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I. Surface states of a THJ

Since kz does not commute with position, [z, kz] = i, we simplify the Hamiltonian in Eq. (1) of the main text with

the following rotation |Ψ〉 = e−iπ1̂⊗τ̂y/4|Ψ′〉 to the chiral basis (with µ = 0)

Ĥc =


0 vF k+ 0 â

vF k− 0 â 0
0 â† 0 −vF k+

â† 0 −vF k− 0

 , (1)

where we introduce k± = ky ± ikx and the operator â = −[vF ikz + ∆(z)]. In the following we solve this Hamiltonian
for two different potentials f(z/`) in ∆(z) = 1

2 (∆2 −∆1)[δ + f(z/`)].

a. Domain wall potential

We consider the smooth domain wall f(z) = tanh(z/`) and search for the bound states of the Schrodinger equation.
This situation is very similar to that in Ref. [1–3] that we will follow closely. We first perform the change of variable
s = [1− tanh(z/`)]/2 so that

â =
2vF
`
s(1− s)∂s − (∆̄ + δ∆− 2δ∆s), (2)

â† = −2vF
`
s(1− s)∂s − (∆̄ + δ∆− 2δ∆s). (3)

We now consider the equations for the squared Hamiltonian in Eq.(1) and decompose the wavefunction into two
spinors φσ, σ = ± so that Ψ = (φ+, φ−). One finds[

1

2

({
â†, â

}
+ σ

[
â†, â

])
− (E2 − v2

F k
2
‖)

]
φσ = 0 (4)

=⇒

[
s(1− s)∂2

s + (1− 2s)∂s −
(

`

2vF

)2
{

[∆̄ + (1− 2s)δ∆]2 − (E2 − v2
F k

2
‖)

s(1− s)
− σ 4vF δ∆

`

}]
φσ = 0. (5)

We then perform the following replacement of the wavefunction φσ(s) = sα(1 − s)βuσ(s) in order to get rid of the
1/s(1−s) singularity and recognize Euler’s hypergeometric equation [4]: s(1−s)∂2

sφ+[c− (1 + a+ b)s] ∂sφ−abφ = 0.
The parameters α and β fulfill  α2 = (`/2vF )

2
[
∆2

1 − (E2 − v2
F k

2
‖)
]

β2 = (`/2vF )
2
[
∆2

2 − (E2 − v2
F k

2
‖)
] , (6)

and in the following we choose the positive roots of those equations. The equation is now[
s(1− s)∂2

s + [1 + 2α− 2(1 + α+ β)s] ∂s −
{

(α+ β) (α+ β + 1)− `δ∆

vF

(
σ +

`δ∆

vF

)}]
uσ(s) = 0, (7)

which corresponds to the Euler hypergeometric differential equation. We now introduce the auxiliary parameters
aσ = 1/2 + α+ β +

∣∣∣1/2 + σ `δ∆vF

∣∣∣ ,
bσ = 1/2 + α+ β −

∣∣∣1/2 + σ `δ∆vF

∣∣∣ ,
c = 1 + 2α.

(8)

For each value of σ, there are two solutions to this equation that are described by the hypergeometric functions [4]

2F1(a, b, c; s) =
∑∞
n=0

(a)n(b)n
(c)n

zn/n! with (x)n = x(x + 1) · · · (x + n − 1) . The solutions are uI(s) = 2F1(a, b, c; s)

and uII(s) = s1−c
2F1(1 + a − c, 1 + b − c, 2 − c; s) but uII(s) does not describe bound states since φII(s ∼ 0) =

sα(1− s)βuII(s ∼ 0) ∼ s1+α−c which diverges at s = 0 (x =∞) since 1 + α− c = −α < 0. On the other hand, while
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φI(s ∼ 0) = sα(1− s)βuI(s ∼ 0) ∼ sα goes to zero at s = 0 (x =∞), one can check its behavior at s = 1 (x = −∞).
We use the following relation from Ref. [4]

2F1(a, b, c; s) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1(a, b, a+ b+ 1− c; 1− s) (9)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− s)c−a−b 2F1(c− a, c− b, 1 + c− a− b; 1− s),

and find that for s ∼ 1 (x = −∞)

φσ(s ∼ 1) ∼ Γ(c)Γ(c− aσ − bσ)

Γ(c− aσ)Γ(c− bσ)
(1− s)β +

Γ(c)Γ(aσ + bσ − c)
Γ(aσ)Γ(bσ)

(1− s)−β (10)

which should diverge since β > 0 unless Γ(aσ) or Γ(bσ) diverges. This happens if either aσ or bσ is a negative integer
and since a > b, this should happen on b. Then one has the following quantization, with n ∈ N,√

