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Abstract
Today, the availability of high mobility graphene up to room temperature makes
ballistic transport in nanodevices achievable. In particular, p-n-p transistors in
the ballistic regime give access to Klein tunneling physics and allow the reali-
zation of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as
in the Veselago lens or the Fabry–Pérot cavity. Here we propose a Klein tun-
neling transistor based on the geometrical optics of DFs. We consider the case of
a prismatic active region delimited by a triangular gate, where total internal
reflection may occur, which leads to the tunable suppression of transistor
transmission. We calculate the transmission and the current by means of scat-
tering theory and the finite bias properties using non-equilibrium Greenʼs
function (NEGF) simulation.

Keywords: graphene, Klein tunneling, ballistic, transistor, Dirac fermion optics

I. Introduction

As a high mobility material, graphene is well suited to high frequency electronics [1, 2].
Additionally, thanks to the weakness of electron–phonon coupling [3–6], the high mobility
persists at high temperature [7] so that one can envision ballistic graphene electronics in realistic
operating conditions. The absence of a band-gap restricts the switching off capability of
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graphene, the conductivity reaching a shallow minimum at charge neutrality limited by the
quantum of conductance e h4 2 . For logic electronic applications a band-gap can be restored
using e.g. geometrical confinement [8], but this is usually at the cost of reduced mobility. In
microwave electronics both a high mobility and a significant switching capability are needed to
achieve large voltage and power gains at high frequency. To this end we explore here the new
possibilities offered by Klein tunneling (KT), a hallmark of Dirac fermions (DFs).

We consider the case of p-n-p transistors where the resistance at the source–gate and
gate–drain junctions is dominated by the Klein tunneling effect, while DFs propagate
ballistically in the barrier [9]. With graphene being ambipolar, the generalization to n-p-n
transistors is straightforward. This is the regime of DF optics where refraction and transmission
at the interfaces are determined by Fresnel-like relations [10] and depend on the abruptness of
junctions [11, 12]. Architectures exploiting the optical properties of DFs have been already
proposed, such as the Vaselago lens [11, 13], and demonstrated, such as Fabry–Pérot
interferometers [14–16] or tilted p-n junctions [17, 18] (for a review, see reference [19]). The
possibility of a ‘latticetronics’ of Klein tunneling currents in an armchair ribbon using potential
barriers has also been recently discussed [20]. Here we consider a different geometry, that
exploits total internal reflection in a Klein tunneling prism. The prism is made of an n-doped
ballistic triangular domain embedded in a p-doped diffusive area, the latter being controlled
electrostatically or chemically. As in light reflectors, an array of KT-prisms can be used to form
the active channel of a Klein tunneling transistor; this geometry minimizes the gate length to
keep ballistic transport conditions in a way similar to Fresnel lenses which minimize glass
weight and light absorption [21]. In this work we calculate the low-energy transmission of such
a device using scattering theory, i.e. within an intuitive and physically transparent approach.
Our study is supplemented by atomistic simulations using the non-equilibrium Greenʼs function
(NEGF) formalism that includes a more complete description of quantum transport. It gives
access to finite bias properties while accounting for short gate effects like direct drain–source
tunneling, diffraction, dispersion and finite temperature effects. Both approaches predict for the
Klein tunneling transistor a strong suppression of conductance that can eventually go below the
minimum conductance at charge neutrality. This transistor can be used as a tunable barrier for
electrostatic quantum confinement to achieve, e.g. single Dirac fermion pumps working at low
temperature. It is also suited for microwave electronics as it cumulates significant resistance in
the OFF state with a large conductance in the ON state. A nanoscale variant has been recently
proposed that predicts very large ON–OFF ratios for logic applications [22]. Our approach is
different: it is based on geometrical DF optics following reference [23]; it is more conservative
in accounting for diffusive transport in the leads and targets microwave electronic applications
[24, 25].

