
that represses transcription from promoters of

numerous neuron-specific genes in neural precur-

sors and non-neuronal cells (19) (fig. S7). Silencing

of neural-specific genes is mediated via recruitment

of the corepressor CoREST, which functions as a

molecular beacon for the recruitment of specialized

silencing machinery (19). The question of whether

GRSF-induced silencing of male germline–specific

genes in the rest of the plant cells involves

associated corepressor(s) and the nature of the

silencing machinery required for long-term repres-

sion remain exciting areas for further investigation.
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Violation of Kirchhoff’s Laws for
a Coherent RC Circuit
J. Gabelli,1 G. Fève,1 J.-M. Berroir,1 B. Plac$ais,1 A. Cavanna,2

B. Etienne,2 Y. Jin,2 D. C. Glattli1,3*

What is the complex impedance of a fully coherent quantum resistance-capacitance (RC) circuit at
gigahertz frequencies in which a resistor and a capacitor are connected in series? While Kirchhoff’s
laws predict addition of capacitor and resistor impedances, we report on observation of a different
behavior. The resistance, here associated with charge relaxation, differs from the usual transport
resistance given by the Landauer formula. In particular, for a single-mode conductor, the charge-
relaxation resistance is half the resistance quantum, regardless of the transmission of the mode. The
new mesoscopic effect reported here is relevant for the dynamical regime of all quantum devices.

F
or a classical circuit, Kirchhoff_s laws

prescribe the addition of resistances in

series. Its failure has been a central issue

in developing our understanding of electronic

transport in mesoscopic conductors. Indeed,

coherent multiple electronic reflections between

scatterers in the conductor were found to make

the conductance nonlocal (1, 2). A new compo-

sition law of individual scatterer contribution to

resistance was found that led to the solution of

the problem of electron localization (3) and,

later, to formulation of the electronic conduction

in terms of scattering of electronic waves (4).

Nonadditivity of series resistances, or of parallel

conductances, nonlocal effects, and negative

four-point resistances (5) have been observed in

a series of transport experiments at low temper-

ature, where phase coherence extends over the

mesoscopic scale (6, 7). It is generally accepted

that the conductance of a phase-coherent quantum

conductor is given by the Landauer formula and

its generalization to multilead conductors (8),

which relate the conductance to the transmission

of electronic waves by the conductance quantum

e2/h. But, how far is this description robust at

finite frequency, where conductance combines

with nondissipative circuit elements such as

capacitors or inductors? Are there significant

Fig. 4. Identificationof corebind-
ing domain of GRSF within the
silencer region of LGC1 promoter
and conservation of core silencer
domain in male germline genes.
(A) EMSA using recombinant GRSF
shows specific binding to 43-bp
oligonucleotide sequence of the
LGC1 promoter (WT). Mutations in
the region GGCTGAATTT of the
oligonucleotide abolished specific
binding (M3); mutations in other
regions (M1 and M2) had no
effect on binding. Mutated se-
quences are in red. (B) LGC1
oligonucleotides (43 bp) carrying
4-bp mutation blocks (marked in
red) used as cold competitors in
EMSAs with concentration ratios
of 100:1. Mutated oligonucleo-
tides 7 and 8 exhibited the
lowest capacity to compete with
labeled WT probe. An 8-bp
sequence covered by these two
oligonucleotides lies within the
10-bp region GGCTGAATTT iden-
tified by 10-bp block mutations.
(C) Conservation of GRSF mini-
mal binding site in the promoter
regions of lily and Arabidopsis
male germline–specific genes.
AT1G19890 encodes Arabi-
dopsis male germline–specific
H3 histone, AT5G49150 encodes Arabidopsis male germline–specific unknown gene, and AT3G60460
encodes Arabidopsis DUO1 gene expressed in male germline cells. Core binding domain is shaded in
yellow, with conserved sequences marked in blue italics.
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departures from the dc result? The question is

