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Coherence time of a Bose-Einstein condensate

At the thermodynamic limit, the Bose-Einstein condensation confers infinite temporal
coherence to the Bose gas at very low temperature. However, in a finite size system, even
isolated from the environment during its evolution, the interacting gas acquires a finite
coherence time that we will calculate.

We consider a diluted gas of non-relativistic bosons of mass m at thermal equilibrium,
in the very low temperature regime, with a well-formed Bose-Einstein condensate. The
gas, isolated and homogeneous in three dimensions, consists of N atoms in a V quantiza-
tion volume with periodic boundary conditions. The cold atoms interact by a short-range
potential characterized by the parameter a, the s-wave scattering length. We limit our-
selves to the case a > 0 and the weakly interacting regime (ρa3)1/2 � 1 with ρ = N/V
the mean density. To describe the interactions, we use the lattice model, introduced in
the course, with an interaction potential between two particles

V12 = g0
δr1,r2

b3
(1)

where b is the lattice constant and g0 is the “bare” coupling constant that is however close
to the true coupling constant g = 4π~2a

m in the regime considered here.

1 Phase operator and phase spreading in a one-mode model

1.1 Condensate phase operator

In the presence of a condensate, it is convenient to introduce a “module-phase” represen-
tation for the operator a0 which annihilates an atom in the condensate mode :

a0 = eiθ̂
√
n̂0 (2)

where θ̂ is an hermitien operator, n̂0 = a†0a0 and

[n̂0, θ̂] = i (3)

As we will show, this representation is justified if we neglect the possibility that the
condensate mode is empty.

1. (a) Justify that, in the Fock basis |n0〉 of the condensate mode, the operator n̂0 is
written

n̂0 =

∞∑
n0=0

n0 |n0〉〈n0| (4)

1



(b) We define the operator
√
n̂0 in the following way

√
n̂0 =

∞∑
n0=0

√
n0 |n0〉〈n0| (5)

verify that
√
n̂0 is hermitian.

2. Starting from the definition (2), where however we still do not know if θ̂ is hermitian,

calculate the action of the operators eiθ̂ and
(
eiθ̂
)†

on the Fock states |n0〉 with

n0 6= 0.

3. Show that in the Fock space where the state |n0 = 0〉 has been subtracted, one has

eiθ̂
(
eiθ̂
)†

= 1 and
(
eiθ̂
)†
eiθ̂ = 1, so that the operator eiθ̂ is unitary.

4. Justify the fact that, under the conditions specified at the beginning of the text,
provided that N � 1, one can neglect the possibility that the mode of the condensate
is empty, and thus introduce an hermitian operator θ̂ for the condensate phase.

5. Starting from the commutation rules (3), with
√
n̂0 and θ̂ hermitian :

- show that [n̂0, θ̂
p] = i p θ̂p−1

- show that [n̂0, F (θ̂)] = i F ′(θ̂)

- recover from (2) the expected commutation rules [a0, a
†
0] = 1.

6. Highlight the analogy between the operators −θ̂ and n̂0 and the operators x̂ and p̂,
position and momentum of a one-dimensional particle.

1.2 Ballistic spread of the phase in a one-mode model

In this section, we will study the phase dynamics of the condensate in a simple model
where all gas particles are in the condensate mode n̂0 = N̂ . The system Hamiltonian is

H1 mode =
gN̂2

2V
with [N̂ , θ̂] = i (6)

and we assume that the initial state of the system is a statistical mixture with small
fluctuations in the number of atoms around N = N̄ :

σ̂ =
∑
N

ΠN |N〉〈N | (7)

with N̂ |N〉 = N |N〉 and ΠN a narrow enough function of N−N̄ to have Var[N̂ ]� N̄ . We
recall that for any operator Â, one defines the variance Var[Â] and the standard deviation
∆A:

Var[Â] = 〈Â2〉 − 〈Â〉2 et ∆A =

√
Var[Â] =

(
〈Â2〉 − 〈Â〉2

)1/2
, (8)

where the average 〈·〉 is taken in the state represented by the density matrix σ̂.
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7. (a) What is the normalization condition on the density matrix σ̂?
Express it in terms of the populations ΠN .

(b) Draw qualitatively the shape of the coefficients ΠN as a function of N .