The principle of the Klein tunneling prism is sketched in figure 1. It can be understood by
scattering theory and relies on the total internal reflection in a triangular n-doped graphene
region (concentration n, angle α), the refractive medium, embedded in a p-doped environment
(concentration ≲p n) playing the role of vacuum. The refraction at the input p-n junction obeys

a Snell–Descartes-like relation ϕ ν θ=sin sin
1 1 where ν = − n p/ is the (negative) refraction

index [10] as sketched in the figure. The transmission ϕ( ) can be calculated for a sharp
junction [11], but also for smooth junctions (see below and reference [12]). The latter case is
more realistic and suitable for device modeling. The main feature of Klein tunneling is the
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enhanced forward scattering for ≫n p. As shown in the figure, the refracted DF beam is

focussed along the junction normal within an angular opening θ θ⩽ c1 , where θ ν= arcsin (1/ )c

is the critical angle. At the drain side, which is an n-p junction where DFs are impinging at
incidence ϕ α θ= −

2 1, the Snell–Descartes relation reads ν ϕ θ=sin sin
2 2. For ν ≫ 1, this

implies total reflection for ϕ ϕ⩾
c2
, with ϕ θ=

c c for symmetric drain and source doping (and

zero bias). The condition is met for any ray incident to the prism provided that θ α< /2c or

α> ( )( )n p sin /2
2
. Finally, the reflected beams are transmitted back to the source junction.

The reflection can be controlled and transmission restored, on decreasing n-doping, i.e.
increasing θc, as shown in figure 1(b). Note that one obtains an equivalent effect on decreasing
the prism angle down to α = 0; it means that the transmission in the open state ≃n p (or
ν = −1) should approach that of a rectangular gate transistor. Taking α = 45 deg, one can

estimate the gate doping for full reflection: >n p6.8 (or ν > 2.6). The transmission of a KT
transistor is suppressed here when increasing the gate doping deep in the metallic regime; this is
a marked difference with conventional semiconducting transistors where transmission is
suppressed on pinching-off the channel. Operating a transistor with a large intrinsic
transmission should benefit the dynamical and noise properties of the device. In order to
establish the above sketch, a full calculation is needed that accounts for finite transmission and
multiple reflection effects.

We rely on the realistic modeling of the p-n junctions. Translational invariance along the
junction parallel to the y-axis yields the above-mentioned Snell–Descartes relation between θ and
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Figure 1. Principle of total reflection in a Klein tunneling prism. The refraction angle of
Dirac fermion (DF) beams (red rays) and their angular dependent transmission
amplitude (blue lobes) are controlled by the optical-like index ratio ν = − n p/ of the p
and n regions. (a) OFF state ≫n p. Anisotropic forward scattering occurs at p-n
junction: the refracted rays are mostly transmitted along the junction normal within a
lobe limited by θ θ< c1 . The n-p junction selects the incident carriers that are close to

the normal to the junction (i.e. ϕ ϕ<
c2
); others being reflected. (b) ON state ≃n p. In

this case θ ϕ= = 90 degc c
which means all incident rays are transmitted with large

transmission coefficients at both interfaces.



ϕ. A smooth junction, characterized by a length ≫ −d kp
1 where kp (resp. ν=k kn p) is the Fermi

wave number in p-doped (resp. n-doped) region, has a transmission ϕ ≃( )smooth
π ϕ− +⎡⎣ ⎤⎦( )dk k kexp sinp p n

2 2 [11]. Dealing with intermediate junction length ( ∼ −d kp
1),

we rely on the expression by Cayssol et al reference [12], which is the exact solution for a potential

step described by a Fermi function, = + −
−( )( ) ( )V x V x w1 exp /0

1
(see figure 2(b)).

We use =d w4.5 to make contact with the smooth junction formula. The transmission is

given by ϕ π π π π= − +− −+ ++ −−⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( ) ( ) ( )( ) ( )wk wk wk wk1 sinh sinh sinh sinh , where

α ϕ β θ= + + +αβ ( ) ( )k k k1 cos 1 cosp n . The angular dependence ϕ( ) is displayed in

figure 2(a) for two representative configurations of the OFF state: p-n+and n+-p junctions with
=+n p6 . The contrast is most pronounced for ϕ ≳ 45 deg with ≲− +T 0.6p n and =−+T 0n p , which

is the regime of total internal reflection. The contrast is close to that predicted for a sharp junction
but different from that of a smooth junction (not shown) which justifies the use of the Cayssol
interpolation formula.

