
nature physics

https://doi.org/10.1038/s41567-023-01978-9Article

Mesoscopic Klein-Schwinger effect in 
graphene

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s41567-023-01978-9


Contents

I. Schwinger effect in various dimensions 2

II. Overview of ballistic pinch-off in sample GrS1 4

III. Noise characterization of Klein collimation 6

IV. Klein-Schwinger effect in the full device series 7

V. Relation between Schwinger voltage, doping and dielectric thickness 13

VI. Pinch-off of high-mobility graphene transistors 14

References 19

1



I. SCHWINGER EFFECT IN VARIOUS DIMENSIONS

Quantum electrodynamics predicts a pair creation rate, per unit volume, area or length

depending on dimensionality, as given by [1], with ES = m2c3

eh̄
the Schwinger field,

w3d =
(eE)2

4π3ch̄2

∑
n≥1

e−nπ
ES
E

n2
, w2d =

eE

2π2h̄
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E

n3/2
, w1d =

eE

πh̄

∑
n≥1

e−nπ
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n
.

(1)

When adapted to condensed matter, speed of light c is replaced by Fermi velocity vF

and the rest energy is substituted with the gap ∆S. The pair partners being dissociated in

the strong electric field, one can thus write a mesoscopic pair current, with a mesoscopic

Schwinger field ES =
∆2

S

eh̄vF
and voltage VS =

Λ∆2
S

eh̄vF
, as

J3d =
e2E2Λ

2π3vF h̄
2
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2gsgve
2
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2

h
Vds
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e
−nπ

VS
Vds

n
. (3)

Not specific to Schwinger effect, the J3d ∝ E2e−
Cte
E is reminiscent of field emission accord-

ing to the Fowler-Nordheim mechanism, which is a non-relativistic variant, corresponding

to quantum tunneling across a triangular barrier [2,3], with

JFN =
e3m0E

2

16π2m∗h̄ϕ
e−π

EFN
E , EFN =

4
√
2m∗ϕ3

3πeh̄
∼ 4

√
2

3π

ϕ2

eh̄vF
, (4)

where m0 and m∗ are the bare and effective electron masses, ϕ is the barrier height. It differs

from Eq.(2) in the non-universal character of the pre-factor and critical field.

Mesoscopic Schwinger effect has been considered to describe non-linear transport in gap-

less neutral 2d-graphene [4–8], with :

ES = 0 J2d = 2.612
2gsgve

2

πh

√
eΛ2

h̄vF
E3/2 , (5)

where Λ is the length of the charge neutrality region, and gs = gv = 2 are the spin and

valley degeneracy of graphene. The non-linear Schwinger-pair contribution exceeds the single

particle tunneling conductivity σ2d =
gsgve2

πh
[9,10] above a bias voltage V2d ∼ h̄vF/eΛ ∼ 1mV

(for Λ = 1µm).
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FIG. SI-1: Representation of the functional forms (terms in brackets) of equations (6) and (7)

for 1d and 2d massive Schwinger effect. The two forms have the same threshold and low-bias

development but differ at large bias. The 2d conductance is not universal and depends on the ratio

of the sample width W to the Compton length ΛC which is typically a large number. It is larger

but also linear over a wider bias range than the 1d-Schwinger conductance.

The 2d massive Schwinger effect differs from the 1d massive Schwinger effect studied in

the main text. The 1d and 2d conductance read :

G1d = 4

(
gsgve

2

h
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, (7)

where W is the sample width and ΛC =
√

vF h̄
eES

<∼ 10nm the Compton length. Compared

to the 1d Schwinger conductance, the 2d-conductance prefactor is not universal and much

larger by a factor W/ΛC(Vg) ∼ 1000. Evidence of the universal character of the measured

conductance in the ballistic transistors is given in Figure SI-7 and Figure 3-b from the main

text, that all show the same universal zero-bias affine extrapolate G0 = 0.18 ± 0.02 mS

despite contrasted values of W and ES. Apart from the prefactor, the two formulae also

show different behavior with respect to bias voltage, as shown in Figure SI-1. The sublinear
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dependence of the 1d-conductance of Eq.(6) is clearly seen in Fig. SI-7d) and e), and in

Figure 3-d from the main text.