8. We will use throughout the problem the Heisenberg picture, in which each operator
Â(t) evolves in time according to the equation

i~
dÂ

dt
= [Â, Ĥ] . (9)

(a) Show that for this simple model, the operator N̂ is a constant of motion.
Does this mean that there are no fluctuations in the number of particles?

(b) Derive the equation of motion for the operator θ̂(t), and write the operator
dθ̂/dt explicitly in terms of the N̂ operator.

(c) Show that the operator d2θ̂/dt2 = 0.

9. We will introduce

µ0(N̂) ≡ −~dθ̂(t)
dt

(N̂) (10)

Express θ̂(t) − θ̂(0) as a function of µ0(N̂) and of t. It should be noted in passing
that in this simple one-mode model, µ0(N) coincides with the chemical potential of
a N particle gas.

10. Show that the standard deviation ∆φ = ∆[θ̂(t) − θ̂(0)] of the operator θ̂(t) − θ̂(0)
satisfies:

∆φ = ∆[θ̂(t)− θ̂(0)] =
1

~
g

V
∆N t , (11)

where the standard deviation ∆N reflects the uncertainty about the number of
particles in the statistical mixture described by σ.

11. Give a simple physical interpretation of this phase spreading due to the fluctuations
of N̂ . One can draw inspiration from the last question of section 1.1. Why do we
talk about the “ballistic spreading” of the condensate phase?

12. In Schmiedmayer’s group in Vienna they measured the variation of µ0(N) with the
number of atoms around N = N̄ in a gas at very low temperature. The results are
shown in figure 1, left panel, where

∆µ = µ0(N̄(1− z))− µ0(N̄(1 + z))) (12)

Deduce the value of 1
~
dµ0

dN |(N=N̄) × N̄ for a condensate with N̄ atomes.

13. In the figure 1, right panel, we show the spread of the condensate phase as a function
of time due to the fluctuations of N in the initial mixture

∆φ =
{

Var[θ̂(t)− θ̂(0)]
}1/2

(13)

The black curve corresponds to Poisson fluctuations with Var[N̂ ] = N̄ and the
red curve to sub-poissonian fluctuations with Var[N̂ ] ' N̄/ 2. What is your best
estimation for the number of atoms in this experiment?
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Figure 1: From Tarik Berrada et al. Nat. Comm. (2013).

2 Time correlation function and link with the PGP

In the previous section, with a one-mode model, we saw that in the presence of fluctuations
in the number of particles (quantity preserved by the Hamiltonian evolution), the phase
of the condensate spreads, with a variance Var[θ̂(t)− θ̂(0)] that grows in time.

In the following we will consider an initial state with fixed number of particles equal
to N , and we will focus on non-zero temperature multimode effects. We will see that
if the system is prepared in the canonical ensemble, the condensate phase spreading is
still ballistic, due to the fluctuations of the total energy of the gas E (another conserved
quantity). If, on the other hand, the system is prepared in the micro canonical ensemble
with fixed N and E, the phase spreading becomes diffusive.

Instead of directly looking at Var[θ̂(t)− θ̂(0)] as in the previous section, we will study
the time correlation function g1(t). The two expressions are related by the following
relation, valid for a Gaussian distribution of θ̂(t)− θ̂(0) :

g1(t) ' 〈n̂0〉〈e−iθ̂(t)eiθ̂(0)〉 ' 〈n̂0〉〈e−i[θ̂(t)−θ̂(0)]〉 = 〈n̂0〉e−
1
2
Var[θ̂(t)−θ̂(0)] (14)

the demonstration of which we do not ask.

2.1 Time correlation function

At long times, the temporal coherence of the Bose gas is dominated by the contribution
of the condensate. It is then described by the condensate time correlation function

g1(t) = 〈a†0(t)a0(0)〉 (15)

where all the operators are in the Heisenberg picture.

14. Let Û be a unitary operator and F a function that can be expanded in series. Prove
the identity :

ÛF (B̂)Û † = F (Û B̂Û †) (16)
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15. In the following, we will neglect the contribution of fluctuations of n0 which are low
in relative value. Show that by replacing n̂0(t) by 〈n̂0〉 in (15) one obtains :

g1(t) ' 〈n̂0〉〈e−iθ̂(t)eiθ̂(0)〉 (17)

with θ̂(t) = e
i
~ Ĥtθ̂e−

i
~ Ĥt and θ̂(0) = θ̂.

