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Coulomb interaction has important consequences on the physics of quantum spin Hall edge states,
weakening the topological protection via two-particle scattering and renormalizing both the velocity
and charge of collective plasmon modes compared to that of free electrons. Despite these effects,
interactions remain difficult to quantify. We propose here simple and robust edge resonator geome-
tries to characterize Coulomb interaction by means of high-frequency measurements. They rely on a
transmission line approach, and take advantage of the impedance mismatch between the edge states
and their microwave environment.

The helical edge states of 2D topological insulators,
which exhibit the quantum spin Hall (QSH) effect [1], of-
fer an exciting playground for exotic topological physics
such as spin-polarized edge transport [2–4] or topologi-
cal superconductivity [5, 6]. Another point of interest is
the study of Coulomb interactions, which are particularly
prominent in one-dimensional systems. In 2D topologi-
cal insulators, one-particle scattering is in principle sup-
pressed by time-reversal symmetry. However two-particle
interactions are constrained but not forbidden [7], and
could have important consequences. They could for ex-
ample generate back-scattering via diverse mechanisms
[8–10]. In particular, inter-channel interaction leads to
a modification of the charge but also the spin polariza-
tion of the edge plasmons, thus potentially degrading the
performance of spin(orbi)tronics devices [11, 12] and ob-
scuring the observation of topological transport.

At a microscopic level, Coulomb interaction strongly
alters the dynamics of QSH helical edge states. First,
the electron Fermi velocity vF is renormalized to a larger
value v under the action of Coulomb repulsion. Second,
as charges propagate in one edge channel, inter-channel
interaction drags a small amount of charge in the chan-
nel of opposite direction, leading to a non-trivial effec-
tive charge of the plasmon modes, reduced from that of
the electron by a factor

√
K ∈ [0, 1], where K is called

the Luttinger parameter. The two parameters K and
v fully characterize the dynamical properties of helical
edge channels, but remain experimentally hardly accessi-
ble. In particular, K is quite elusive: the dc conductance
of an ohmically contacted 1D system does not depend on
K [13, 14], which is thus primarily accessed via power
law exponents (tunneling density of states [15], temper-
ature dependence of the conductance [16, 17]) or current
correlations [18, 19]. The ac conductance also inherits a
K dependence, but studies have concentrated mostly on
the low-frequency regime [20], which do not capture the
velocity v, on more complex setups [21] or on chiral edge
modes [22, 23].

High-frequency experiments have proven very ade-
quate in the context of the quantum Hall effect to in-
vestigate chiral edge magnetoplasmons [24–35]. In the
same spirit, we establish in this letter that the scat-
tering of microwaves on capacitively coupled resonators
offers a straightforward characterization of both v and
K. The high impedance edge channels are then con-
fined between low impedance input and output circuitry.
The impedance mismatch generates reflection at each in-
terface, in a geometry analogous to so-called stepped-
impedance resonators, heavily used in acoustics or mi-
crowave design. This geometry is advantageous: i) the
use of high frequencies (> 10 GHz) transport allows for
using short devices (∼ 10 µm) in the ballistic limit ii)
the capacitive coupling circumvents complications due
to ohmic contacts: contact resistances which bring dis-
sipation [36], as well as a complex behavior in the GHz
range [37] iii) the geometry can be analyzed in terms of
microwave networks [38], combining simple experimental
setups [39–41], and straightforward interpretation.

Edge channels and equivalent transmission lines – In
this section we introduce the bosonized Luttinger rep-
resentation of the helical edge states, and establish its
relation to a microwave transmission, following previous
works [42, 43]. For helical edge channels, the bosonized
Hamiltonian is formally identical to that of a spinless
Luttinger liquid and reads [7, 44]:

H =
v

2π

∫
dx[

1

K
(∂xφ)2 +K(∂xθ)

2]− eU∂xφ (1)

where the fields φ and θ fields are related to the right
(φR) and left (φL) bosonic fields representing right and
left-movers, with φ = φR + φL, θ = φR − φL. U is
an external potential, in a minimal coupling approach.
Coulomb interaction renormalizes the sound velocity of
the collective excitations velocity v, and defines the Lut-
tinger parameter K, which are expressed as a function
of the Fermi velocity vF , the inter-channel (resp. intra-
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FIG. 1. Schematics of the setup: a) Schematic view of
inter- and intra-channel Coulomb interaction in helical edge
states (in red and blue solid lines), with their respective cou-
pling constants ḡ2 and ḡ4. b) Equivalent transmission line
representation, with line inductance Le and line capacitance
Ce. c) Schematic view of a gate coupling capacitively to heli-
cal edge states d) Equivalent transmission line representation,
with geometric capacitance Cg and quantum capacitance Ce.