FIG. SI-2: Overview of ballistic pinch-off in hBN-encapsulated graphene transistor GrS1, of di-

mensions L×W × thBN = 13× 17× 0.025 µm, mobility µ = 6.3 m2V−1s−1, and contact resistance

Rc = 80 Ω. Left: full bipolar representation. Pinch-off free transport is observed in the drain car-

rier accumulation regime for Sign(V ×Vg) < 0. It shows standard intra-band velocity saturation by

optical phonons (OP), followed by the Zener regime. Pinch-off is observed under drain depletion,

for a channel voltage V = Vbias−RcI ∼ Vg, with broad (V ∼ 0.3–1.5Vg) current plateaus. Pinch-off

current is depleted by a factor two below the drain-accumulation counterpart, falling below the

massless charge neutrality Zener level (CNP, black dotted line). Pinch-off plateaus terminate as

an instability toward the ohmic Zener regime, which is rejected here above VZ
>∼ 1.5Vg by Pauli

blocking. Right: DC transconductance scaling as function of V/Vg, concentrating on positive Vg

values. It underlines the asymmetry between positive and negative V regimes, with a negative

transconductance for negative V , illustrating the increase of current with increasing doping. For

positive V , the transconductance turns strongly negative, highlighting the depletion of the pinch-

off current below the zero-doping CNP value. The transconductance changes sign slightly above

pinch-off at V ≃ 1.4Vg, corresponding to a current I ≃ 1.1Isat.

II. OVERVIEW OF BALLISTIC PINCH-OFF IN SAMPLE GRS1

A complete panorama of ballistic pinch-off in graphene transistors can be found in sample

GrS1, of dimensions L × W × thBN = 13 × 17 × 0.025 µm, shown in Fig.SI-2. Thanks
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to fortuitous equal electron and hole mobilities (µ = 6.3 m2V−1s−1), the current-voltage

characteristics in Fig.SI-2-left are fully symmetric. We can distinguish between two different

regimes. When Sign(V × Vg) < 0, increasing V causes an accumulation of charge carriers

on the drain side, but the channel stays unipolar. In this case we observe pinch-off-free

transport, which shows standard intra-band velocity saturation by optical phonons followed

by the Zener inter-band regime with a doping-independent conductance GZ(V ) ∼ 2.5mS

[11]. When Sign(V × Vg) > 0, pinch-off is observed under drain depletion for a voltage

V ∼ Vg, with broad current saturation plateaus (V ∼ 0.3–1.5Vg). These plateaus terminate

as an instability towards the ohmic Zener regime, where charge transport becomes bipolar

in the channel. Due to the carrier depletion at the drain, the pinch-off current is depleted

below the massless charge neutrality Zener level, suggesting the existence of a doping-induced

conductance gap.

The two different transport regimes can also be identified in the transconductance Gm

in Fig.SI-2-right. For sake of visibility, we focus here on the Vg > 0 curves. The drain

carrier accumulation for V < 0 is associated with a negative transconductance, as higher

gate values, corresponding to higher doping, lead to higher current. On the other hand, the

negative values of Gm for positive bias confirm the pinch-off depletion of the current.

Unfortunately, the sample GrS1 suffers from a relatively low electronic mobility and

a low dielectric thickness thBN , which results in a early onset of the Zener conductance

and a reduced accessible voltage range. The hBN thickness indeed determines the range

of accessible bias and gate voltages that can be applied on the device without generating

strong leak currents and finally the breakdown of the insulator [12] ; the leakage can be due

to a high gate voltage, but can also appear below the drain electrode if the voltage difference

V − Vg becomes too important. As a consequence, the raw differential conductance shows

no signature of Schwinger effect.

However, the subtraction of the fitted Klein conductance allows restoring the visibility

of the 1d-Schwinger conductance below the Zener onset voltage, as shown in Figure SI-7-a.