16. By using twice the relation (16), show that we can rewrite the correlation function
(17) in the form

g1(t) ' 〈n̂0〉〈e
i
~ Ĥte−

i
~ Ĥθt〉 (18)

where Ĥ is the system hamiltonian and where we introduced

Ĥθ ≡ e−iθ̂Ĥeiθ̂ (19)

2.2 Link with the PGP

In the most general case, which includes both the canonical and the micro canonical
ensemble, it is assumed that the system is prepared in a statistical mixture of eigenstates
of the Hamiltonian Ĥ for N -particles, described by the N -body density operator :

σ̂ =
∑
λ

Πλ|ψλ〉〈ψλ| (20)

where Ĥ|ψλ〉 = Eλ|ψλ〉 and Eλ is the total energy of the gas in the state |ψλ〉. It is
therefore necessary first to calculate the correlation function in a state |ψλ〉.

17. Show that according to equation (18), one has

gλ1 (t) ≡ 〈ψλ|a†0(t)a0(0)|ψλ〉 ' 〈n̂0〉e
i
~Eλt〈ψλ|e−

i
~ Ĥθt|ψλ〉 (21)

One then writes Ĥθ as a sum of the gas hamiltonian Ĥ plus a difference Ŵ that we will
see being N times smaller than Ĥ at the limit of a large system

Ĥθ = Ĥ + (Ĥθ − Ĥ) ≡ Ĥ + Ŵ (22)

We then recognize in (21) the probability amplitude for the system to remain in the state
|ψλ〉, eigenstate of Ĥ, after evolution with the “perturbed Hamiltonian” Ĥθ.

18. We want to calculate gλ1 (t) in (21) using the resolvent formalism and the projec-
tors method. Of course we are speaking here about Gθ(z) : the resolvent of the
Hamiltonian Ĥθ. What is the correct choice for the projector P ?

19. Recall the form of PGθ(z)P in terms of the effective Hamiltonian Ĥeff(z), and give
the form of Ĥeff(z) in terms of P , Q = 1− P , Ŵ and Ĥθ.

20. Write PGθ(z)P to the lowest order (non-zero) in Ŵ
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21. Recall the link between the resolvent and the evolution operator, and show that at
this order

gλ1 (t) ' 〈n̂0〉e−
i
~Wλt (23)

with Wλ ≡ 〈ψλ|Ŵ |ψλ〉. One will use the Cauchy residue theorem, integrating in the
complex plane along a closed contour as indicated below

2.3 Identification of Ŵ

To obtain explicit results, we must give a physical meaning to the Ŵ operator. To this
aim, we will identify Ĥ with the Bogoliubov Hamiltonian HBog(N̂ , Λ̂, Λ̂†), see the equation

(27) below, which depends on the Λ̂ and Λ̂† operators 1 and on the total number of atoms
N̂ = n̂0 + N̂⊥ where N̂⊥ =

∑
r b

3Λ̂†(r)Λ̂(r) is the number of particles in orthogonal to
condensate modes.

22. We recall that [Λ̂(r), Λ̂†(r′)] =
δr,r′

b3
− 1

V . Show that the operators Λ̂ and Λ̂† conserve

the total number of particles : [N̂ , Λ̂(r′)] = 0. The two contributions [N̂⊥, Λ̂(r′)] and
[n̂0, Λ̂(r′)], where we recall that [n̂0, θ̂] = i, can be calculated separately.

23. Justify the commutation relations [Λ̂†, θ̂] = 0, [Λ̂, θ̂] = 0, [N̂⊥, θ̂] = 0.

24. As we saw it in class, the number of particles in the condensate mode n̂0 is finally
eliminated from the Bogoliubov theory, and n̂0 is replaced by N̂−N̂⊥. Starting from
[n̂0, θ̂] = i deduce that [N̂ , θ̂] = i.

