
Quantum field theory exam

M1 2010-2011

Friday January 28, 2011

The exam is made of an exercise and a problem. They are inde-
pendent. The different parts of the problem are related. However,
all the results needed to tackle a part are given explicitly in the text.
So don’t hesitate to start a new part in case you are stuck.

Questions marked with a [ are not used anywhere in the sequel.

At the end you’ll find a glossary of useful formulæ. Do not he-
sitate to read it once before you start the problem and refer to it
thereafter.
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Exercice : Projectors et normal ordered products.
Let F be the Fock space associated to a pair of operators â, â†

such that [â, â†] = 1. This space has an orthonormal basis {|n 〉;n =
0, 1, · · · } such that â|0 〉 = 0, â|n 〉 =

√
n|n − 1 〉 for n = 1, 2, · · · and

â†|n 〉 =
√
n+ 1|n+ 1 〉 for a = 0, 1, · · · .

Les a∗ and a be commuting variables. The normal ordering of a
function f of the variables a∗ and a with a series expansion

f =
∑

m,n=0,1,···

fm,n(a
∗)man

is defined to be
: f : ≡

∑
m,n=0,1,···

fm,n(â
†)mân.

I.1 : Form = 0, 1, · · · , give the expansion of : eλa∗a :|m 〉 on the states
|n 〉. .

I.2 : Conclude that : e−a∗a : = |0 〉〈0 |, the orthogonal projector on
the state |0 〉. .

We have the following generalization.
I.3 : Expanding the result of the first question around λ = −1, show
that : (a∗a)m

m! e−a
∗a : = |m 〉〈m |, the orthogonal projector on the state

|m 〉. .
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Problem :
A general result in quantum field theory is the so-called Kählen-

Lehmann representation theorem, which reads as follows.
– If φ̂ is a real scalar field in a minkovskian Poincaré inva-

riant quantum field theory with vacuum |Ω 〉 on space time 1 Rd,
its 2−point function decomposes as a positive linear combination
of the real scalar free field 2−point function. More accurately, there
exists a function ρ > 0 such that :

〈Ω |Tφ̂(x)φ̂(y)|Ω 〉 =
∫+∞

0
dµ2 ρ(µ2)∆F(x− y,µ2)

The function ρ, called the spectral function, depends on the
quantum field theory and the field Φ at hand.

We recall that ∆F(x,µ2) is the Feynman propagator in dimension
d,

∆F(x,µ2) ≡
∫
ddk

(2π)d
ieikx

k2 − µ2 + i0+
.

In this formula, kx and k2 stand for Minkovski space scalar pro-
ducts.

The Kählen-Lehmann representation theorem gives no explicit
information on the spectral function. The goal in this problem is
to compute it explicitly in a simple situation and use the result to
tackle a renormalization problem.

Part A : Preliminaries.

Let ϕ̂(x), x = (x0, · · · , xD) ∈ Rd be an operator acting on a Hilbert
space H containing a vector |Ω 〉, such that the following properties
hold : one can decompose ϕ̂(x) as ϕ̂(x) = ϕ̂+(x) + ϕ̂−(x) with

– ϕ̂−(x)|Ω 〉 = 0 and 〈Ω |ϕ̂+(x) = 0,
– [ϕ̂−(x), ϕ̂+(y)] is proportional to the identity operator Id (and

henceforth commutes with any operator acting on H).
Set φ̂(x) ≡ ϕ̂+(x)

2 + 2ϕ̂+(x)ϕ̂−(x) + ϕ̂−(x)
2.

A.1 : [ Recall briefly why the two properties above hold if ϕ̂(x) is a
real scalar free field (in the Heisenberg picture) on Rd with mass m

1. We consider in the problem a generic dimension d = D + 1. Apart from
this slight generalization, the definitions and notations that follows should be
familiar. For the record, D ' 3 in the real world.
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acting on the Fock space. What is the interpretation of φ̂(x) in that
case ? .

A.2 : Show that

[ϕ̂−(x), ϕ̂+(y)] = 〈Ω |ϕ̂−(x)ϕ̂+(y)|Ω 〉 Id

and
〈Ω |ϕ̂(x)ϕ̂(y)|Ω 〉 = 〈Ω |ϕ̂−(x)ϕ̂+(y)|Ω 〉

.