Further study of this device can be found in Section IV.
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FIG. SI-3: Current noise signature of Klein-collimation pinch-off in sample GrS2. Dimensions are

L×W×thBN = 10.5×15×0.035 µm. Left: high-frequency white noise SI(I), measured at T0 = 10 K

in the 1–10 GHz band using Caltech Low Noise Amplifiers (model CITCRYO1-12D). It shows a

sharp dip at pinch-off mapping the conductance dip (right panel). Note that the noise dip occurs at

a current 10 percent larger than the conductance dip, due to the transconductance correction to the

Johnson-Nyquist formula for a transistor Stherm ≃ 4|G+βGm|kBTe . Considering that noise is the

sum of a thermal contribution, Sth = 4GkBTe, and a shot-noise contribution, Sshot = 2eIF where

F <∼ 1 is a Fano factor, we extract the pinch-off shot noise Sshot/2e(Isat) ≃ I0 × Isat/
√

I21 + I2sat

(dashed blue line), with I0 = 0.26 mA and I1 = 6 mA. This translates into a tiny pinch-off current

Fano factor, F = Ishot/Isat ≃ I0/
√

I2sat + I21
<∼ 0.04, that vanishes for Isat ≫ I1. Center: Zoom on

the high-frequency white noise SI(I) close to pinch-off for Vg = 2V . Using the measured G(I), we

fit noise data (red line) to estimate the electronic temperature on the current saturation plateau

(I ≃ Isat) at Te ∼ 1100K × V/Vg (Vg = 2 V), which corresponds to kBTe/eVg ≃ 0.1. Right:

Conductance-velocity G(v/vF ) representation of ballistic pinch-off at T0 = 10 K. The velocity

is defined as the velocity at the source electrode by v = I
CgVgW

.In this representation, the broad

V ≃ 1–2Vg conductance gap collapses into a singular point at G(Isat) <∼ 0.1 mS.

III. NOISE CHARACTERIZATION OF KLEIN COLLIMATION

Additional signatures of ballistic pinch-off can be found in the current noise SI , which

is measured in sample GrS2. It is representative of the series and actually quite similar to

sample GrS3 of the main text. We distinguish different noise contributions according to

frequency: the low-frequency flicker noise, which is measured at sub-MHz frequency and is

described in the main text, and the flicker-free white thermal/shot noise, which is measured

at GHz frequency.
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The GHz noise (measured at T = 10 K) is plotted in Fig.SI-3-left as function of cur-

rent. It exhibits a sharp dip at current saturation (I >∼ Isat) which is reminiscent of the

conductance dip observed in the G(v/vF ) data of Fig.SI-3-right. We thus analyze the SI(I)

dependence as the sum of two terms: a thermal contribution Stherm ≃ 4GdskBTe, where Te

is the hot-electron temperature, and a shot-noise contribution Sshot = 2eIF , where F <∼ 1

is a Fano factor. In this interpretation, the GHz noise dip corresponds to the vanishing of

Stherm(Isat) ∝ G(Isat) → 0 at current saturation, leaving shot noise as the residual noise.

This assumption is supported by the SI(I)− SI(Isat) ∝ Stherm(I) dependence which can be

fitted in the current saturation regime assuming a Te(I) = Te(Isat)V/Vg proportional to Joule

power P ≃ IsatV (red line in Fig.SI-3-center with Te ∼ 1100K for Vg = 2 V). Actually, the

thermal noise of a transistor, Stherm ≃ 4|G+βGm|kBTe deviates from the standard Johnson-

Nyquist formula for a two terminal resistor by an additive correction proportional to the

transconductance Gm. This effect has been demonstrated in carbon nanotube transistors in

Ref.[13]. The abrupt sign change of Gm observed at V/Vg ≃ 1.4 in Fig.SI-2-right, actually

secures a full compensation of the residual conductance which explains the full suppression

of thermal noise observed at I/Isat ≃ 1.1 in Fig. SI-3-left.

Assigning the SI(Ids) minima to shot noise we deduce a pinch-off shot noise Sshot(Isat) ≃

2eI0 × Isat/
√

I21 + I2sat (dashed blue line), with I0 = 0.26 mA and I1 = 6 mA. It translates

into a tiny Fano factor, F = Ishot/Isat ≃ I0/
√

I2sat + I21
<∼ 0.04, that vanishes for Isat ≫ I1.

We regard the presence of shot noise as a proof of the existence of a pinch-off junction, and

attribute its tiny Fano factor to a consequence of strong collimation effect.

IV. KLEIN-SCHWINGER EFFECT IN THE FULL DEVICE SERIES

Besides the sample GrS3 extensively described in the main text, five other samples have

been measured and characterized. All of them show consistent Klein-Schwinger effect, albeit

with a somewhat lower visibility due to non-optimal geometrical properties or electronic

mobility. Yet, the subtraction of the fitted Klein conductance, following the same procedure

as in the main text, allows restoring a larger visibility of the 1d-Schwinger conductance for

all the devices. A summary of the properties of the five devices can be found in Table SI-1.