The principle of the Klein tunneling prism can be realized in a Klein tunneling transistor
(figure 2(c)) on stacking, head-to-tail, a series of prisms to realize a sawtooth gate with
symmetric elementary units made of an isosceles triangle of opening angle π−2α. This geometry
allows to implement the refractor principle while keeping the gate length short enough to
remain in the ballistic regime. The n-doped barrier is assumed to be ballistic and controlled
by the transistor gate. The leads can be either access regions or simply metallic contacts.
In the latter case, the carrier concentration is set by electrochemical doping, in the former it
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Figure 2. (a) Incident angle ϕ dependence of the transmission coefficient for smooth
junction ( =d 10 nm). Angular dependent transmission at a − +p n and a −+n p
junctions ( =+n p6 ); the contrast is most pronounced for an incidence angle
ϕ = 45 deg. (b) Sketch of the Fermi function potential profile and associated band
structure of a −+n p junction with the length of the junction =d 10 nm. (c) Sketch of a
Klein tunneling transistor with its split gates. The barrier area is blue (n-doping gate)
and the lead areas are green (p-doping gate). Here the Klein tunneling transistor is made
of four elementary units.



can be tuned by a second electrostatic gate. To assess device properties, we calculate the
transmission of DF rays across an elementary triangle. We consider a beam with a given
incidence angle ϕ

1
and position y along the source side. The trajectory of the ray into the

prism is calculated according to above p-n junction refraction and reflection rules iterated
up to twenty internal reflections. The beam intensity inside the prism decreases at each
reflection, the transmitted intensity outside the prism increases accordingly. We then integrate
over y positions and all incident angles (diffusive leads) weighted by the angular density of
states to get the overall transmission 〈 〉= ϕT y, . The results are plotted in figure 3 as function

of gate doping, for = × −p 2.3 10 cm12 2. We estimate the current density per unit width W,

π= ( )( )I W e h k TV/ 4 p ds
2 , which is plotted here for a small =V 10 mVds bias. Panel (a)

shows the effect of the junction sharpness for both rectangular and triangular gates; panel (b)
shows that of the prism angle while keeping the gate area constant. In standard Klein tunneling
with rectangular gates, the transmission saturates at 75% (resp. 45%) for sharp (resp.
10 nm-long) junctions which determines the ON-state current and conductance

μ≃ −g W/ 5 mS m
ON

1 (10 nm-long junction). As seen in panel (b), the OFF-state current is

very sensitive to the prism opening angle; it is zero for α = 45 deg (and ≳n p6 ) but increases
rapidly whenever α deviates by more than 5 deg from this value (see inset of figure 3(b)). From
this analysis, we conclude that the optimal geometry for a KT transistor is α = ±45 5 deg and
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Figure 3. Current density I W/ (and corresponding transmission T) from the scattering
theory of various Klein tunneling p-n-p transistors as a function of gate doping n; with
lead doping of = × −p 2.3 10 cm12 2, for a rectangular gate (dotted lines in panel a) and
saw-tooth gate (solid lines). The rectangular gate reproduces the well-known graphene
transistor behaviour while the triangular geometry has its transmission suppressed at
high doping. (a) Sharp junction (blue lines) shows a higher transmission than smooth
junction (green lines) with a junction length of =d 10 nm. (b) Transmission for various
gate geometry from rectangular (α → 0) to α = 45 deg. Inset: α dependence of current
density (and corresponding transmission) at =n p6 with a minimum for the α = 45 deg
geometry. The star indicates the working point of a rf transistor.