channel) coupling constants ḡ2 (resp. ḡ4):

v = vF
√

(1 + ḡ4 + ḡ2)(1 + ḡ4 − ḡ2) (2)

K =

√
1 + ḡ4 − ḡ2√
1 + ḡ4 + ḡ2

(3)

In the absence of external potential (U = 0), this Hamil-
tonian is completely equivalent to that of a LC dis-
tributed transmission line [38] with line capacitance Ce
and line inductance Le, such as the one sketched in
Fig.1b:

H =
ρ2
e

2Ce
+

1

2
LeI2

e (4)

with Ce =
2K

RKv
, Le =

RK
2Kv

(5)

where ρe = e
π∂xφ is the charge density and Ie = evK

π ∂xθ
the current flowing on the edge, and RK the quantum of
resistance. This identification establishes the equivalence
between a helical Luttinger liquid and a transmission line
with characteristic impedance Ze, and velocity v given by
[45]:

Ze =

√
Le
Ce

=
RK
2K

, v =
1√
LeCe

(6)

This transmission line hosts two modes with linear dis-
persion and velocity v, propagating in opposite directions
(denoted ±). Here, one can interpret the factor K as a
reduced effective charge

√
Ke affecting Le, Ce and in turn

the line impedance Ze.

One can introduce the currents Ie(x, t) and voltages
Ve(x, t) = ρe(x, t)/Ce [38, 43]:

Ve(x, t) =

∫
dω

2π

(
V −e e

jω(t+ω
v x) + V +

e e
jω(t−ωv x)

)
(7)

Ie(x, t) =

∫
dω

2π

(
−I−e ejω(t+ω

v x) + I+
e e

jω(t−ωv x)
)

(8)

such that Ze =
V ±e
I±e

.

In this framework, the currents I±e carried by both
modes ± then simply acquire a phase factor s± =
e±i

ω
v (x−x′) as they propagate from point x to x′.

Capacitive coupling in a transmission line approach –
This transmission line approach allows for a simple

description of elaborate geometries, in close analogy to
microwave network analysis. Here we start by describ-
ing capacitive contacts. The latter are essentially dis-
sipationless, thus circumventing the dissipation inherent
to the Landauer contact resistance. Besides, such reac-
tive contacts achieve a simple capacitive coupling even
at high frequencies, unlike ohmic contacts which exhibit
mixed capacitive and resistive behaviors [37]. They have
been heavily used in quantum Hall high frequency ex-
periments [22, 24, 31, 46] and have triggered recent in-
terest in Hall gyrators and circulators [34–36, 47] The
capacitive contact is described as a three-port device cou-
pling at (x, y) = (0, 0) the edge states (seen as two semi-
infinite transmission lines of impedance Ze, for x > 0 and
x < 0) to the gate, seen as a semi-infinite transmission
line of impedance Zg = 50 Ω along the y > 0 axis), in
the geometry shown in Fig.1d. The geometrical gate ca-
pacitance is noted Cg while quantum capacitance effects
are accounted for by Ce. This point-like description is
inspired by transmission line models but similar results
have been obtained with a more elaborate plasmon dis-
tributed model, adding some finite size effects which are
disregarded here (see more in section Experimental con-
siderations).

Introducing the Fourier modes I±g and V ±g for the gate
transmission line, one obtains from Kirchhoff’s laws at
the coupling point (x, y) = (0, 0) the relations between
input and output currents in each of the arms:

I in
g − Iout

g =
∑
i=±

(
Iout
e,i − I in

e,i

)
(9)

∀ i = ±, ΛeI
out
e,i − Λ∗eI

in
e,i =

Ce
Cg

(
ΛgI

out
g − Λ∗gI

in
g

)
(10)

where I
in/out
g = I±g |y=0+ , I in

e,± = I±e |x=0∓ , I
out
e,± =

I±e |x=0± (see Fig.1d), and Λe(ω) = 1 + jωZeCe, Λg(ω) =
1+jωZgCg. Solving these three equations yield the scat-
tering matrix elements, relating outgoing to ingoing cur-
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rents [48] :

Sgg =
1 + 2Ce

Cg

Λ∗g(ω)

Λe(ω)

1 + 2Ce
Cg

Λg(ω)
Λe(ω)

(11)

Sg± =
2jωZeCe

1
Λe(ω)

1 + 2Ce
Cg

Λg(ω)
Λe(ω)

=
Ze
Zg
S±g (12)

S±± =
Λ∗e(ω)