For completeness we have reproduced the data of sample GrS3 analyzed in main text.

The current-voltage curves of the six devices series are shown in Figure SI-4. We always

7



Sample L W thBN tGraph µ Rc A σZ
VZ

Vg

eVsat

µs

VS

Vg
G0

µm µm nm nm m2

Vs Ω - mS - - - mS

GrS1 13 17 25 15 6.3 80 50 2.5 1.25 2.6 0.4 + 0.37 ns 0.17± 0.02

GrS2 10.5 15 35 7 13 80 40 1 1.7 3.3 0.7 + 0.30 ns 0.18± 0.01

GrS3 15 10 42 7 12 120 70 1 1.9 2.8 0.7 + 0.53 ns 0.18± 0.02

AuS1 10 13.4 34 / 8 80 7 1.5 1.7 3.7 0.4 + 0.17 ns 0.18± 0.02

AuS2 16 10.6 32 / 13 80 11 1 1.5 4.9 0.4 + 0.18 ns 0.18± 0.01

AuS3 11.1 11.4 90 / 11 95 100 0.7 1.6 / 0.7 + 1.05 ns 0.17± 0.04

TABLE SI-1: Summary of the properties of the device series studied in the main text (GrS3)

and in the supplementary (GrS1 and GrS2, AuS1, AuS2, AuS3). Base parameters presented in

the first columns include the geometrical properties L,W, thBN , tGraph for the devices on graphite

gate, mobility and contact resistance. Also displayed is the maximum value of the voltage gain

A = ∂V
∂Vg

. The next 4 columns correspond to the parameters that are responsible for the unveiling

and visibility of the Klein-Schwinger effect in the different devices : VZ is the Zener onset voltage,

where a Zener conductance σZ activates. It has to be (notably) higher than the Schwinger voltage

VS that triggers the Schwinger conductance, and whose doping dependence is shown in the next-

to-last column. The doping-dependent saturation voltage Vsat, extracted from the dependence G =

G(0)Exp
[
− V

Vsat

]
in the Klein regime, is a metrics of the Klein collimation and defines the beginning

of the conductance gap, later terminated by Zener regime. The last column G0 corresponds to the

zero-bias affine extrapolate of the Schwinger pair conductance, as explained in the main text.

subtract in the bias voltage the voltage drop RCI across the contact resistance. All the

devices exhibit broad current saturation plateaus, with, however, an incomplete saturation

(differential resistance peak G−1 <∼ 5kΩ) for devices AuS1 (panel d) and Au-S2 (panel e).

The current saturation plateaus are terminated by the onset of Zener conductance at a Zener

field VZ = 1.25− 2Vg depending on the device. Detailed values can be found in Table SI-1.

All six devices exhibit consistent Klein collimation, as is described by the semi-log rep-

resentation of the differential conductance scaling G(V/Vg) in Figure SI-5. It shows an

exponential decay of the Klein conductance for all samples, with a sample-dependent slope

that tunes the depth of the conductance gap. For instance, sample AuS3 (panel f) exhibits a
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FIG. SI-4: Current-voltage curves of the device series GrS1 (panel a), GrS2 (panel b), GrS3 (panel

c), AuS1 (panel d), AuS2 (panel e) and AuS3 (panel f). Inset of each panel shows an optical image

of the device. Actual device dimensions and properties for the series are collected in Table SI-1.

The applied gate voltages correspond to a charge carrier density at the source ranging from 0 to

1.5− 2.5 1012 cm−2 depending on the device.

steep conductance decay by three orders of magnitude at pinch-off, with differential conduc-

tance dropping below 10µS, whereas the conductance gap is very shallow in samples AuS1

(panel d) and AuS2 (panel e). The doping-dependent saturation voltage Vsat, plotted in inset

in the different panels, presents consistently a linear relation with the doping eVsat = αµS

with α ∼ 3 in the different samples (except for AuS3 where Vsat = Cte, see Table SI-1).

In order to study 1d-Schwinger pair conductance in the full series, Figure SI-6 shows a

zoom of the differential conductance as function of V/Vg in the conductance gap region, where

Schwinger conductance appears on top of current saturation. The visibility of Schwinger

effect differs on the different devices, yet the 3-parameters KSE fits closely match the data on

all of them (dotted lines in the figure). Sample GrS1 (panel a) demonstrates a very narrow

conductance gap due to early Zener onset at VZ ∼ 1.25Vg, hiding Schwinger conductance.

