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Peak effect and surface crystal-glass transition
for surface-pinned vortex array
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1 Laboratoire Pierre Aigrain, Département de Physique de l’Ecole Normale Supérieure
24 rue Lhomond, 75005 Paris, France
2 Racah Institute of Physics, Hebrew University of Jerusalem - Jerusalem 91904, Israel

(received 5 March 2004; accepted in final form 7 June 2004)

PACS. 74.25.Qt – Vortex lattices, flux pinning, flux creep.

PACS. 64.60.Cn – Order-isorder transformations; statistical mechanics of model systems.

Abstract. – We present a theoretical and experimental study of the peak effect in the surface
pinning of vortices. It is associated with a sharp transition in the vortex slippage length which
we relate to a crossover from a weakly disordered crystal to a surface glass state. Experiments
are performed on ion-beam–etched Nb crystals. The slippage length is deduced from 1 kHz–
1 MHz linear AC penetration depth measurements.

A peak in the critical current vs. magnetic field plot, the peak effect (PE), is observed
in superconductors close to the transition line where the critical current vanishes. From the
very first studies [1–4] it was supposed that PE originates from softening of the vortex lattice
(VL) by disorder near the transition. This results in a more effective vortex pinning, which
corresponds to a higher critical current. The phenomenon is directly connected with a funda-
mental problem of condensed-matter physics: the competition between elasticity and disorder.
Numerous scenarios of PE have been discussed, but all of them dealt with the competition
between vortex elasticity and bulk pinning. Here we present an essentially different scenario
of PE: it is surface pinning of vortices which interplays with bulk vortex elasticity.

A controlled surface roughness ζ(r) is obtained by etching the Nb sample surfaces with
500 eV Ar+ ions (fig. 1). The sputtering of Nb atoms by low-energy ions is a stochastic process.
It gives rise to a white corrugation spectrum Sζ(k) =

∫
dr e−ikr〈ζ(r + R)ζ(R)〉R � a3∆z/π

for |k| < 1/a, where a = 0.26 nm is the Nb lattice parameter and ∆z the average sputtering
depth. In our experiment ∆z ∼ 10µm for a 90min exposure to a 1.5mA/cm2 Ar+ flux so
that Sζ ∼ 50 nm4 and the total roughness ζ∗ =

√〈ζ(r)2〉 < (a∆z)1/2 = 50nm. Atomic
force microscopy (AFM) in fig. 2 confirms the above estimates with Sζ(k) � 40 nm4 for
k � 40µm−1. Unfortunately, the finite AFM-tip radius masks the large k spectrum, so that
we can only bracket the upper cut-off kc of Sζ(k) in the range 10−2 < kca < 1. This entails
a large uncertainty in ζ∗ = 0.5–50 nm. Importantly for our scenario, AFM data indicate
the presence of roughness at small scale, with wave numbers k ∼ a−1

0 � (50 nm)−1, where
a0 =

√
πB/ϕ0 is the VL reciprocal unit and ϕ0 = h/2e is the flux quantum. Note that a

roughness is smaller than vortex spacing so that the weak surface pinning approximation used
below is justified.
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Fig. 1 Fig. 2

Fig. 1 – Atomic-force microscopy (AFM) picture of the etched Nb surface. The vertical scale is 10 nm
per division.

Fig. 2 – Spectrum of the surface corrugation. The dashed line is a guide. The cut-off at ∼ 40 µm−1

is due to AFM tip diameter.

The peak effect is generally observed in the critical current data Ic(B) or Ic(T ). We see
it in our samples as well, but since Ic � 20A are quite large, we prefer to rely on the AC
linear surface impedance Z(ω) = −iωµ0λAC which is a more accurate and non-destructive
probe of the vortex state, especially in the vicinity of a transition. According to [5,6], the AC
penetration depth λAC in thick samples is given by

1
λAC

=
1
LS

+
(

1
λ2

C

+ iωµ0σf

)1/2

, LS =
lSB

µ0ε
. (1)

Here σf is the flux-flow resistivity, εϕ0 is the vortex-line tension, and λC the Campbell depth
for bulk pinning [7]. Expression (1) deviates from the Coffey-Clem theory [8] by the addition
of a surface pinning term 1/LS. The surface pinning length LS ∼ 0.1–100µm can indeed
simulate a Campbell length at low frequency but gives a very different behaviour at finite
frequency [5, 6]. The above expression was derived within the frame of the two-mode elec-
trodynamics [5,9], which incorporates the surface pinning by introducing a phenomenological
boundary condition,

εϕ0

(
u

lS
+

∂u

∂z

)
= 0, (2)

imposed on the VL displacement u(z) at the surface of the sample, which occupies the semi-
space z < 0. Here lS is a slippage length and the displacement u is averaged over the position
vectors r in the xy plane. Equation (2) represents the balance between the pinning force
−εϕ0u/lS and the line tension force εϕ0∂u/∂z. In the DC experiment the critical current
is proportional to ε/lS (see ref. [6], p. 80). If the magnetic field B is close to an upper
critical field Bc2, when the peak effect takes place, the critical current is proportional to 1/LS.
Thus the peak of 1/LS as a function of B is relevant for the peak effect in both DC and
the AC measurements.