25. Show that
Ĥθ = e−iθ̂Ĥ(N̂ , Λ̂, Λ̂†)eiθ̂ = Ĥ(N̂ − 1, Λ̂, Λ̂†) (24)

26. Write the Heisenberg equation for θ̂(t) and show that

i~
dθ̂(t)

dt
= −i∂Ĥ(N̂ , Λ̂, Λ̂†)

∂N
|Λ,Λ† (25)

27. Show that to the leading order in 1/N one can identify :

Ŵ = ~
dθ̂(t)

dt
(26)

1We recall that Λ̂(r) = e−θ̂ψ̂⊥(r), where ψ̂⊥(r) is the projection of the field operator on the orthogonal
modes to the condensate.
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3 Microscopic expression of the phase derivative

3.1 Derivative of the phase in the Bogoliubov theory

In this section we will calculate the time derivative of the condensate phase using the
Bogolubov Hamiltonian

HBog(N̂) =
g0N̂

2

2V
+
∑
r

b3

[
Λ̂†

(
h0 +

g0N̂

V

)
Λ̂ +

g0N̂

2V

(
Λ̂2 + Λ̂† 2

)]
(27)

where h0 is the kinetic energy, with eigenvalues ~2k2/2m over plane waves. We recall
the expansion of the fields Λ̂ and Λ̂† over the eigenmodes of the linearized equations of
motion : (

Λ̂(r)

Λ̂†(r)

)
=
∑
k6=0

eik·r

V 1/2

[(
Uk
Vk

)
b̂k +

(
Vk
Uk

)
b̂†−k

]
(28)

28. By using (25) and (27), explicitly write the derivative of the phase in terms of N̂ , Λ̂
and Λ̂†.

29. We remind the orthogonality relation for plane waves on the lattice :

b3
∑
r

ei(k−k
′)·r = V δk,k′ (29)

Calculate
∑

r b
3Λ̂†(r)Λ̂(r) and

∑
r b

3Λ̂2(r) and express the result a simple sum over
k.

30. Show that by neglecting the terms bkb−k and b†kb
†
−k (which are rapidly oscillating in

the Heisenberg picture), we obtain the simple result:

dθ̂

dt
= −µ0(N̂)

~
− g0

~V
∑
k 6=0

(Uk + Vk)
2n̂k (30)

with n̂k = b̂†kb̂k and where we introduced the zero temperature chemical potential

µ0(N̂) =
g0

V

N̂ +
∑
k 6=0

Vk(Uk + Vk)

 (31)

31. From the expressions of the Bogoliubov modes and the eigenenergy εk
2

Uk ± Vk =

(
Ek
εk

)±1/2

; εk =
√
Ek(Ek + 2ρg0) ; Ek =

~2k2

2m
; ρ =

N

V
(32)

show that one indeed has µ0(N) = dE0(N)/dN where E0(N) is the energy of the
ground state in the Bogoliubov approximation

E0(N) =
g0N

2

2V
−
∑
k 6=0

εkV
2
k (33)

2Careful: the notations used in the tutorials and in the lectures for εk and Ek are not the same. Here
we use the lectures notations.
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One can first show that εkV
2
k = 1

2(Ek+ρg0−εk) and that Vk(Uk+Vk) = 1
2

(
Ek
εk
− 1
)

.

32. Again starting from the expressions (32), show that one can rewrite the equation
(30) in the form

−~dθ̂
dt

= µ0(N̂) +
∑
k 6=0

∂εk
∂N

n̂k (34)

3.2 Physical interpretation

We want to show that the second term on the right-hand side of (34) represents the
contribution of thermally excited modes to the chemical potential. Let’s place ourselves
in the canonical ensemble with N atoms :

σ̂can =
e−βĤBog

Z
with ĤBog = E0(N) +

∑
k 6=0

εkn̂k (35)

The free energy of the system is given by the ground state energy of the gas E0 plus the
free energy of Bogoliubov quasi-particles :

F = E0(N) + kBT
∑
k

ln(1− e−βεk) (36)

33. At the order of Bogoliubov, the quasi-particles form an ideal gas of bosons. Recall
the expression of the average occupation numbers n̄k = 〈n̂k〉 of Bogoliubov quasi-
particles as a function of εk and of β = 1/(kBT ).

34. Express the gas chemical potential µcan =
(
dF
dN

)
V,T

and show that one finds the

average value in the canonical ensemble of the operator −~dθ̂dt given by the equation
(34).

35. We will from now identify the right-hand side of the equation (34) with a “chemical
potential operator”:

dθ̂

dt
= − µ̂

~
(37)

Make the connection (similarities and differences) between the equation (37) and the
second Josephson’s equation for a superconductor.