Samples GrS2 and GrS3 (panel b and c) are very similar and both exhibit a wide conductance

gap due to a complete current saturation and a rejection of the Zener voltage above 1.7Vg.
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FIG. SI-5: Semi-log representation of the differential conductance scaling G(V/Vg), showing the

exponential decay of the saturation dependence G = G(0)exp(− V
Vsat

) (dotted blue line) for the

device series GrS1 (panel a), GrS2 (panel b), GrS3 (panel c), AuS1 (panel d), AuS2 (panel e) and

AuS3 (panel f). Inset of each panel shows the evolution of the saturation voltage Vsat as function

of the doping, with a linear relation for all devices except AuS3. Numerical values can be found in

Table SI-1.

Due to the Klein conductance GK ∝ W and the Zener threshold set by Pauli blocking

VZ ∝ L, sample GrS2 exhibits a narrower conductance gap compared to GrS3. 1d-Schwinger

conductance is still clearly visible in the conductance gap.

The devices on Au gates have a lower visibility for the Schwinger conductance here. Sample

AuS1 (panel d) and AuS2 (panel e), whose properties are very similar (see Table SI-1),

demonstrate a very shallow conductance gap Gmin ∼ 0.2− 0.4mS, making it uneasy to see a

direct signature of Schwinger regime via its onset. Sample AuS3 (panel f), with its thicker

dielectric thBN = 90nm, exhibits an extremely deep and large conductance gap. However, the

large dielectric thickness also shifts the Schwinger voltage towards higher values VS
>∼ 1.5Vg,

setting the onset of the Schwinger conductance near the Zener onset and therefore reducing

its visibility.

The KSE fits performed on the 6 devices give the values of the Schwinger voltage VS, which
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FIG. SI-6: Klein-Schwinger effect in the sample series GrS1 (panel a), GrS2 (panel b), GrS3 (panel

c), AuS1 (panel d), AuS2 (panel e) and AuS3 (panel f). The red dotted lines on each figure show

an example of a three-parameter fit G = GS(VS) +G(0)e−V/Vsat performed in the Vsat
<∼ V <∼ VZ

range ; due to different geometrical and electronic properties, the Schwinger visibility is variable

on the different devices. Inset in each panel shows the super-linear dependence of the Schwinger

voltage as function of gate voltage VS
Vg

= a+bns deduced from the fits. The values of the coefficients

a and b can be found in Table SI-1 for each device.

is plotted in the insets as function of the gate voltage Vg. For analysis of these data, we

refer to Figure 3-c in the main text.

The visibility of the 1d-Schwinger pair conductance is determined by the combined van-

ishing of Klein intraband conductance and Zener interband conductance. Using the KSE

fits, performed in Klein and Schwinger regimes, the subtraction of the fitted contribution

of Klein conductance allows revealing the Schwinger conductance on a broader range of

bias, a procedure which has been described in the main text (see Figure 3-b). The result-

ing pair conductance GS(V ) is plotted for all devices in Figure SI-7, revealing ubiquitous

1d-Schwinger conductance for the sample series. Agreement with the theoretical formula

(solid lines) is excellent, up to a a Zener voltage corresponding to a steep increase of pair

conductance.
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FIG. SI-7: Pair conductance of the device series GrS1 (panel a), GrS2 (panel b), GrS3 (panel

c), AuS1 (panel d), AuS2 (panel e) and AuS3 (panel f), obtained from data by subtracting the

fitted Klein conductance. Pair conductance can be fitted using the 1d-Schwinger formula (solid

lines) over a device-dependent range of bias, highlighting the presence of Schwinger conductance

in all devices. The ’affine approximation’ extrapolates at zero bias (dotted lines) collapse onto one

universal value G0 ≃ 0.18 mS which appears doping- and device-independent. Exact values of the

extrapolate can be found in Table SI-1.