Λe(ω)

1 +
2Λg(ω)
Λ∗e(ω)

Ce
Cg

1 +
2Λg(ω)
Λq(ω)

Ce
CX

(13)

S±∓ =
Ce
Cg

Λg(ω)

Λ2
e(ω)

2jωZeCe

1 + 2Ce
Cg

Λg(ω)
Λe(ω)

(14)
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FIG. 2. Scattering coefficients of a capacitive contact:
|Sg±| is represented a a blue line, |S∓±| as a red line, and
|S±±| as a yellow line. For each coefficient, the grey dashed
lines indicate the low and high frequency asymptotes, ob-
tained analytically. The graphs are obtained with parameters
Ce = 16 fF, Cg = 8 fF,K = 0.5.

The modulus of Sg±, S±± and S±∓ are plotted in Fig.2
as function of frequency f = ω

2π , for a realistic set of
parameters (see Experimental considerations). In these
coefficients, two RC time-scales appear, namely the gate
one ZgCg and that of the edge states ZeCe, defining two
regimes: low frequencies for which ω � 1/ZgCg, 1/ZeCe,
and high frequencies with ω � 1/ZgCg, 1/ZeCe. In the
low frequency regime, the capacitive elements Cg, Ce play
the dominant role. We in particular observe that Sg± '
2jωZeCe, S±∓ ' jωCeCgCt, with Ct =

2CeCg
Cg+2Ce

the total

capacitance.

In contrast, at high frequency, the capacitors are trans-
parent, and do not play any role. The scattering ele-
ments are thus dominated by the impedance mismatch
[38] between the edge states (impedance Ze) and the gate
(impedance Zg) with for instance Sg± = 2Ze

Ze+2Zg
' 2.

This high frequency limit of transport and the role of the
low impedance environment are both often disregarded
but play here a crucial role. Indeed, as we will see below,
their interplay through impedance mismatch provides a

very straightforward approach to measuring Ze and thus
K.

a b

c d

FIG. 3. Geometry of the linear and ring resonators: a,
c) Schematic view of a linear (a) and ring (c) resonator for
the edge states of the QSH effect (in red and blue solid lines).
Capacitive contacts are depicted in yellow. b,d) Equivalent
transmission line representation of the linear (b) and ring (d)
resonators.

Linear and ring resonators – In this section, we in-
troduce the geometry of linear and ring ”resonators” in
which the two edge states are confined between two ca-
pacitive contacts (Fig.3). In the linear resonator (Fig.3a),
the contacts are separated by a distance d and we as-
sume that the regions outside the contacts are semi-
infinite, and sink all incoming wave. In the ring ge-
ometry (Fig.3c), the edge states circulate along a disk-
shaped mesa of radius r, with the two contacts placed
symmetrically on either side of the disk. Each struc-
ture forms a two-port device, with equivalent transmis-
sion line representations depicted in Fig.3b and 3d. The
schemes in Fig.3b and 3d highlight the analogy with
stepped impedance resonators, with regions of impedance
Ze comprised between ports of lower impedance Zg. Us-
ing the scattering matrix of the free QSH edge and of
the capacitive contact, we compute the transmission T
of each device and analyze it below. The reflexion co-
efficient on each contact is disregarded as it is mostly
dominated by Sgg ' 1, and we assume for now that the
devices are ballistic.

Starting with the linear resonator, summing the con-
tributions of all waves, one obtains the transmission:

T =
Sg+S+ge

−jω dv

1− S+−S−+e−2jω dv
=
Zg
Ze

S2
g+e
−jω dv

1− S2
+−e

−2jω dv
(15)

T exhibits the familiar form of a Fabry-Pérot res-
onator: the numerator reflects the direct path from one
gate to the other, while the denominator encodes the
multiple round-trips in the cavity. The modulus |T | and
phase arg(T ) are plotted in Fig. 4 (panels a and b) for
K = 0.25, 0.5 and 1. We first note, that, since S+−
remains small, the FP oscillations are quite weak, and



4

K=0.25

K=0.5

K=1

a

b

c

d

FIG. 4. Transmission for the linear and ring resonators: a,b) For K = 0.25, 0.5, 1, the modulus |T | (panel a) and phase
arg(T ) (panel b) of the transmission of the linear resonators are plotted as solid colored lines. In panel a), the dashed lines

represent the approximation
Zg
Ze
|Sg+|2 and the high frequency asymptote |Tsat|, allowing to determine K. In panel b), the

dashed line represents the asymptote ωd/v, giving access to v. c,d) For K = 0.25, 0.5, 1, the modulus |T | of the transmission
of the ring resonators are plotted as solid colored lines. In panel c), the solid grey line represents the interval ∆f between two
resonances. In panel d), the dashed lines represents the approximation given in Eq.(17), while the solid grey lines represent the
peak widths δf , allowing to determine K. All graphs are obtained with parameters Ce = 16 fF, Cg = 8 fF, v = 1× 106 m s−1, d =
10 µm, r = 6 µm.