important, as recent advances in quantum infor-

mation highlight the need for fast manipulation of

quantum systems, in particular quantum con-

ductors. High-frequency quantum transport has

been theoretically addressed, showing that a

quantum RC circuit displays discrepancies with

its classical counterpart (9, 10). It was shown that

a counterintuitive modification of the series re-

sistance led to the situation in which the resistance

is no longer described by the Landauer formula

and does not depend on transmission in a direct

way (9, 10). Instead, it is directly related to the

dwell time of electrons in the capacitor. Moreover,

when the resistor transmits in a single electronic

mode, a constant resistance was found, equal to the

half-resistance quantum h/2e2, i.e., it was not

transmission-dependent. This resistance, modified

by the presence of the coherent capacitor, was

termed a Bcharge-relaxation resistance[ to distin-

guish it from the usual dc resistance, which is

sandwiched between macroscopic reservoirs and

described by the Landauer formula. The quantum

charge–relaxation resistance, as well as its general-

ization in nonequilibrium systems, is an important

concept that can be applied to quantum informa-

tion. For example, it enters into the problem of

quantum-limiteddetectionof chargequbits (11, 12),

in the study of high-frequency-charge quantum

noise (13–15), or in the study of dephasing of an

electronic quantum interferometer (16). In molec-

ular electronics, the charge-relaxation resistance is

also relevant to the THz frequency response of

systems such as carbon nanotubes (17).

We report on the observation and quantitative

measurement of the quantum charge–relaxation

resistance in a coherent RC circuit realized in a

two-dimensional electron gas (2DEG) (see Fig.

1A). The capacitor is made of a macroscopic

metallic electrode on top of a 2DEG submicro-

meter dot defining the secondelectrode.The resistor

is a quantum point contact (QPC) connecting the

dot to a wide 2DEG macroscopic reservoir. We

address the coherent regime in which electrons

emitted from the reservoir to the dot are

backscattered without loss of coherence. In this

regime, we have checked the prediction made in

refs. (9, 10) that the charge-relaxation resistance is

not given by the Landauer formula resistance but

instead is constant and equals h/2e2, as the QPC

transmission is varied. Note that we consider here

a spin-polarized regime and that the factor 1/2 is

not the effect of spin, but a hallmark of a charge-

relaxation resistance. When coherence is washed

out by thermal broadening, the more conventional

regime pertaining to dc transport is recovered. The

present work differs from previous capacitance

measurements where, for spectroscopic purpose,

the dot reservoir coupling was weak and the ac

transport regime was incoherent (18, 19). As a

consequence, although quantum effects in the

capacitance were observable, the quantum

charge–relaxation resistance was not accessible

in these earlier experiments.

At zero temperature in the coherent regime

and when a single mode is transmitted by the

QPC, the mesoscopic RC circuit is represented

by the equivalent circuit of Fig. 1B (9, 10). The

geometrical capacitance C is in series with the

quantum admittance g
q
(w) connecting the ac

current flowing in the QPC to the ac internal

potential of the dot:

gqðwÞ 0 1=
h

2e2
þ 1

jiwCq

� �
, ðT 0 0Þ ð1Þ

The nonlocal quantum impedance behaves as if it

were the series addition of a quantum capacitance

C
q
with a constant contact resistance h/2e2. C

q
0

e2(dN/de) is associated with the local density

of state dN/de of the mode propagating in the

dot, taken at the Fermi energy. The striking effect

of phase coherence is that the QPC transmission

probability D affects the quantum capacitance

(see Eq. 4) but not the resistance. The total cir-

cuit admittance G is simply:

G 0
jiwCgqðwÞ

jiwC þ gqðwÞ
0

jiwCmð2e2=hÞ
jiwCm þ ð2e2=hÞ ,

ðT 0 Þ0 ð2Þ

where Cm 0 CC
q
/(Cþ C

q
) is the electrochemical

capacitance. In the incoherent regime, both

resistance and quantum capacitance vary with

transmission. The dot forms a second reservoir

and the electrochemical capacitance Cm is in

series with the QPC resistance R. In particular,

when the temperature is high enough to smooth

the capacitor density of states, the Landauer

formula R 0 h/e2 � 1/D is recovered.