Whereas the 1d-Schwinger conductance was already clearly visible in samples GrS2 and

GrS3 (panels b and c), the subtraction reveals large Schwinger conductance in sample AuS1

and AuS2 (panels d and e) that was previously obscured by Klein conductance exponential

decay. Due to the low value of the Schwinger voltage VS ∼ 0.5 − 0.7Vg in these last two

devices, Schwinger pair conductance is visible on a wider bias range before Zener conduction

sets in, unveiling the non-linearity of Schwinger conductance at high bias voltages which is

discussed in the main text (Fig.3-d).

The universality of 1d-Schwinger conductance is revealed by the zero-bias ’affine approxi-

mation’ extrapolate, that gives a unique value G0 ≃ 0.18mS for all gate voltages and for

each of the 6 devices of the series, despite a broad variation of geometrical parameters and

electronic mobility. This value closely follows the theoretical expectation G0 = 0.186mS
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from Schwinger formula.

Unveiling the visibility of Klein-Schwinger effect is thus an optimization task of the dif-

ferent geometrical parameters; the five devices in this Supplementary Information Section

were in fact used to set the optimal visibility properties of the sample GrS3, which is used as

a demonstrator in the main text. Prerequisites are a low contact resistance and a very high

electronic mobility µ >∼ 10m2V−1s−1. The hBN optimal thickness is a trade-off: thin lay-

ers cause dielectric breakdown problems and confine VS below pinch-off, generating an early

Schwinger conductance onset that can only be revealed by subtraction. Thick layers shift the

Schwinger voltage upwards, eventually above the Zener onset terminating the conductance

gap. Klein-Schwinger effect is more easily visible in long channel transistors, due to the

Pauli-blocked Zener voltage, and devices with a smaller width favor the Klein-collimation

and the appearance of 1d-Schwinger effect.

V. RELATION BETWEEN SCHWINGER VOLTAGE, DOPING AND DIELEC-

TRIC THICKNESS

The variety of devices studied in Section IV allows us to analyze the dependencies between

Schwinger voltage, doping and dielectric thickness. Figure 3-c of the main text, and the

forelast column of Table SI-1, show the evolution of the ratio between Schwinger voltage

and gate voltage VS/Vg as function of doping ns for the 6 devices. They consistently show a

linear increase with respect to ns that we can attribute to a Coulomb-repulsion effect from the

interactions, with a slope that is device-dependent. This slope is plotted as function of the

thickness of the hBN dielectric in Figure SI-8. For the case of devices on graphite backgates,

the hBN thickness has been replaced by the sum of thBN and the graphite thickness tGraph,

whose values are given in Table SI-1. This relies on the existence of a Debye length for

neutral graphite that we approximate to be the total thickness of the thin graphite flake.

The slope exhibits an affine increase as function of hBN thickness, and extrapolates to zero

for thBN ∼ 20nm. This value is on the order of the Fermi wavelength for typical doping

range ns = 1− 2 1012cm−2, which acts as a cut-off for interaction effects.

Let us make the assumption that the Schwinger gap ∆S ∼ µs which is the only energy

scale of the problem. Then, the dielectric thickness thBN being the only lengthscale of the

problem, the doping dependence of the junction length Λ(ns, thBN) can be cast in the form
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Λ
thBN

= VS/ES

Vg/Eg
= 4αg(

µs

∆S
)2 VS

Vg
≃ 2.8VS

Vg
where αg = e2

4πϵ0ϵhBN h̄vF
= 0.70 is the graphene fine

structure constant, taking the high-field hBN permittivity ϵhBN ≃ 3.1 [12].

The measured evolution of VS

Vg
(thBN , ns) described in Figure 3-c of the main text and

Figure SI-8 can thus be cast into the junction length power expansion Λ ≃ athBN +ξnst
2
hBN .

Numerical values of Λ are indicated on the right axis in Figure SI-8 and yield ξ ≃ 4nm, which

corresponds to the typical interaction radius per electron , quantifying the doping-induced

dilation of the junction length.

FIG. SI-8: Slope extracted from the linear increase of the ratio VS
Vg

as function of doping ns (left

axis), plotted with respect to the sum of hBN and graphite thicknesses for the 6 devices. Right

axis gives the associated value of the junction length Λ(ns). The red dotted line is a linear fit

corresponding to ξ = 4nm.

The direct consequence of these dependencies is that the 1d-Schwinger conductance be-

comes hardly visible for devices with thick dielectric such as AuS3, where the Schwinger

voltage exceeds the Zener onset voltage even at moderate doping. On the contrary, devices

with thin dielectric show an early Schwinger conductance over a large range of doping.