If vortices do not interact, the slippage length lS does not depend on vortex density and is
on the order of a curvature radius of the surface profile (individual pinning). But, in general,
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Fig. 3 – Peak effect in the elastic response L−1
S (B) of a surface-pinned vortex array at T = 4.2 K.

Diamonds and full circles correspond to the 45 degree and perpendicular field orientations. Empty
circles are the pristine sample measurement. Inset: the frequency dependence of the real and imagi-
nary parts (open and full circles, respectively) of the penetration depth λAC(B, f) from which LS is
deduced. Solid lines are theoretical fit to eq. (1) with λC = ∞, σ−1

f = 10 nΩ cm and LS = 14.9 µm.

Fig. 4 – The slippage length lS(B) for a vortex array at a rough surface. It is deduced from the LS

data according to lS = LSµ0ε/B in eq. (1). The effect of vortex interactions in the collective-pinning
regime below Bpk is visible as a suppression of 1/lS(B). Solid lines are power law fits.

lS may depend on vortex density, i.e. on magnetic field (see fig. 4). If vortices strongly inter-
act the theory of collective pinning [4] assumes that within the so-called Larkin-Ovchinnikov
domain of size Lc the vortices move mostly coherently without essential deformation of the
vortex lattice. But then because of the random directions of pinning forces on every vortex,
the total force on vortices in the domain is proportional to

√
Nc and not to Nc = L2

c/a
2
0,

the number of vortices in the domain. Correspondingly, the pinning force per vortex must be
smaller by the factor

√
Nc = Lc/a0, i.e. 1/lS = 1/l0

√
Nc = a0/l0Lc. Lc is usually derived

from the balance between the elastic and pinning energy. Pinning is collective as long as
Nc � 1. The condition Nc ∼ 1 (or lS ∼ l0) determines the crossover from the collective to the
individual pinning. Later in the paper we shall derive lS without these heuristic arguments.

Figure 3 shows the PE in the inverse surface-pinning length. The sample, with dimensions
25×10.1×0.87mm3, was annealed in ultra-high vacuum which gives a low residual resistivity
ρn = 11nΩcm (resistivity ratio ∼ 1300) and an upper critical field Bc2 = 0.29T at 4.2K [10].
Data points are obtained by fitting the penetration depth spectra (inset of fig. 3) with eq. (1).
Metastability in the vortex density (±0.005T) and/or arrangement is removed by feeding a
large transient current I � Ic in the sample prior to measurement. The abrupt onset of
the AC-flux penetration along the samples edges which are parallel to the field precludes
quantitative analysis for B � 0.95Bc2; this difficulty is overcome by working in oblique field
(diamonds in fig. 3). Already present in the pristine sample, the PE is strongly enhanced in
ion-etched samples (circles in fig. 3). By contrast, chemically etched samples show little PE
but a large increase of pinning at lower fields. We think that this difference is due to the lack
of small-scale corrugation in the wet-etching techniques.

We quantitatively separate the bulk and surface pinning contributions, λC and LS, by
fitting the full 1 kHz–1MHz spectrum λAC(f) with eq. (1). Remarkably, we always find that
λC is much larger than the sample thickness (∼ 1mm), whereas LS ∼ 5–100µm, meaning
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Fig. 5 – Typical spectra of the linear-response λAC(B, f) in tilted magnetic field. Upper and lower
spectra correspond to magnetic fields, respectively, above and below the peak shown in fig. 3. Vertical
units are in microns and frequencies are in Hz. Open and full circles correspond, respectively, to the
real and imaginary parts. Solid lines are theoretical fits to eq. (1) with λC = ∞, σ−1

f = 5.4, 6.2, 7,
8.2, 11.8, 12.36 nΩ cm and LS = 17.7, 12.4, 8.9, 8.2, 12.7, 23.4 µm. Dashed lines are theoretical lines
for pure bulk pinning obtained by interverting values of λC and LS keeping σf unchanged.

that bulk pinning is negligible. As seen in fig. 5, this observation is true for λAC(f) spectra
taken on both sides of the peak; it confirms that surface pinning is most relevant in our
experiment. The oblique-field (45 degree) data are larger by a factor ∼ 2; this is due to
surface reinforcement of superconductivity in tilted fields. Otherwise, data are similar at
lower temperatures with however larger Bpk = 0.95Bc2 (1.8K) and a less pronounced peak
sometimes resembling a shoulder.