Several samples have been measured at low

temperatures, down to 30 mK, which show anal-

ogous features. We present results on two samples

made with 2DEG defined in the same high-

mobility GaAsAl/GaAs heterojunction, with nom-

inal density n
s
0 1.7 � 1015 m–2 and mobility m 0

260 V–1 m2 s–1. A finite magnetic field (B 0 1.3 T)

Cq C

gq Cµ

R =h/2eq
2

VG

VG

Vac

+Vdc

A

B

Fig. 1. The quantum capacitor realized using a
2DEG (A) and its equivalent circuit (B). The ca-
pacitor consists of a metallic electrode (in gold) on
top of a submicrometer 2DEG quantum dot (in
blue) defining the second electrode. The resistor is
a QPC linking the dot to a wide 2DEG reservoir (in
blue), itself connected to a metallic contact (dark
gold). The QPC voltage VG controls the number of
electronic modes and their transmission. The radio
frequency voltage Vac, and eventually a dc voltage
Vdc, are applied to the counter-electrode, whereas
the ac current, from which the complex conduct-
ance is deduced, is collected at the ohmic contact.
As predicted by the theory, the relaxation resist-
ance Rq, which enters the equivalent circuit for the
coherent conductance, is transmission-independent
and equal to half the resistance quantum. The
capacitance is the serial combination Cm of the
quantum and the geometrical capacitances (Cq and
C, respectively). Cq is transmission-dependent and
strongly modulated by Vdc and/or VG. The combi-
nation of Rq and Cq forms the impedance 1/gq of
the coherent quantum conductor.

1Laboratoire Pierre Aigrain, Département de Physique de
l’Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris
Cedex 05, France. 2Laboratoire de Photonique et Nano-
structures, UPR20 CNRS, Route de Nozay, 91460 Marcoussis
Cedex, France. 3Service de Physique de l’Etat Condensé
(CNRS URA 2464), Commissariat à l’Energie Atomique (CEA)
Saclay, F91191 Gif-sur-Yvette, France.

*To whom correspondence should be addressed. E-mail:
glattli@lpa.ens.fr

Fig. 2. Complex con-
ductance of sample E3
as function of the gate
voltage VG for T 0 100
mK and w/2p 01.2 GHz,
at the opening of the
first conduction channel
(C) and its Nyquist rep-
resentation in (D). The
theoretical circle charac-
teristic of the coherent
regime is shown as a
solid line. (A and B)
show the corresponding
curves for the simula-
tion of sample E3 using
the 1D model with C 0
4fF, Cm 0 1fF.
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is applied, so as to work in the ballistic quantum

Hall regime with no spin degeneracy (20).

The real and imaginary parts of the admittance

Im(G) and Re(G) as a function of QPC gate

voltage V
G
at the opening of the first conduction

channel are shown in Fig. 2C. On increasing V
G
,

we can distinguish three regimes. At very negative

V
G
e –0.86 V, the admittance is zero. Starting

from this pinched state, peaks are observed in both

Im(G) and Re(G). Following a maximum in the

oscillations, a third regime occurs where Im(G)

oscillates nearly symmetrically about a plateau,

whereas the oscillation amplitude decreases

smoothly. Simultaneously, peaks in Re(G) quick-

ly disappear to vanish in the noise.

Comparing these observations with the results

of refs. (9,10), using a simplified one-dimensional

(1D) model for C
q
with one conduction mode and

a constant energy level spacing in the dot D (21),

the simulation (Fig. 2A) shows a striking similarity

to the experimental conductance traces in Fig. 2C.

In this simulation, V
G
determines the transmission

D but also controls linearly the 1D dot potential.

The transmission is chosen to vary with V
G

according to a Fermi-Dirac–like dependence

appropriate to describe QPC transmission (22).

This model can be used to get a better under-

standing of the different conductance regimes.

Denoting r and t the amplitude reflection and

transmission coefficients of the QPC (r2 0 1 – D,

t 0 ¾D), we first calculate the scattering ampli-

tude of the RC circuit:

sðeÞ 0 rj t2ei8
XV
n00

ðrei8Þn 0
rj ei8

1j rei8
ð3Þ

where e is the Fermi energy relative to the dot

potential and 8 02pe/D is the phase accumulated

for a single turn in the quantum dot. The zero-

temperature quantum capacitance is then given by:

Cq 0 e2ðdN=deÞ 0 1

2ip
sþ

¯s

¯e
0

e2

D

� 1 j r2

1 j 2r cos ð2pe=DÞ þ r2
ð4Þ

Therefore, C
q
exhibits oscillations when the

dot potential is varied. When r Y 0, these

oscillations vanish and C
q
Y e2/D. As reflec-

tion increases, oscillations are growing with

maxima (e2/D)E(1 þ r)/(1 – r)^ and minima

(e2/D)E(1 – r)/(1 þ r)^. For strong reflection,

Eq. 4 gives resonant Lorentzian peaks with an

energy width DD/2 given by the escape rate of

the dot. However, at finite temperature, the con-

ductance in Eq. 1 has to be thermally averaged

to take into account the finite energy width of

the electron source so that:

gqðwÞ0 Xde j
¯f

¯e

� �

� 1

h=2e2 þ 1=ðjiwCqÞ
, ðT m 0Þ ð5Þ

where f is the Fermi-Dirac distribution. Again

the nonlocal admittance behaves as if it were

the serial association of a charge-relaxation re-

sistance R
q
and a capacitance that we still de-

note C
q
. In the weak transmission regime (DY

0), when DD ¡ k
B
T, Eq. 5 yields thermally

broadened capacitance peaks with

Cq ,
e2

4kBTcosh
2ðde=2kBTÞ

, ðD ¡ 1Þ ð6Þ

where de denotes the energy distance to a

resonant dot level. Note that these capacitance

peaks do not depend on the dot parameters and

can be used as a primary thermometer. Similar

but transmission-dependent peaks are predicted

in the inverse resistance

1=Rq , D
e2

h

� D

4kBTcosh
2ðde=2kBTÞ

, ðD¡ 1Þ

ð7Þ

This result is reminiscent of the thermally

broadened resonant tunneling conductance for

transport through a quantum dot. A consequence

of the finite temperature is the fact that the

resistance is no longer constant. This thermally

induced divergence of R
q
at low transmission

restores a frequency-dependent pinch-off for

R
q
d 1/C

q
w, as can be seen in both model and

experiment in Fig. 2, A and C. As mentioned

above, for k
B
Td D, the quantum dot looks like a

reservoir and the Landauer formula is recovered.

The coherent and the thermally broadened

regimes are best demonstrated in the Nyquist

representation Im(G) versus Re(G) of the experi-

mental data in Fig. 2D. This representation allows

us to easily distinguish constant resistance from

constant capacitance regimes, as they correspond

to circles respectively centered on the real and

imaginary axis. Whereas, for low transmission,

the Nyquist diagram strongly depends on trans-

mission, the conductance oscillations observed in

Fig. 2C collapse on a single curve in the coherent

regime. Moreover, this curve is the constant R
q
0

h/2e2 circle. By contrast, admittance peaks at low

transmission correspond to a series of lobes in the

Nyquist diagram, with slopes increasingwith trans-

mission in qualitative agreement with Eqs. 6 and 7.

These lobes and the constant R
q
regime are well

reproduced by the simulations in Fig. 2B. Here,

the value of Cm and the electronic temperature are

deduced from measurement. In our experimental

Fig. 4. Complex imped-
ance of sample E3 (A and
B) and sample E1 (C and
D) as a function of QPC
voltage for T 0 30 mK and
B 01.3 T. The dashed lines
in (B and D) correspond to
the values of Cm deduced
from calibration. The hor-
izontal solid lines in (A
and C) indicate the half-
quantum of resistance ex-
pected for the coherent
regime. Uncertainties on
Rq are displayed as hatched
areas.

A C

B D

Fig. 3. Coulomb-
blockade oscillations in
the real part of the ac
conductance in the low-
transmission regime. The
control voltage is applied
to the counter-electrode
for sample E3 (A) and to
the QPC gate for sample
E1 (B). The temperature
dependence is used for
absolute calibration of
our setup, as described in
the text: The peak width,
shown in (C and D) as a
function of temperature, is
deduced from theoretical
fits (solid lines) using Eq. 7 and taking a linear dependence of energy with the control voltage. Lines in (C)
and (D) are fits of the experimental results using a ¾(T2 þ T0

2) law to take into account a finite residual
electronic temperature T0.

A

B

C

D

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 501



conditions, the simulated traces are virtually free of

adjustable parameters as C Q 4Cm d C
q
.

It is important to note that in a real system, the

weak transmission regime is accompanied by

Coulomb blockade effects that are not taken into

account in the above model. In the weak trans-

mission regime and T 0 0, using an elastic co-

tunneling approach (23, 24), we have checked that

there is no qualitative change except for the energy

scale that now includes the charging energy so that

D is replaced by D þ e2/C 0 e2/Cm. At large

transmission, the problem is nonperturbative in

tunnel coupling and highly nontrivial. Calculations

of the thermodynamic capacitance exist E(25, 26),
and (27) plus references therein^, but at present, no
comprehensive model is available that would

include both charge-relaxation resistance and

quantum capacitance for finite temperature and/or

large transmission.