∆2
1 − (E2 − v2

F k
2
‖) +

√
∆2

2 − (E2 − v2
F k

2
‖) =

∣∣∣∣2vF`
∣∣∣∣ [∣∣∣∣12 + σ

`δ∆

vF

∣∣∣∣− (n+
1

2
)

]
≡ gσ(n), (11)

and the eigenenergies are thus

E = ±

√
v2
F k

2
‖ −

1

4g2
σ(n)

[g2
σ(n)− 4δ∆2][g2

σ(n)− 4∆̄2]. (12)

Also, as we have shown, the long range behavior of the wavefunctions is described by (i) φ< = (1−s)β = 1/(1+e−z/`)β

for s ∼ 1 (x ∼ −∞), and (ii) φ>(s) = sα = 1/(1 + ez/`)α for s ∼ 0 (x ∼ ∞). This implies that α, β > 0 which
according to Eq. (6) means that E2 − (vF k‖)

2 < min(∆2
1,∆

2
2). Moreover, since α, β also appear in the definition of

bσ = −n we find that α2 − β2 = (`/2vF )24∆̄δ∆ and α+ β = gσ(n)`/2vF .

gσ(n) > 2
√
|∆̄δ∆|. (13)

Here, we are not interested in the exact form of the wavefunctions, and we will therefore not detail the exact form
of the solutions; these technical details can be found in Ref. [1 and 3]. In the main text, we discuss the two limits
`� vF /δ∆ (smooth/thick interface) and `� vF /δ∆ (abrupt/thin interface). In fact we can consider two situations :
Thick interface, |`| > |vF /2δ∆|. In this situation, one can write

gσ(n) = 2 |δ∆| −
∣∣∣∣2vF`

∣∣∣∣ [n+
1− sgn(σ`δ∆/vF )

2

]
. (14)

One finds that the two set of states σ = ± are thus related by a family of states with φ+ ∼ |n〉 and φ− ∼ |n +
sgn(`δ∆/vF )〉 as in Landau levels. This implies the existence of a chiral n = 0 state which has the polarization φσ
with σ = −sgn(`δ∆/vF ). For notation simplicity we take g(n) = g+(n) = 2(|δ∆| − |vF /`|n) and from Eq. (13) one
finds that n ∈ N is such that

n < Nmax. =
`|δ∆|
|vF |

(
1−

√∣∣∣∣ ∆̄

δ∆

∣∣∣∣
)
, (15)

thus one can only find bound states (Nmax. ≥ 0) if |∆̄/δ∆| < 1 which corresponds to situations with gap inversion
(∆1∆2 < 0).

Thin interface, |`| < |vF /2δ∆|. In this situation, one can write

gσ(n) =

∣∣∣∣2vF`
∣∣∣∣ [sgn(σ`δ∆/vF )

∣∣∣∣`δ∆vF
∣∣∣∣− n] . (16)

From this expression and from the condition for bound states (13), one finds that

−n > sgn(σ`δ∆/vF )

∣∣∣∣`δ∆vF
∣∣∣∣+

∣∣∣∣ `

2vF

√
∆̄δ∆

∣∣∣∣ > sgn(σ`δ∆/vF )

∣∣∣∣`δ∆vF
∣∣∣∣︸ ︷︷ ︸

∈[0, 12 ]

, (17)
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which has the solution n = 0 only for the spinor φσ with σ = −sgn(`δ∆/vF ).

The previous results show that in the smooth interface the bound states have the following spectrum, for n ∈ N,

E = ±

√
v2
F k

2
‖ −

1

f2(n)
[f2(n)− δ∆2][f2(n)− ∆̄2], (18)

with f(n) = |δ∆| − |vF /`|n and n < Nmax. = `|δ∆|
|vF |

(
1−

√∣∣∣ ∆̄
δ∆

∣∣∣). More explicitly one can write

E = ±

√√√√√v2
F k

2
‖ + 2n(1− ∆̄2/δ∆2)

∣∣∣∣vF δ∆`
∣∣∣∣
(
1−

∣∣ vF
2`δ∆

∣∣n) (1 + |vF /`|
∆1

n
)(

1− |vF /`|∆2
n
)

(
1−

∣∣ vF
`δ∆

∣∣n)2 (19)

≈ ±

√
v2
F k

2
‖ + 2n(1− ∆̄2/δ∆2)

∣∣∣∣vF δ∆`
∣∣∣∣+ o

(vF
`

)
(20)

which correspond to the limit of a large interface, `� vF /δ∆.

b. Surface states for the linearized potential

In order to obtain more physical insight in the nature of the MSS, let us now focus on the limit of a linearized
interface ` � ξ, for which the length `n in Eq. (3) of the main text of the lower energy states (n � N) yields
`n ≈ `S/