A.3 : Show that

〈Ω |φ̂(x)φ̂(y)|Ω 〉 = 〈Ω |ϕ̂−(x)
2ϕ̂+(y)

2|Ω 〉
.

A.4 : Use the commutation relation to derive that

〈Ω |φ̂(x)φ̂(y)|Ω 〉 = 2〈Ω |ϕ̂−(x)ϕ̂+(y)|Ω 〉2.
.

A.5 : Conclude from the previous questions that

〈Ω |Tφ̂(x)φ̂(y)|Ω 〉 = 2〈Ω |Tϕ̂(x)ϕ̂(y)|Ω 〉2.

Distinguish the cases x0 > y0 and x0 < y0. .

A.6 : [ In case ϕ̂ is a real free scalar field, compare the previous re-
sult to 〈Ω |Tϕ̂(x)2ϕ̂(y)2|Ω 〉 given by application of Wick’s theorem.
Discuss the discrepancy. .

In the rest of the problem, we assume moreover that the 2−point
function of ϕ̂ is that of a real scalar field of mass m, i.e.

〈Ω |Tϕ̂(x)ϕ̂(y)|Ω 〉 = ∆F(x− y,m2).

So the Kählen-Lehmann representation theorem guaranties the
existence of a spectral function ρ such that

2∆F(x− y,m2)2 =

∫+∞
0

dµ2 ρ(µ2)∆F(x− y,µ2),

and the goal is to give an explicit formula for ρ.
Both sides depend only on x−y (translation invariance), so there

is no loss of generality in taking y = 0. After a Wick rotation one is
led to write

2∆E(x,m2)2 =

∫+∞
0

dµ2ρ(µ2)∆E(x,µ2), (1)
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where ∆E(x,µ2) is the euclidean propagator

∆E(x,µ2) ≡
∫
ddk

(2π)d
eikx

k2 + µ2 . (2)

In this formula, kx and k2 stand for euclidean space scalar pro-
ducts.

Part B : Identities for the euclidean propagator

B.1 : Starting from formula (2) for the euclidean propagator, show
that ∆E(x,m2)2 =

∫
ddk
(2π)de

ikxI(k,m2) where

I(k,m2) ≡
∫
ddq

(2π)d
1

q2 +m2

1
(k− q)2 +m2 .

.

B.2 : Using the Kählen-Lehmann representation (1) infer that∫
ddq

(2π)d
1

q2 +m2

1
(k− q)2 +m2 =

1
2

∫+∞
0

dµ2ρ(µ2)
1

k2 + µ2 . (3)

For which values of the space-time dimension d is the integral on
the left-hand side convergent ? .

B.3 : Starting from formula (2) for the euclidean propagator, show,
via the representation (10) of (k2 + m2)−1 and the computation of
the resulting gaussian integral of dimension d, that

∆E(x,m2) =

∫+∞
0

dw
1

(4πw)d/2
e−m

2w−x2/(4w).

Infer that

∆E(x,m2) =

∫+∞
0

dt
td/2−2

(4π)d/2
e−m

2/t−tx2/4. (4)

and that

∆E(x,m2)2 =
1

(4π)d

∫+∞
0

dudv (uv)d/2−2e−m
2(u+v)/(uv)−(u+v)x2/4.

.

We insert in this formula the identity1 =
∫+∞

0 dt δ(t − u − v) and
then, for fixed t, make the change of variables u = tα, v = tβ. Note
that a priori α,β ∈ [0,+∞[ but, due to the δ function, their effective
domain of variation is smaller.
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B.4 : Check that this leads to

2∆E(x,m2)2 =

∫+∞
0

dt e−tx
2/4 L(t)

with

L(t) ≡ 2td−3

(4π)d

∫1

0
dα (α(1 − α))d/2−2e−m

2/(tα(1−α)).
.

B.5 : Using formula (4) of question B.3 (with µ2 instead ofm2) check
that ∫+∞

0
dµ2ρ(µ2)∆E(x,µ2) =

∫+∞
0

dt e−tx
2/4 R(t)

with

R(t) ≡ td/2−2

(4π)d/2

∫+∞
0

dµ2 ρ(µ2)e−µ
2/t.

.

So the Kählen-Lehmann representation reads :∫+∞
0

dt e−tx
2/4L(t) =

∫+∞
0

dt e−tx
2/4 R(t).