Calibration of our admittance measurements is

a crucial step toward extracting the absolute value

of the constant charge-relaxation resistance. As at

GHz frequencies, direct calibration of the whole

detection chain is hardly better than 3 dB, we shall

use here an indirect, but absolute, method, often

used in Coulomb blockade spectroscopy, that

relies on the comparison between the gate voltage

width of a thermally broadened Coulomb peak

(º k
B
T) and the Coulomb peak spacing (º e2/Cm).

From this, an absolute value of Cm can be

obtained. The real part of the admittance of

sample E3 is shown as a function of the dc

voltage V
dc

at the counter-electrode, for a given

low transmission (Fig. 3A). A series of peaks with

periodicityDV
dc
0 370 mV are observed, with the

peaks accurately fitted by Eq. 7. Their width,

proportional to the electronic temperature T
el
, is

plotted versus the refrigerator temperature T (see

Fig. 3C). When corrected for apparent electron

heating arising from gaussian environmental

charge noise, and if we assume T
el
0 ¾(T 2 þ

T
0
2), the energy calibration of the gate voltage

yields Cm and the amplitude 1/Cmw of the

conductance plateau in Fig. 2. A similar analysis

is done in Fig. 3, B and D, for sample E1 using

V
G
to control the dot potential. Here, peaks are

distorted because of a transmission-dependent

background and show a larger periodicity DV
G
0

2 mV, which reflects the weaker electrostatic

coupling to the 2DEG.

Finally, after numerical inversion of the con-

ductance data, we can separate the complex

impedance into the contributionsof the capacitance,

1/Cmw, and the relaxation resistance R
q
. The

results in Fig. 4 demonstrate deviations from

standard Kirschhoff_s laws: The charge-relaxation

resistance R
q
remains constant in the regime

where the quantum capacitance exhibits strong

transmission-dependent oscillations; this con-

stant value equals, within experimental uncer-

tainty, half the resistance quantum as prescribed

by theory (9, 10). In the weak transmission re-

gime, the Landauer formula is recovered because

of thermal broadening, and R
q
diverges as it does

in the dc regime. Furthermore, additional measure-

ments at 4 K prove that the classical behavior is

indeed recovered in the whole transmission range

whenever k
B
T d e2/Cm.

In conclusion, we have experimentally shown

that the series association of a quantum capacitor

and a model quantum resistor leads to a violation

of the dynamical Kirchhoff_s law of impedance

addition. In the fully coherent regime, the quantum

resistor is no longer given by the Landauer formula

but by the half-quantized charge-relaxation resist-

ance predicted in refs. (9, 10).
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Second-Harmonic Generation from
Magnetic Metamaterials
Matthias W. Klein,1,2 Christian Enkrich,1,2 Martin Wegener,1,2,3 Stefan Linden1,2,3*

We observe second-harmonic generation from metamaterials composed of split-ring resonators
excited at 1.5-micrometer wavelength. Much larger signals are detected when magnetic-dipole
resonances are excited, as compared with purely electric-dipole resonances. The experiments are
consistent with calculations based on the magnetic component of the Lorentz force exerted on
metal electrons—an intrinsic second-harmonic generation mechanism that plays no role in natural
materials. This unusual mechanism becomes relevant in our work as a result of the enhancement
and the orientation of the local magnetic fields associated with the magnetic-dipole resonances of
the split-ring resonators.

T
he concept of metamaterials has changed

the spirit of optics and photonics. Re-

searchers no longer just study the rich

variety of materials provided by nature but have

rather become creative designerswho tailor optical

properties at will, leading to qualitatively new and

unprecedented behavior (1–11). The key is the

nanofabrication of metallic subwavelength-scale

functional building blocks, photonic atoms, which

are densely packed into an effective material. To a

large extent, this emerging field has been stimu-

lated by the 1999 theoretical work of John

Pendry_s group (1), which made two distinct

predictions: (i) They proposed split-ring resonators

as photonic atoms that could lead to magnetism at

optical frequencies—a prerequisite for negative-

index metamaterials. (ii) Furthermore, they pre-

dicted that enhanced and novel nonlinear-optical

properties could arise from such metamaterials.

Although aspect (i) has attracted substantial

attention from both experiment (3–7, 12, 13) and

theory (14–16) in recent years, aspect (ii) has not,

to the best of our knowledge. Experiments have

not been reported, nor has a complete consistent

microscopic theory of the nonlinear optics of

metamaterials been evaluated. This lack of re-
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