√
2n with `S =

√
`ξ/(1− δ2). The values for `S [5] and N [6] strongly depend on the underlying interface

potential. The spectrum (19) is then identical to Landau bands of the Dirac equation in a uniform magnetic field
with a magnetic length `S (20). The relation to Landau levels can be made explicit by linearizing the gap function
∆(z) around the interface with f(z/`) = vF z/`

2
S in (1). Choosing z = 0 as the position where ∆(z) changes sign, we

write

∆(z) ' sgn(∆2 −∆1)vF z/`
2
S , (21)

as in Ref. 7. The operators ĉ = `S â/
√

2vF , ĉ
† = `S â

†/
√

2vF act as ladder operators,
[
ĉ, ĉ†

]
= sgn(∆2 − ∆1).

Following the procedure for Landau bands [8], in the case ∆2 > 0 > ∆1 [9], we write the eigenstates in the form
Ψn = [α1,n|n− 1〉, α2,n|n− 1〉, α3,n|n〉, α4,n|n〉]. The eigenstates |n〉 of the number operator n̂ = ĉ†ĉ are the usual
harmonic-oscillator wavefunctions, in terms of the Hermite polynomials Hn(z),

ψn(z) ∝ Hn(z/`S)e−z
2/4`2S , (22)

centered at the interface (around z = 0) with a typical localization length

√
2n`S '

√
2n`n '

√
2n`ξ/(1− δ2) (23)

due to their Gaussian factor. Notice that the expression of the localization length coincides with that [Eq. (3)] of the
main text in the limit of a smooth interface, for `� ξ.

The spectrum and eigenstates for n ≥ 1 are obtained by diagonalizing the Hamiltonian

Ĥc,n = vF


0 k+ 0

√
2n
`S

k− 0
√

2n
`S

0

0
√

2n
`S

0 −k−√
2n
`S

0 −k+ 0

 . (24)

Moreover, the n = 0 state is special in that it is chiral with Ψ0 = [0, 0, α|0〉, β|0〉] and the Hamiltonian acting on the
(α, β) coefficients is Ĥc,0 = vF (kyσ̂x − kxσ̂y) ⊗ P̂sgn(∆2−∆1) where P̂σ = [τ̂z − σ1̂]/2 is a projection operator on the
chiral |σ〉 = |±〉-states.
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II. Surface states in an electric field

a. Lorentz boost

We assume a z-dependent chemical potential µ(z) = 1
2 (µ2 − µ1)f(z/`) in Eq. (1) which has the same profile

f(z/`) than the gap ∆(z) with f(±∞) = ±1. Performing a Lorentz boost [10, 11] on Eq. (1) with µ(z), one finds

|Ψ̃〉 = N e−η1̂⊗τ̂z/2|Ψ〉 in the new frame of reference. The Schrödinger equation then becomes Ĥ ′c|Ψ̃〉 = ε|Ψ̃〉 for
tanh(η) ≡ β = −(µ2 − µ1)/(∆2 −∆1) ∈ [−1, 1], with

Ĥ ′c = −1

2
(µ2 − µ1)δ1̂ + Ĥc(v

′
F , ξ
′, δ′, `) (25)

and Ĥc defined in Eq. (1) with v′F =
√

1− β2vF , ξ′ = ξ/
√

1− β2 and

δ′ =
1

1− β2

[
δ +

ε(µ2 − µ1)/2

(vF /ξ)2

]
. (26)

The surface states spectrum with and without a chemical potential drop are thus related by renormalized vF , ξ and
δ, and by a shift in the spectrum of µS = − 1

2 (µ2 − µ1)δ. This shift is used in ARPES measurements [12, 13] for
estimating the electrostatic band bending within the hypothesis δ = 1.

b. Case of a linearized potential

Much intuition can be also gained by considering a linearized interface ` � ξ (i.e. a uniform electric field)
corresponding to a spectrum

εn,± = −1

2
(µ2 − µ1)δ ± v′F

√
k2
‖ + 2(1− β2)1/2n/`2S , (27)

where `S =
√
`ξ is independent of δ [10]. We recover the flattening of surface states band dispersion with v′F =√

1− β2vF [7, 14–16], the reduction of the band gap of the MSS with (vF /`n)′ = (1 − β2)3/4vF /`n [10, 17–19]
and, moreover we identify the surface chemical-potential as µS = − 1

2 (µ2 − µ1)δ, which corresponds to the value of
µS = µ(z0) at the position z0 where gap vanishes, ∆(z0) = 0. This surface chemical potential µS naturally depends
on the gap asymmetry (δ 6= 0) : the surface states are restricted within the smallest band gap on each side of the
THJ, corresponding to a chemical potential drop smaller than the critical voltage |µ2 − µ1| < eVc.