B.6 : Interpreting this identity as an equality of Laplace-Fourier
transforms, conclude that for all t > 0

2td/2−1

(4π)d/2

∫1

0
dα (α(1−α))d/2−2e−m

2/(tα(1−α)) =

∫+∞
0

dµ2 ρ(µ2)e−µ
2/t. (5)

.

Part C : Computation of the spectral density

This part exploits the relation (5) to compute ρ. We assume that
d > 2.
C.1 : Using the identity (9) for a = 1/t and s = d/2 − 1, show that
the left-hand side of relation (5) reads

2
(4π)d/2Γ(d/2 − 1)

∫+∞
0

dw

∫1

0
dα (wα(1 − α))d/2−2e−m

2/(tα(1−α))−w/t.

.
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C.2 : Inserting in this expression the identity 1 =
∫+∞

0 dµ2 δ(µ2 −
m2/(α(1 − α)) − w) and computing the w integral, check that the
left-hand side of (5) can be rewritten as∫+∞

0
dµ2

(
2

(4π)d/2Γ(d/2 − 1)

∫1

0
dα

H(µ2α(1 − α) −m2)

(µ2α(1 − α) −m2)2−d/2

)
e−µ

2/t,

where H stands for the Heaviside step function, taking value 1 for
positive values of the argument and 0 for negative values of the
argument. .

C.3 : Interpreting now (5) with the help of the above formula as an
equality of Laplace-Fourier transforms, conclude that

ρ(µ2) =
2

(4π)d/2Γ(d/2 − 1)

∫1

0
dα

H(µ2α(1 − α) −m2)

(µ2α(1 − α) −m2)2−d/2
.

.

Setting α = (1 + γ)/2 leads to

ρ(µ2) =
1

(4π)d/2Γ(d/2 − 1)

∫1

−1
dγ
H((µ2 − 4m2) − µ2γ2)42−d/2

((µ2 − 4m2) − µ2γ2)2−d/2
.

C.4 : By a rescaling of the integration variable, show that

ρ(µ2) ∝ H(µ2 − 4m2)

µ(µ2 − 4m2)(3−d)/2
. (6)

.

C.5 : The spectral function ρ(µ2) vanishes below a certain thre-
shold. Give an interpretation. .

C.6 : Compute the proportionality constant in (6) 2. Check that for
d = 6

ρ(µ2) =
1

192π3

H(µ2 − 4m2)

µ(µ2 − 4m2)−3/2 . (7)
.

Part D : “Graphology” for the ψ3 theory in d = 6 dimensions.

The answers to questions in this part are mild adaptations of re-
sults established in the course. You are not expected to give detailed

2. Don’t forget the glossary.
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justifications. Use the analogy with the case of the φ4 theory in di-
mension d = 4.

We consider a field theory with action

S(ψ) =

∫
d6x

(
1
2
(∂µψ)(∂

µψ) −
1
2
m2ψ2 −

λ

3!
ψ3

)
.

for a real scalar field ψ.
D.1 : [ What is the dimension of the coupling constant (the action
is taken to be a dimensionless quantity) ? .

Following the usual quantization procedure, one is led to a quan-
tum theory for a field ψ̂. Correlation functions of ψ̂ are expressed
as usual in terms of correlation functions of a free field ϕ̂ in the
Heisenberg representation. For instance, for the 2−point function,
one has

〈Ω |Tψ̂(x)ψ̂(y)|Ω 〉 =
〈0 |Tϕ̂(x)ϕ̂(y) exp(−i λ3!

∫
d6z ϕ̂(z)3)|0 〉

〈0 |T exp(−i λ3!

∫
d6z ϕ̂(z)3)|0 〉

where |0 〉 is the Fock space vacuum for ϕ̂. As usual, one can use
Wick’s theorem to get a series expansion in powers of the coupling
constantλ, and reorganize the expansion as a sum of contributions
associated to graphs.

D.2 : Which Feynman graphs contribute to

〈0 |Tϕ̂(x)ϕ̂(y) exp(−i
λ

3!

∫
d6z ϕ̂(z)3)|0 〉

at order n in λ ? .

D.3 : Which Feynman graphs contribute to

〈Ω |Tψ̂(x)ψ̂(y)|Ω 〉

at order n in λ ? .

