfluid

A superfluid with short-range interactions (with a gapless,
phononic excitation branch) in three dimensions

⇓ At low temperature ⇓

weakly interacting gas of phonons

Irrespectively of :

Statistics : bosons or paired fermions

Interaction strength : gas or liquid

Phonon damping ↔ phonon-phonon interactions

Transport properties

Intrinsic coherence time of the condensate
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The two physical systems we have in mind

Liquid Helium 4 spinless bosons → Bose-Einstein condensation
→ superfuidity (ρ ∼ 1030 atoms/m3, Tc ∼ 2K)

Ultracold atomic gases unpolarized spin-1/2 fermions →
condensation of bound ↑ − ↓ pairs → superfuidity
(ρ ∼ 1019 atoms/m3, Tc ∼ µK)

Sound propagation in a
flat-bottom potential
M. Zwierlein, Science
370, (2020)
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Effective low energy theory: quantum
hydrodynamics, Landau-Khalatnikov (1949)

Two canonically conjugated quantum fields:

local density ρ̂(r)

local phase φ̂(r) → local velocity v̂(r) = ~
m∇φ̂(r)

Coarse-grained (large scale) description of the fluid:

ρ−1/3 , ξ =
~
mc

� b � λth , q
−1
th

each grain is homogeneous, in local ground
state, with overall velocity v .

Ĥ =

∫
d3r

[
1

2
m v̂ · ρ̂ v̂ + e0(ρ̂)

]
e0(ρ) = ground state energy density at uniform density ρ
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Normal modes and expansion of the hamiltonian

Weak spatial fluctuations at low temperature

ρ̂(r , t) = ρ̂0 + δρ̂(r , t) and φ̂(r , t) = φ̂0 + δφ̂(r , t)

Fourier expansion and diagonalization of linearized equations

δρ̂q ∝
√
q (b̂q + b̂†−q) δφ̂q ∝

−i
√
q

(b̂q − b̂†−q) with [b̂q, b̂
†
q] = 1

An ensemble of weakly coupled harmonic oscillators

H2 =
∑
q 6=0

~ωqb
†
qbq

Phonon dispersion relation :

~ωq = ~cq with mc2 = ρ
dµ

dρ
and µ =

de0

dρ

Expansion of the hamiltonian

H = E0 + H2 + H3 + H4 + . . .
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Phonon-phonon interactions

Correction to phonon dispersion relation q 7→ ωq close to q = 0

~ωq =
q→0

~cq

[
1 +

γ

8

(
~q
mc

)2

+ . . .

]

γ > 0 : Beliaev and Landau 3-phonon processes dominant

γ < 0 : 3-phonon processes forbidden by energy conservation,
Landau-Khalatnikov 4-phonon processes are dominant
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Tuning γ in a strongly interacting Fermi gas

RPA calculation : H. Kurkjian, Y. Castin, A. Sinatra, PRA (2016)

~ωq =
q→0

~cq

[
1 +

γ

8

(
~q
mc

)2

+
η

16

(
~q
mc

)4

+ O

(
~q
mc

)6
]

N.B. γ can also be tuned in liquid 4He by changing the pressure



Plan Quantum hydro Ph-ph interactions L-K damping Observability Phase coherence Conclusions

Effective coupling for 2↔ 2 process (γ < 0)

H = E0+H2+H3+H4+. . .

〈f |Ĥeff |i〉 = 〈f |Ĥ4|i〉+
∑
λ

〈f |Ĥ3|λ〉〈λ|Ĥ3|i〉
Ei − Eλ

Six intermediate states |λ〉. Inclusion of γ 6= 0 to avoid divergences

Ĥeff =
mc2

ρL3

∑
q1,q2,q3,q4

q1+q2=q3+q4

Aeff(q1, q2; q3, q4) b̂†q3
b̂†q4

b̂q1 b̂q2

Aeff depends on the angles between the vectors, the energies (also
of the intermediate states) and the thermodynamic quantities :

ΣF ≡
ρ3

mc2

d3µ

dρ3
ΛF ≡

ρ

3

d2µ

dρ2

(
dµ

dρ

)−1
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Landau-Khalatnikov damping rate

The damping rate calculated with the Fermi Golden rule in the
so called collisionless regime ωq � Γth

d

dt
δnq = −Γqδnq

Γq ∝
∫

d3q2d
3q3|Aeff |2δ(ω3+ω4−ω2−ωq)[n̄2(1+n̄3)(1+n̄4)−(1+n̄2)n̄3n̄4]

We take the limit ε = kBT/mc2 → 0 at fixed q̃ = ~cq/kBT

Landau-Khalatnikov damping (γ < 0)

~Γq

mc2
∼

T→0

81(1 + ΛF)4

256π4|γ|

(
mc

~ρ1/3

)6(
kBT

mc2

)7

Γ̃(q̃)

Γ̃ (double integral) is a universal function of q̃ = ~cq/kBT with
simple asymptotic behaviors
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Landau-Khalatnikov damping rate
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argsh q
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(q
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q

2

asymptotic expansion to infinite order

Taylor expansion of Γ(q) to order q
5

Γ̄(q̄) = 4π
3q̄nq

∫ +∞
0

dq̄′ ∫ q̄+q̄′
0

dk̄ q̄′k̄ k̄′(1 + nq′ )nknk′ [min(q, q′, k, k′)]3 avec k + k′ = q + q′

Behavior of Γ̃ for small q̃

Γ̃(q̃) =
q̃→0

16π5

135
q̃3 + ... Γ̃(q̃) =

q̃→∞

16πζ(5)

3
q̃2 + ...