Note that the chemical doping of the pn-junction is µc. In the case |∆1| < |∆2|, with the convention of opposite
chemical potentials in each bulk semiconductor, its value depends on µ2 − µ1: (i) for µ2 − µ1 < −(∆2 + ∆1),
µc,1 = 1

2 (∆2 + ∆1), (ii) for −(∆2 + ∆1) < µ2 − µ1 < ∆2 + ∆1, µc,2 = − 1
2 (µ2 − µ1) and, (iii) for µ2 − µ1 > ∆2 + ∆1,

µc,3 = − 1
2 (∆2 + ∆1). The surface doping is µc,s = µc − µS and with our model |µc,s| < |δ∆1|.

III. Stability of the chiral surface state

The gapless surface state (n = 0) does not depend on ∆(z) nor on the interface width `. The chiral eigensolutions
Ψ+ = (φ1,+, φ2,+, 0, 0) and Ψ− = (0, 0, φ1,−, φ2,−) to the Hamiltonian (1) correspond to the n = 0 surface state, with
a spectrum ε± = ±vF |k‖|. Within the Aharonov-Casher argument [20, 21], only Ψ+ or Ψ− is a bounded solution, as
demonstrated in Refs. [14, 22, 23]. Indeed, the component φi,s (i =↑↓; s = ±) is a solution of

[vF∂z + s∆(z)]φi,s = 0, (28)

for which the long-range behavior is (i) φi,s ∼ e−sλ1z with λ1 = ∆1/vF for z < 0 and (ii) φi,s ∼ e−sλ2z with
λ2 = ∆2/vF for z > 0. In the case of an infinite-sized sample, these solutions decay only if sλ2 > 0 > sλ1 which
corresponds to s = sgn(∆2 −∆1) and ∆1∆2 < 0. Thus, the n = 0 mode exists as soon as there is band inversion and
its chirality is given by sgn(∆2 −∆1).
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IV. Interpretation of ARPES data in terms of a topological heterojunction

For Bi2Se3, one finds vF = 2.3 eV Å [24] to vF = 3 . . . 5 eV Å [25] and 2∆ = 350 meV [26], and thus ξ ≈ vF /∆ =
6.5 . . . 23 Å. In an oxidizing atmosphere, an oxide layer forms and we estimate the size of the interface as its depth
` ≈ 1 . . . 2 nm [27]. We thus expect N ≈ `/ξ = 1 . . . 3 MSS, as observed in [12, 13]. Moreover, we thus find
`S =

√
`ξ ≈ 8 . . . 20Å and thus an order of magnitude for the MSS band gaps ∆MSS ≈ vF /`S = 100 . . . 600 meV

which is in reasonable agreement with the results found in [12, 13].
From [12], we can extract the following band gaps: (i) ∆+,n=1 ≈ 330 meV and ∆+,n=2 ≈ 450 meV for the electron-

like MSS and (ii) ∆−,n=1 ≈ −330 meV and ∆−,n=2 ≈ −400 meV for the hole-like MSS. The ratios of the n = 1 and
n = 2 MSS band gaps from the Dirac point are expected to be

√
2 ≈ 1.4, within the linear-gap approximation, and

here we find ∆+,2/∆+,1 ≈ 1.36 and ∆−,2/∆−,1 ≈ 1.2. We read these bands gaps from the extremal surface potential
in [12] which we identify as Vs = ±200 meV by setting Vs = 0 as the potential were the MSS are the furthest to the
Dirac point. In our theory we expect the same band gaps for the electron-like and the hole-like MSS for opposite
band bending since all quantities depend on β2 ∼ V 2

s . The fact that the experimentally observed gaps are roughly
the same is a strong indication of the topological origin of the surface states, in agreement with our theoretical model,
and indicates the absence of relevant band bending.

The breakdown voltage for a THJ involving Bi2Se3 is eVc > 2∆ = 350meV. We thus expect that β = V/Vc
introduced in the main text is β < βmax = Vs/Vc = 0.56. Thus, the renormalisation in [12] of the Fermi velocity is

at most v′F /vF =
√

1− β2 = 0.82 and that of the band gap is at most ∆′/∆ = (1− β2)3/4 = 0.75. It is hard to tell
from figures in [12, 13] if these quantities are indeed renormalized within the reading precision.

These points show that a quantitative analysis of the ARPES measurements on oxidized Bi2Se3 may provide insights
in the band inversion surface states and help identify the breakdown voltage.
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