VI. PINCH-OFF OF HIGH-MOBILITY GRAPHENE TRANSISTORS

We first start with a comparison between pinchoff and pinchoff-free characteristics. As

a general rule, finite biases induce both doping and voltage drops in transistors, which are

proportional to the source-drain voltage. The difference between pinchoff and pinchoff-free

cases is about their spatial distributions: in the pinchoff case, they are confined at the drain

side, whereas in the pinchoff-free case they are distributed along the channel. In the pinchoff-
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FIG. SI-9: Comparison between pinchoff and pinchoff-free regimes in sample GrS3 at the carrier

density ns = 1012 cm−2. Black dots correspond to measurements at fixed Vg = 2.25V, whereas

red squares correspond to a measurement along constant density line Vg(V ) = Vg + 0.4V with V

the bias voltage, for the same density. The current saturation in the pinch-off free case can be

fitted using saturation by optical phonons ( blue dotted line, with the green dotted line adding the

contribution of interband Zener conductance) with ϵsat = 91 meV, showing that the bottleneck of

current saturation at constant Vg is not due to optical phonons but to the pinch-off. Red dotted

line is a fit for an exponential current saturation at pinch-off.

free diffusive regime of bottom/top gated transistors, the bias voltage entails a uniform

doping gradient along the channel from ns = Cg(Vg)/e at the source to nd = Cg(Vg − V )/e

at the drain. The pinchoff-free regime is achieved by applying a bias-dependent gate voltage

Vg(V ) = Vg(0)+aV with a ∼ 0.5 mimicking a symmetric ±V/2 bias. Experimentally a ≃ 0.4

is adjusted to obtain a bias-independent charge neutrality point position. In the pinchoff

case, most of the doping gradient is localized at the drain in a pinchoff junction, leaving the

doping quasi uniform in the channel.

Fig.SI-9 shows the contrasted pinchoff (red circles) and pinchoff-free (black circles) char-
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acteristics of sample GrS3, for a carrier density ns = 1012 cm−2. Both deviate at Vsat, with

the pinchoff I-V (asymmetric bias) showing an exponential current saturation (red dotted

line), as opposed to the pinchoff-free (symmetric bias) I-V which shows strong non-linearities

but does not saturate. These non-linearity is qualitatively understood (green dotted line) in

terms of optical-phonon-induced velocity saturation (blue dotted line) with a characteristic

voltage VOP , and interband Zener tunneling as captured by the formula

I = nse

[
µ

1 + V/VOP

+ σZ

]
W

L
V , (8)

with µ ≃ 12 m2/Vs, VOP ≃ 0.65 V > Vsat, and σZ ≃ 0.5 mS. In the following we go

beyond that phenomenological description by solving a simple 1d-model of the electrostatic

potential distribution in the channel.

FIG. SI-10: Panel a) Electrostatic profile in the constant density case and in the pinchoff-free

case, with an excess potential drop at the drain. Both profiles are computed for a 5.4mA current.

Panel b) Current-voltage curves in the two biasing regimes. The green black line corresponds to

the constant density model of the channel described in the text, and the blue-line fit is performed

with the microscopic model presented in the text. The horizontal dashed line corresponds to the

5.4mA current of panel a. The geometrical construction allowing to recover the potential drop in

the channel and at pinchoff is indicated on the figure by the bold symbols.

Focusing on the pinchoff-free case, we estimate the electrostatic potential profile by solv-

ing a local microscopic model of transport including: velocity saturation by OPs, electronic

compressibility, and electrostatic equilibrium in the presence of a local gate. Dealing with
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current lass than or on the order of pinchoff saturation currents, we neglect the Zener tun-

neling contribution (see Fig.SI-9).

The current density writes

J = µ(E)n∂xµ
∗
c ,

where µ(E) = µ(0)/(1+ |E|/EOP ) is the electric-field-dependent mobility accounting for OP

velocity saturation in Eq.(8), µ(0) is the zero-bias mobility, µ∗
c = µc(x) − eVc(x) and µc(x)

the electrochemical and chemical potentials. Vc is the electrostatic potential distribution

of interest in this section. For monolayer graphene, µ∗
c − µ∗

g = h̄vF
√
πn + e2

cg
n where vF is

the Fermi velocity, cgeo is the areal gate-channel geometric capacitance, n(x) is the carrier

density, and µ∗
g = −eVg is the uniform electrochemical potential of the gate. Additionally,

electrostatics imposes Vc − Vg = −e
cgeo

n(x), so that the differential equation for the channel

voltage writes :

J =
I

W
= − µ0

1 + |∂xVc|/EOP

cgeo(Vc − Vg)

{
h̄vF
e

√
πcgeo
e

1

2
√

Vg − Vc

+ 1

}
∂xVc , (9)

where EOP = VOP/L is the OP saturation electric field.