most of the excitation signal leaks to the regions lo-
cated beyond both capacitive contacts. The transmis-
sion T is thus governed by its numerator (plotted as
a grey dashed line in Fig.4a). At low frequencies (for
ω � 1/ZgCg, 1/ZeCe), T is quite low, dominated by the
succession of two capacitive elements S2

g+, with |T | ∝ ω2.
The physics of interactions remains mostly inaccessible.
On the opposite, at high frequencies, |T | saturates at a
maximum value |Tsat| imposed by the saturation of Sg+,

with |Tsat| =
4Zg
Ze

=
8KZg
RK

. In this regime, Sg+ is real,

such that arg(T ) ' ωd
v . This simple geometry thus allows

for a very direct readout of the velocity v (from arg(T ))
and of the Luttinger interaction parameter K (via |Tsat|).

We now move on to the case of the ring resonator.
In this case, many waves, scattering on either of the con-
tacts, interfere and contribute to the output current. The
transmission T can be analytically derived in full gener-
ality and reads:

T =
2Zg
Ze

S2
g+e
−jω πrv

(
1− e−2jω dv (S2

++ − S2
+−)

)
(

1− 2e−jω
d
v S+− − e−jω

2πr
v (S2

++ − S2
+−)

)(
1 + 2e−jω

πr
v S+− − e−jω

2πr
v (S2

++ − S2
+−)

) (16)

As can be seen from Fig.4c and 4d, T exhibits many
features, with a quite complex behavior. Nonetheless, in
the high frequency regime ω � ZgCg, ZeCe, the different
Sij coefficients are all real, and S+− is rather small, so
that T can be approximated by the following formula

(plotted as a dashed grey line):

T =
2Zg
Ze

S2
g+e
−jω πrv

1− e−jω 2πr
v S++(S++ + 2S+−)

(17)

In this regime, one again recognizes a familiar Fabry-
Pérot resonator, with an effective ”mirror” reflection co-
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efficient Γ = S++(S++ + 2S+−). Equidistant resonance
peaks are separated by ∆f = v

2πr the round-trip fre-
quency, allowing for a simple extraction of v. Here, losses
are ignored, and the geometry is closed. As a conse-
quence, the amplitude of the peaks tends to 1 in the
high frequency regime, regardless of parameters. How-
ever, the impedance Ze acts on the value of S±±, hence
on the reflexion Γ which determines the peak width: we
find that the width of the peaks (FWHM) is given by

δf = v
2πr

16
√

3KZg
πRK

, allowing for determining K. One can
also simultaneously evaluate the relatively high quality
factor Q = ∆f

δf = πRK
16
√

3KZg
' 60

K .

Beyond the ballistic limit – The devices previously
introduced provide direct simultaneous access to v and
K. One can however wonder how scattering in the chan-
nels could alter the previous results. In this framework of
transmission lines, a basic model of scattering is proposed
via an additional line resistance Re, in series with Ce.
To lowest order [38], the propagation term s± then ac-

quires an additional exponential term e−
Re
2Ze

d. It is then
straightforward to show that the linear resonator exhibits

a modified saturation value |Tsat| =
8KZg
RK

e−
Red
2Ze , while

the phase arg(T ) is not modified. The change of |Tsat|
is illustrated in Fig.5a, for loss parameters recently mea-
sured in HgTe layers [49] for which Re ranges from ∼ 0.1
to ∼ 3 kΩ µm−1. In the ring resonator, the FP peaks are
more strongly modified. They have a decreased maxi-
mum transmission |Tmax| < 1 and an increased width δf
reading:

|Tmax| =
8Zge

−πRerZe

Ze(1− e−
πRer
Ze ) + Zg(1 + e−

πRer
Ze )

(18)

δf =
v
√

3

2π2r

[
(1 +

16KZg
RK

)e
πRer
Ze − 1

]
(19)

As a consequence, in Fig.5b, we observe that a finite
Re strongly suppresses the Fabry-Pérot resonances in the
ring resonator. From Eq.17, one notices that for largeRe,
the featureless transmission T is then analogous to that

of the linear resonator, with |T | → 16KZg
RK

e−
2πrRe
2Ze . In

any case, measurements of samples with different travel
lengths should be employed to carefully take this effect
into account.