Landau-Khalatnikov only calculated small-q̃ and large-q̃ limits

They included a single diagram supposed to be dominant. We
disagree, our result begin sub-leading by two orders in q̃ in
both limits.
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Scaling with temperature of Landau-Khalatnikov
damping rate

Γq '
∫

d3q2 d3q3|A|2δ(ωq + ω2 − ω3 − ω4)

Wave vectors q = q̃ kBT
~c scale as T

Integral dominated by almost aligned wave vectors, θ = ε|γ|1/2θ̃
with ε = kBT

mc2 . Hence solid angle ∝ T 2

Energy denominators in A scale as q3 ∝ T 3

(ωq + ω2 − ω3 − ω4) vanishes for a linear spectrum (momentum
conservation) and it is ∝ q3 ∝ T 3 for a curved spectrum

Γ ∼

[
T3 × T2

solid angle

]2∣∣∣∣T3/2 × T3/2

T3

∣∣∣∣2 1

T3
= T 7

H. Kurkjian, Y. Castin, A. Sinatra, EPL (2016)

H. Kurkjian, Y. Castin, A. Sinatra, Annalen der Physik (2017).
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Can one observe Landau-Khalatnokov damping ?

Concave dispersion relation otherwise Landau-Beliaev damping
is dominant at low temperature

ΓLK
q ∼

T→0
∝ q3T 4 and ΓLB

q ∼
T→0
∝ qT 4

Negligible damping by gapped excitations (rotons in helium or
BCS pair-breaking excitation in Fermi gases)

elastic inelastic

We calculated the damping by gapped excitations

Γrot
q ∼ Bq4T 1/2e−∆/kBT

Our expression of B disagrees with Landau-Khalatnikov and
with Nicolis-Penco PRB (2018).
Y. Castin, A. Sinatra, H. Kurkjian PRL (2017)+erratum
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Landau-Khalatnikov damping in liquid 4He

Phonons ωq = 2π × 165 GHz (q = 0.3Å
−1

) ; P = 20 bar (γ = −6.9)

Solid : Landau-Khalatnikov 4-phonon damping.
Dashed : elastic ph-roton processes (Red - original Landau-Khalatnikov)
Dash-dotted : inelastic ph-roton processes

∆/kB = 7.44K, k0 = 2.05Å
−1

, c = 346.6 m/s The very low values of
~q
mc = 0.13 and of kBT

mc2 < 10−2 justify the use of quantum hydrodynamics
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Landau-Khalatnikov damping in a strongly
interacting Fermi gas (BCS side)

Phonons q = mc/2~ in a Fermi gas on the BCS side 1/kFa
−1 = −0.389,

γ ' −0.30 < 0. Parameters of the phonons and the fermionic
quasiparticles have been estimated from BCS theory µ/εF ' 0.809

Solid : Landau-Khalatnikov 4-phonon damping.
Dashed : elastic ph-BCS processes
Dash-dotted : inelastic ph-BCS processes
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Implications for the condensate coherence time

Small system isolated from the environnement (ultracold fermionic
atoms, microcanonical ensemble)

Finite coherence time due to condensate phase spreading

〈â†0(t)â0(0)〉 ∝ 〈e−i [θ̂(t)−θ̂(0)]〉

Quantum version of 2nd Josephson equation with q-hydro

θ̂ = 2φ̂0 ; −~
2

d θ̂

dt
= µ0(N̂) +

∑
q 6=0

d~ωq

dN
b̂†q b̂q ≡ µ̂

Phonon collisions decorrelate the occupation numbers

Convex (γ > 0) → Var[θ̂(t)− θ̂(0)] ∝ T 4t
N

diffusive

A. Sinatra, Y. Castin, E. Witkowska PRA (2009)

Concave (γ < 0) → Var[θ̂(t)− θ̂(0)] ∝ T 20/3t5/3

N
super-diffusive

Y. Castin CRP (2019)
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Conclusions

We calculated the purely phononic damping rate in a
superfluid with concave dispersion relation (2↔ 2 processes).

In the limit ε = kBT/mc2 → 0 at fixed q̃ = ~cq/kBT we find

~Γ ∝ (kBT )7 Γ̃(q̃)

where Γ̃ is a universal function of q̃.

We correct the original Landau-Khalatnikov result in the
large-q̃ and small-q̃ limit.

e.g. small-q̃ limit : ~Γq ∝ q3T 4 (Landau : ~Γq ∝ qT 6)

We apply the theory to liquid helium and Fermi gases,
including competing processes (sub-leading in the T → 0 limit)
where the phonons interact with gapped excitations.

The phonon damping has implications for the condensate
coherence time.
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