D.4 : Which Feynman graphs contribute to

〈Ω |Tψ̂(x)ψ̂(y)|Ω 〉c ≡ 〈Ω |Tψ̂(x)ψ̂(y)|Ω 〉− 〈Ω |Tψ̂(x)|Ω 〉〈Ω |Tψ̂(y)|Ω 〉

at order n in λ ? .
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Using translation invariance, the 2−point function depends only
on x− y and we define

GF(k) ≡
∫
d6x e−ikx〈Ω |Tψ̂(x)ψ̂(0)|Ω 〉c.

D.5 : Check that to second order in λ,

GF(k) =
i

k2 −m2 + i0+

−
λ2

2
i

k2 −m2 + i0+
IF(k,m2)

i

k2 −m2 + i0+

+ 0(λ4).

where

IF(k,m2) ≡
∫
ddq

(2π)d
i

q2 −m2 + i0+

i

(k− q)2 −m2 + i0+

Interpret the λ2 terms as the weight of a graph via Feynman rules..

It is convenient to switch to the euclidean version. Remember
that in the Wick rotation the Feynman propagator is replaced by
the euclidean propagator . To take into account the Wick rotation
z0 → −iz6 also in the coupling term exp(−i λ3!

∫
d6z ϕ̂(z)3), the cou-

pling constant iλ is replaced by λ.
The euclidean version G of GF is henceforth given, up to second

order in λ, by

G(k) =
1

k2 +m2 +
λ2

2
1

k2 +m2 I(k,m
2)

1
k2 +m2 + 0(λ4).

where I(k,m2) is the function introduced in question B.1 (speciali-
zed to d = 6 of course).

The intuitive interpretation of the Feynman graph giving the λ2

contribution is that a particle of momentum k disintegrates in 2
particles which collide again to reform one particle.

D.6 : Show that the Kählen-Lehmann representation (3) gives ano-
ther intuitive interpretation of this process. .

D.7 : In general, which Feynman graphs contribute to 1/G(k) ? Give
the expansion of 1/G(k) up to order 2 in λ. .
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Part E : One loop renormalization.

The starting point is :

1/G(k) = k2 +m2 −
λ2

2
I(k,m2) + 0(λ4)

= k2 +m2 −
λ2

4

∫+∞
0

dµ2ρ(µ2)
1

k2 + µ2 + 0(λ4).

The function

I(k,m2) =

∫
d6q

(2π)6
1

q2 +m2

1
(k− q)2 +m2

is in fact ill-defined.

E.1 : What type of divergence plagues the above expression ? Show
that the Kählen-Lehmann representation (3) of I(k,m2), where the
spectral density ρ is given explicitly in (7), exhibits the same type
of divergences, coming from large values of µ2. .

Because of these divergences, the above computations have to
be reinterpreted. We assume that in the “real” microscopic theory
the exchange of very heavy particles is suppressed so that at low
energies, the “true” microscopic spectral density r is close to ρ, but
at high energies , r is small enough for∫+∞

0
dµ2r(µ2)

1
k2 + µ2

to be convergent. We want to infer the low energy physics of the
theory, where only the properties of the 2−point function at “small”
k are accessible.

In the free theory, i.e. at order 0 in λ, 1/G(k) = m2 + k2. In parti-
cular, m2 is simply the value of 1/G(k) at k2 = 0 and the derivative
of 1/G(k) with respect to k2 is simply 1.

In the interacting theory, nothing of this remains. However, chan-
ging the normalization of the field does not really change the phy-
sics. One can replace ψ with ψr = Z−1/2ψ. This amounts to consi-
der Gr(k) ≡ G(k)/Z to which we could impose to resemble the
free propagator, for instance by imposing that, for k2 close to a
certain fixed reference energy scale, denoted by K2, the relation
1/Gr(k)−1/Gr(K) ∼ k2−K2 holds. One can also define a mass mr by
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the condition m2
r = 1/Gr(0). Note that the conditions are imposed

directly on the correlation function, which is in principle measu-
rable in experiments.

E.2 : Starting from the formula

1/G(k) = k2 +m2 −
λ2

4

∫+∞
0

dµ2r(µ2)
1

k2 + µ2 + 0(λ4),

show that the normalization conditions are :

Z = 1 −
λ2

4

∫+∞
0

dµ2 r(µ2)
1

(K2 + µ2)2
+ 0(λ4),

and

m2
r = m

2 −
λ2

4

∫+∞
0

dµ2 r(µ2)

(
1
µ2 +

m2

(K2 + µ2)2

)
+ 0(λ4).