abrupt junctions ( ≲d 10 nm). This estimate is characteristic of the robustness of the device
against geometrical imperfections, like prism asymmetry, apex rounding or p-n junction
roughness. In these conditions, one obtains a significant modulation of transmission in the range
0–0.4 which is appropriate for electrostatic confinement in quantum dots. From the slope of the

( )I Vds curve (working point labeled by a star in figure 3(b)) and considering a gate capacitance

μ= −c 10 fF mg
2 (equivalent SiO2 thickness of 3 nm), we estimate the bias dependence of

transconductance per unit width μ≃− − −g V W 8 mS m V
m ds

1 1 1, of voltage gain =A VV ds

= ≳− − −A V g V g 3 VV ds m ds ds
1 1 1 and of transit frequency π= ≃f V g c LWV(2 ) 1300

T ds m g ds

−GHz V 1 (for a gate length =L 100 nm).
We discuss now the physical limits of our geometrical optics description which relies on

the assumption that ≲ ≪−d k Lp
1 . The refraction principle is scale independent but in practice

the characteristic length of the gate L should be smaller than the ballistic length, while
remaining larger than the electronic wave length to avoid deleterious effects of diffraction. The
principle of the reflector being very sensitive to refraction angles (see the inset of figure 2), an

uncertainty Δθ ∼
−( )k Lp

1
in angular orientation, due to finite wavelength, may drastically affect

the total internal reflection. Another limitation for the OFF state resistance is the direct drain
source tunneling which is also strongly scale dependent. Finally we have neglected for
simplicity the dispersion effects arising from broad sources such as finite bias DF emission. In
order to quantify these effects we have performed a numerical simulation of the KT transistor
by means of NEGF method. Our model is based on a tight-binding Hamiltonian to describe the
electron state in the graphene honeycomb lattice [26].

NEGF simulation assumes a transistor of ballistic graphene whose size is scaled down by a
factor 2.5 with respect to a realistic device to make the calculation achievable with available
computational resources. Additionally, the self-consistent solution of Poissonʼs equation has
been deactivated here to save CPU time. The gate-induced potential in graphene was modelled
as a ‘square’ barrier of height reduced by V 2ds at the source-end and enhanced by V 2ds at the
drain-end. This simple description of potential has been shown realistic from self-consistent
simulation of usual graphene field effect transistors (GFETs) in the p-n-p or n-p-n regimes [27].
The transistor gate is taken either as rectangular or triangular but with the same gate area. The
triangular gate is an elementary unit of figure 2(c). The channel width is 80 nm; the gate length
is 40 nm for the rectangular device. It is modulated between 20 nm and 60 nm for the triangular
device. We set the source side doping to = × −p 2.3 10 cm12 2 which corresponds to a Fermi
energy π= ≃E v p eV0.15F F . The NEGF simulation provides the transmission coefficient

ε( )T through the device, where ε is the carrier energy, considering the charge neutrality point
(CNP) of the source as the zero energy reference. Two situations are considered: a low bias case

= ≪V E e10 mVds F (figures 4(a) and 5(a)) and high bias case = ≳V E e200 mVds F

(figures 4(b) and 5(b)).The former allows direct comparison with (zero bias) scattering
calculations; the latter is typical of a transistor working point.

In figure 4 ε( )T is displayed for the rectangular geometry (red lines) and the triangular
geometry (blue lines) for the ON state of the transistor (dotted lines) and the OFF state (solid
lines). In the ON state (small gate doping) two minima of transmission appear corresponding to
the energy position of the CNP in the lead and in the barrier. A transmission maximum is
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observed that lies mid-way between both CNPs. As ∼n p2 , the maximum coincides with the
Fermi energy, irrespective of the gate geometry. The transmission is large as expected for an
ON state. In the OFF state (large gate doping) the transmission maximum is shifted toward
higher energy and scaled up. The transmission at the Fermi level becomes sensitive to the gate
geometry: it is large for the rectangular gate and small for the triangular one. Oscillation of ε( )T
observed for rectangular gates reflect Fabry–Pérot interferences; they are blurred for triangular
gates. This effect has been neglected in the geometrical optics approach.