We numerically solve this equation for currents in the range [0−5]mA imposing Vd+Vs =

0, and Vg = −2.25 V to match the experimental conditions and find perfect agreement (solid

blue line in Figure SI-10b) with the IV experimental response for µ(0) = 12.3 m2.V−1.s−1,

EOP = 43 mV/µm. Using this set of parameters, we next compute the channel potential

profile at the current saturation in the pinchoff-free case for a 5mA current, which is plotted

as a black line in Figure SI-10a. The total channel voltage drop, Vc(L) = 1 V (see large

black dot in Fig.SI-SI-10b).

To model the pinchoff case, we assume a constant carrier density in the channel, which

implies a constant chemical potential and uniform in-plane electric field. As a consequence,

the differential equation (9) simplifies as :

J = − µ0

1 + |∂xVc|/EOP

n ∂xVc

.

The electrostatic energy profile in this case for a 5.4mA current is plotted in Fig. SI-10a

(red line) up to the drain-collimation junction where potential is assumed to drop abruptly

down to the applied voltage V = 4.5 V. The total channel voltage drop, Vc(L− Λ) ≃ 0.5 V

remains small with respect to the total bias 4.5 V, ass assumed in the main text.
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Fig. SI-10b summarizes the conclusions of our potential distribution analysis. At a given

bias current, the respective channel and junction potential drops can be deduced by the

geometrical construction displayed in the figure.

18



1 C. Itzykson and J.B. Zuber, Quantum Field Theory, Dover publications, 2006.

2 S.M. Sze and K. Ng, Physics of Semiconductor Devices, Wiley-2007-3rd edition, Section X.X.X.

3 M.A. Grado-Caffaro, M. Grado-Caffaro, Optik 116, 299 (2005). Electrical conductance from the

Fowler-Nordheim tunneling

4 S.P. Gavrilov. and D.M. Gitman, Phys. Rev. D 53, 7162 (1996). Vacuum instability in external

fields

5 A. Shytov, M. Rudnerb, N. Guc, M. Katsnelson, L. Levitov, Solid State Communications 149,

10987 (2009). Atomic collapse, Lorentz boosts, Klein scattering, and other quantum-relativistic

phenomena in graphene

6 B. Dora, R. Moessner, Phys. Rev. B 81, 165431 (2010). Non-linear electric transport in

graphene: quantum quench dynamics and the Schwinger mechanism

7 S. P. Gavrilov, D. M. Gitman, N. Yokomizo, Phys. Rev. D 86, 125022 (2012). Dirac fermions

in strong electric field and quantum transport in graphene

8 N. Vandecasteele, A. Barreiro, M. Lazzeri, A. Bachtold, F. Mauri, Phys. Rev. B. 82, 045416

(2010). Current-voltage characteristics of graphene devices: Interplay between Zener-Klein tun-

neling and defects.

9 J. Tworzydlo, B. Trauzettel, M. Phys. Rev. Lett. 96, 246802 (2006). Sub-Poissonian shot noise

in graphene

10 R. Danneau, F. Wu, M. F. Craciun, S. Russo, M. Y. Tomi, J. Salmilehto, A. F. Morpurgo, P.

J. Hakonen, Phys. Rev. Lett. 100, 196802 (2008). Shot Noise in Ballistic Graphene

11 W. Yang, S. Berthou, X. Lu, Q. Wilmart, A. Denis, M. Rosticher, T. Taniguchi, K. Watanabe,
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press https://doi.org/10.1088/2053-1591/ac4fe1 (2022). Dielectric permittivity, conductivity and

breakdown field of hexagonal boron nitride

13 J. Chaste, E. Pallecchi, P. Morfin, G.Fève, T. Kontos, J.-M. Berroir, P. Hakonen, B. Plaçais,
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