.

This last relation can be inverted (in perturbation theory) to get
m2 as a function of m2

r.
In a more complete treatment, one would also have to define a

coupling constant λr adapted to the low energy physics by some
physical condition. The output would be that λr = λ+ 0(λ3).

E.3 : Show that, as a function of mr and λr,

1/Gr(k) = k2+m2
r−
λ2
r

4

∫+∞
0

dµ2 r(µ2)

(
1

k2 + µ2 −
1
µ2 +

k2

(K2 + µ2)2

)
+0(λ4

r).

.

E.4 : How does
1

k2 + µ2 −
1
µ2 +

k2

(K2 + µ2)2

behave for large µ2 ? .

E.5 : Conclude that, if ρ is the spectral function given explicitly in
(7) (after substitution of mr for m), the integral∫+∞

0
dµ2 ρ(µ2)

(
1

k2 + µ2 −
1
µ2 +

k2

(K2 + µ2)2

)
is convergent. .
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Assume that ρ(µ2) (after substitution of mr for m) and r(µ2) are
appreciably different only at energies larger than some energy scale
of order Λ2.
E.6 : Infer, using naïve dimensional analysis, that for k2,K2,m2

r <<

Λ2 (the low energy window) one has

1/Gr(k) = k2+m2
r−
λ2
r

4

∫+∞
0

dµ2 ρ(µ2)

(
1

k2 + µ2 −
1
µ2 +

k2

(K2 + µ2)2

)
+0(λ4

r),

up to terms of order 3 Λ−2. .

In the low energy window one can henceforth take the limit Λ2 →∞ and get a renormalized low energy theory which is finite and
independent of the details of the “real” microscopic theory.

We apply this result to the case were the low energy theory is
massless, i.e. mr = 0.

E.7 : [ Compute explicitly 1/Gr(k) (in the limit Λ2 → ∞) for mr = 0
t order 2 in λr. What happens for K2 → 0 ? .

3. A more careful computation would lead to the appearance of Λ−2 logΛ cor-
rections which do not change at all the discussion.
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A glossary of concepts and formulæ

– The one dimensional gaussian integral :∫+∞
−∞

du√
π
e−u

2+iuv = e−v
2/4.

– the Dirac δ function :
If f is a differentiable function,

δ(f(w)) =
∑

a,f(a)=0

1
|f ′(a)|

δ(w− a).

In the sum over a, a runs over the zeroes of f.

– Laplace-Fourier transform :
If f is a continuous function defined for w > 0, locally integrable

near the origin and such that that for a certain real number A,
f(w) = 0(eAw) when w → +∞, one defines its Laplace transform F

by

F(a) =

∫+∞
0

dwe−awf(w), a > A.

The Fourier inversion formula leads to the following important re-
sult : if f and g have Laplace transforms F and G that coïncide for
large a, then f = g.

– Some integral representations :
The Euler Γ function is defined for s > 0 by the formula

Γ(s) =

∫+∞
0

dwe−wws−1. (8)

Some special values of the Γ function are simple. For instance,
one shows that Γ(1) = 1 (obvious) and Γ(1/2) =

√
π (a bit less ob-

vious).
One shows, using integration by parts for example, that Γ(s +

1) = sΓ(s).
Hence, one gets by recursion that

Γ(n+ 1) = n! pour n = 0, 1, · · · .
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and that

Γ(n+ 1/2) =
√
π
(2n− 1)!!

2n
=
√
π
(2n)!
4nn!

pour n = 0, 1, · · · .

By a change of variable one checks that, for a, s > 0,

1
as

=
1
Γ(s)

∫+∞
0

dwe−awws−1. (9)

To be slightly pedantic, the Laplace-Fourier transform of ws−1

Γ(s)
is

1/as...
The special case s = 1 is elementary :

1
a
=

∫+∞
0

dwe−aw a > 0. (10)

The Euler Γ function allows to express the value of many com-
mon integrals. For instance :∫1

−1
dν

(
1

1 − ν2

)2−d/2

=
Γ(1/2)Γ(d/2 − 1)
Γ(d/2 − 1/2)

.
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