4 Ballistic phase spreading for a system prepared in the
canonical ensemble

A first mechanism that reduces the condensate coherence time, that is that causes a decay
of the correlation function g1(t), comes in when taking the average of the dominant term
of gλ1 (t), given by the equation (23), over the distribution (20).
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4.1 Fluctuations of energy in the canonical ensemble

We will now consider a system initially prepared in the canonical ensemble, with N atoms
and Var[N̂ ] = 0. We will calculate the coefficient A = Acan giving the ballistic spreading
of the condensate phase

Var[θ̂(t)− θ̂(0)] = Acant
2 (38)

in this case. To start, we use the “eigenstate thermalization hypothesis’”, which you will
not try to prove, which says that in a N -body system that is “quantum ergodic”, the
expectation value of an operator in an eigenstate ψλ of the Hamiltonian, is well approx-
imated by the micro canonical average at the energy Eλ of this operator. Applying this
result to the operator Ŵ , we have

Wλ ≡ 〈ψλ|Ŵ |ψλ〉 'Wmc(Eλ, Nλ) = −µmc(Eλ, Nλ) (39)

and hence, for Nλ = N ,

gλ1 (t) ' 〈n̂0〉e
i
~µmc(Eλ,N)t (40)

Since Eλ fluctuates over the distribution (20), a decay of g1(t) occurs. For Gaussian
fluctuations of energy, which is the case in the canonical ensemble for a large system, we
have

|gcan
1 (t)| = 〈n̂0〉e−

1
2
Acant2 (41)

with Acan =
(

1
~ ∂Eµmc(E,N)|E=Ē

)2
VarE.

36. The first step in calculating Acan is to reduce it to canonical quantities, instead of
micro canonical ones. Starting from the fact that, at the dominant order in 1/N , one
can identify the canonical chemical potential at the temperature T with the micro
canonical chemical potential at an energy Ecan ≡ 〈Ĥ〉can, corresponding to the mean
energy in the canonical ensemble :

µcan(T,N) ' µmc(Ecan(T,N), N) (42)

express ∂Eµmc as a function of ∂Tµcan and of ∂TEcan

37. By using the Bogoliubov Hamiltonian

HBog = E0 +
∑
k 6=0

εkn̂k (43)

show that one obtains

Acan =
( g0

~V

)2
(∑

k(Uk + Vk)
2εkn̄k(n̄k + 1)

)2∑
k ε

2
kn̄k(n̄k + 1)

(44)

where n̄k are the average occupation numbers of the Bogoliubov modes in the canon-
ical ensemble.
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5 Phase diffusion

If the system is prepared in the micro canonical ensemble, with Var[N̂ ] = 0 and Var[Ê] = 0,
the coefficient A of ballistic spreading of the phase is zero. To find the coherence time of
the condensate in this case, it is necessary to resume the calculation of the section 2.2,
and include the next order in Ŵ .

38. We will limit to second order in Ŵ . Show that in the limit of a continuum spectrum
and within the pole approximation, the effective hamiltonian Ĥeff(E + iη) takes the
form

Ĥpole
eff = PĤθP + ~∆λ −

i~
2

Γλ (45)

39. In this case show that

gλ1 (t) ' 〈n̂0〉e−
i
~Wλte−i∆λte−

Γλt

2 (46)

so that
|gλ1 (t)| ' 〈n̂0〉e−

Γλt

2 (47)

40. Give a physical interpretation to ∆λ and Γλ.

41. For a quasi continuum, give the expression Γλ in terms of a sum over the eigenstates
ψµ of Ĥ, with µ 6= λ, and recognize a Fermi golden rule.

42. Using the relation (14), deduce that the exponential damping of the correlation
function described by the equation (47) corresponds to a diffusive spreading of the
phase of the condensate, reminding of one-dimensional Brownian motion, with a
diffusion coefficient Dλ that is related to Γλ.

43. Show that the diffusion coefficient of the phase Dλ is simply linked to the correlation
function of dθ̂/dt :

Dλ = Re


∫ +∞

0
dτ

〈dθ̂(τ)

dt

dθ̂(0)

dt

〉
λ

−

〈
dθ̂

dt

〉2

λ

 (48)

To this aim, one will use the equation (26) and one will insert in the expression (48)
a closure relation over the eigenstates of the Hamiltonian Ĥ.
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