Experimental considerations – Finally, we review the
conditions required to perform the experiments. First,
we note the impedance mismatch which allows for deter-
mining K yields rather small values of |Tsat| ' 0.005 '
−45 dB. Though small, these values are customary when
measuring edge states in the microwave regime [41] and
remain experimentally measurable with standard Vector
Network Analyzers (VNAs).

Second, we stress that we have restricted this study
to short distances (here d = 10 µm, r = 6 µm) so that
the edge states remain as close as possible to the ballistic
limit, usually 5 to 10 µm [49–51]. Besides, in a recent

a

b
Re=0 kΩ/μm


Re=0.1 kΩ/μm

Re=3 kΩ/μm

FIG. 5. Effect of losses on the transmission: a) For
Re = 0, 0.1 and 3 kΩ µm−1, the modulus |T | of the trans-
mission of the linear resonator are plotted as solid colored
lines. The dashed lines represent the high frequency asymp-
tote |Tsat|. b) For Re = 0, 0.1, 3 kΩ µm−1, the modulus |T |
of the transmission of the ring resonators are plotted as solid
colored lines. The dashed lines represents the approxima-
tion given in Eq.(17), while the solid grey lines represent
the peak widths δf . All graphs are obtained with parame-
ters Ce = 16 fF, Cg = 8 fF, v = 1× 106 m s−1,K = 0.5, d =
10 µm, r = 6 µm.

study of HgTe quantum wells [41], we have measured
the quantum capacitance, which remains large even in
the topological gap. From the data, we estimate that
v & vF ' 1× 106 m s−1, Cg ' 8 fF and Ce = 16 fF for
a gate with a area A = 2 µm2. Given these parameters,
the high frequency range of the study identified in Figs.
2 and 4 lies beyond 20 GHz. This is challenging but not
inaccessible thanks to the development of cryogenic mi-
crowave probe stations. They allow measurements down
to 4 K and up to 67 GHz [52, 53], with accurate in-situ
microwave calibration. Besides, these parameters ensure
that the point-like description of the gate coupling is suf-
ficient, as the finite length of the gate

√
A is always much

smaller than the plasmon wavelength in the whole fre-
quency range, i.e. such that

√
A � v/f .

In other systems, with smaller velocities [54], or when
quantum and geometric capacitances are smaller, larger
gates may be necessary. In that case, the transmission
line approach with point-like contacts between gate and
edge states in principle fails. A long-range distributed
gate coupling can be worked out based on Ref. 55. The
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results described here can then be adapted to take into
account the additional effects (propagation, finite-size ef-
fects) arising, and the validity of our approach is not
questioned.

Finally, we point out that the presence of a metallic
top-gate (which screens interactions) and its distance to
the helical edge channels may significantly modify the
value of v and K. Several configurations (back gate, top
gate, resistive top gate [56]) could thus be tested. In
combination with DC measurements, one could also as-
sess the influence of Coulomb interactions on scattering
in helical edge channels, as suggested by many theoretical
works [8–10].

CONCLUSION

As a conclusion, we have used the analogy between he-
lical Luttinger liquids of a QSH insulator and microwave
transmission lines to develop simple models of helical
Luttinger and their coupling to local capacitive contacts.
We have combined these building blocks in two different
resonator geometries, and have shown that the measure-
ments of the microwave transmission coefficient T allows
for a very natural determination of the velocity v and
Luttinger parameter K. Thus, a full characterization of
Coulomb interaction can be obtained, shining new light
on its consequences on the dynamics and back-scattering
in helical edge states. The challenge resides in the use
of high frequencies (> 10 GHz), now readily accessible in
cryogenic microwave probe stations, in combination with
conventional VNAs.

We believe that the general framework developed here
for helical liquids can be extended to other types of in-
teraction 1D systems, such as the chiral edge states of
the integer and fractional quantum Hall effects (though
the geometries studied in this article are irrelevant). Fu-
ture developments will thus aim at proposing geometries
unveiling the exact nature of modes (charged vs neutral
modes, Majorana edge states, etc.) and better under-
stand the effects of edge reconstructions.
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D. Glattli, B. Etienne, Y. Jin, and M. Büttiker, Physical
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lon, R. Schlereth, C. Brüne, H. Buhmann, and L. W.
Molenkamp, Physical Review B 96, 195104 (2017).

[41] M. C. Dartiailh, S. Hartinger, A. Gourmelon, K. Ben-
dias, H. Bartolomei, H. Kamata, J.-M. Berroir, G. Feve,
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