From the transmission, one calculates the current flowing through the device on integrating
transmission in the Fermi energy interval between source and drain. Finally we plot in figure 5
the current density I W/ (and corresponding transmission T) as a function of gate doping n.
Rectangular device transmission (red solid lines) and triangular device transmission (blue solid
lines) from NEGF simulations are given for both low bias ( =V 10 mVds figure 5(a)) and high
bias ( =V 200 mVds figure 5(b)). To compare with the scattering theory results we also plot in
5(a) the sharp junction rectangular (resp. triangular) device transmission (red dotted line, resp.
blue dotted line) from figure 3(a).

First of all we notice that NEGF simulation for the rectangular device is in close agreement
with scattering theory. Regarding the triangular device, the agreement is more qualitative. The
maximum current in the ON state is smaller and the OFF state current larger than geometrical
optics predict. We assign the difference to the diffraction effect that is more pronounced in
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Figure 4. Transmission coefficient of the device from the NEGF simulations as a
function of carrier energy ε for a given barrier height (from gate doping n) and a given
Fermi level (from lead doping p). We choose ε = 0 at the CNP of the lead. Dotted lines
(resp. solid lines) correspond to the ON state ∼ × −n 4 10 cm12 2 (resp. OFF state

∼ × −n 6 10 cm13 2). Red lines (resp. blue lines) correspond to the rectangular (resp.
triangular) device. Both panel a (low bias =V mV10ds ) and panel b (high bias

=V mV200ds ) show a similar transmission around the Fermi level in the ON state for
rectangular and triangular devices while transmission is suppressed in the OFF state for
the triangular device only.



small structures for a given Fermi wavelength. For instance, taking ∼−k 10 nmn
1 gives an

uncertainty in the prism geometry, in particular the opening angle with Δα ∼ ∼−( )kL 15%
1

. As
an illustration, we have plotted in 5(a), the current for a triangular device with an opening angle
of α1.15 that compares favorably with the numerical calculation. The high bias response in
figure 5(b) shows a comparable behavior. In both cases, numerical simulations show a current
suppression below the CNP minimum which is the signature of the Klein tunneling transistor.
Our models correspond to two extreme cases of a macroscopic Klein tunneling transistor on one
side and a nanometric device on the other one. An actual Klein tunneling transistor, with a gate
length ≲L 100 nm limited by the elastic mean free path, should have transport properties
bracketed by these two limits. From a technical point of view, abrupt junctions can be realized
using local back gates, split by a nanometer thin gap and insulated from graphene by atomically
thin hexagonal boron nitride layers [7].

In conclusion, we have introduced a Klein tunneling transistor architecture that takes
advantage of anomalous refraction properties of Dirac fermions in graphene to realize a tunable
electrostatic barrier for Dirac fermions. We have used a geometrical optics model to explain the
principle of the transistor. We have performed extensive numerical simulations of nanoscale
variants of the device that confirm the transistorʼs effect while taking a full account of finite size
effects, in particular Dirac fermion diffraction. Our modeling will prove useful for the design of
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Figure 5. Barrier doping n dependence of current density I W/ (and corresponding total
transmission T) for (a) =V 10 mVds and (b) =V 200 mVds . Solid lines (resp. dotted
lines) correspond to NEGF simulations (resp. scattering calculations), red lines (resp.
blue lines) correspond to the rectangular (resp. triangular) device. In panel (a) the
scattering calculation for rectangular device with sharp junctions (red dotted line) is in
good agreement with NEGF. The scattering calculation for the triangular device with
smooth junction =d 10 nm and opening angle α = 52 deg (green dotted line) is a way
to take into account diffraction effects and compares well with NEGF simulation (blue
solid line). Panel (b) inset: −I Vds characteristics of the triangular transistor in the ON

state = × −n 2 10 cm12 2 (black line) and in the OFF state = × −n 6 10 cm13 2 (green
line).



actual devices and to evaluate their potential in terms of single electron pumps and microwave
electronics.
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