Using the Abrikosov expression [11], µ0ε � (Bc2 −B)/2.32κ2 with κ = λ/ξ = 1.3 (ξ is the
coherence length and λ is the London penetration depth), we deduce from eq. (1) the lS(B)
data in fig. 4. The high-field plateaus lS(B) above Bpk are suggestive of individual pinning,
when lS ∼ l0 does not depend on B. Note that the value of the contact angle for VL at
the surface, a0/l0 � 0.1 estimated from l0 � 0.5µm (normal field) and a0 = 50nm, fits in
the window 0.01 < ζ∗/a0 < 1 prescribed by corrugation geometry. By contrast, the strong
suppression of 1/lS below Bpk (factor ∼ 10 in oblique field) reflects the collective regime of
surface pinning, which was known earlier in rotating 3He [12]. The transition is sharp unlike
the continuous ones reported in refs. [13, 14]. Thus, the experiment provides an evidence
that PE is accompanied by the crossover from collective to individual surface pinning. In the
following, we give the theory for the slippage length lS(B) in the collective regime and explain
its vanishing at the PE transition.

The first step of our analysis addresses the response of the semi-infinite VL to a Fourier
component f(r) = f(k)eikr of the surface force on vortices. The force produces vortex
displacements in the sample bulk (z < 0) in the form u(r, z) =

∑
kz

U(k, kz)eikr+ikzz. We
look for the elastic constant C(k) = f(k)/u(k), connecting the Fourier components of the
surface force f(k) to the surface displacement u(k) =

∑
kz

U(k, kz). The force is assumed to
be transverse, [f(k), U(k, kz) ⊥ k], since VL compressibility is quite low and the response to
the longitudinal force is weak. The possible values of out-of-plane wave vector component kz

must be found from the equation of the elasticity theory:

[
C66k

2 + C44(k, kz)k2
z

]
U(k, kz) = 0, (3)
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where C66 is the shear modulus and

C44(k, kz) =
B2

µ0

1
1 + λ2(k2 + k2

z)
+ εB (4)

is the tilt-modulus, which takes into account nonlocal effects due to long-range vortex-vortex
interaction. The general solution of eq. (3) is a superposition of two evanescent modes in
the bulk, u(r, z) = eikr[U(k, p1)ep1z + U(k, p2)ep2z] with p1 ≈ k

√
C66/εB 
 1/λ and p2 ≈

1/λ
√

B/µ0ε � 1/λ. In order to determine the two amplitudes U(k, p1) and U(k, p2), we
need a second boundary conditions. It is imposed on the magnetic field, which is determined
from the London equation, h(k, kz) = ikzBU(k, kz)[1 + λ2(k2 + k2

z)]
−1, and should vanish at

the sample border (transverse waves). Eventually, this yields for C66 
 εB 
 B2/µ0

C(k) ≈ kϕ0

√
C66

µ0

(1 + λ2k2µ0ε/B)
1 + λ2k2

. (5)

At large λk, eq. (5) gives C(k) = kϕ0

√
εC66/B.

The second step consists in calculating the deformations produced by surface pinning
from the corrugation profile ζ(r). The random force on the vortices is f(ri) = −εϕ0∇ζ(ri),
where ri is the 2D position vector of the i-th vortex. The Fourier component of the force is
f(k) = −εB

∑
Q i[Q − k̂(k̂ · Q)]

∫
dr e−i(k+Q)rζ(r), where the factor in brackets separates

the transverse component of the force and the summation over the reciprocal VL vector Q
appears because the force is applied in discrete sites of the VL. Collecting contributions from
all Fourier components u(k) = f(k)/C(k), we obtain the mean-square-root shear deformation
at the surface:

〈
(∇u)2

〉
=

〈(
∂ux

∂y
+

∂uy

∂x

)2〉
=

ε2ϕ2
0

4π2

∫
k2 dk
C(k)2

∑
Q

(
Q2 − (k ·Q)2

k2

)
Sζ(k + Q). (6)

Here the integration over k is fulfilled over the VL Brillouin zone. In the following we shall
approximate the surface corrugation spectrum by Sζ(k) = 2πζ∗2r2

de
−krd , where the corruga-

tion correlation radius rd is determined by the spectrum cut-off kc, if kcξ < 1: rd ∼ k−1
c . But

since the vortex cannot probe corrugation on scales less than its “size” ξ, rd ∼ ξ if kcξ > 1.
Approximating the sum over Q by an integral, we obtain for k ∼ 1/a0 
 Q ∼ 1/rd

〈
(∇u)2

〉
=

ε2ϕ2
0a

2
0

8π

∫ 2/a0

0

k3 dk
C(k)2

∫ ∞

0

Sζ(Q)Q3 dQ ≈ εB

C66

3r2
d

l20
. (7)

Here we used the expression C(k) ≈ kϕ0(C66ε/B)1/2 for large k, which is a good approxima-
tion when λ � a0. Note that since C(k) ∝ k at small k, the integral for the mean-square-root
displacement 〈u2〉 is divergent. This means that even a weak disorder destroys the long-range
order near the surface, as was revealed in ref. [15]. However, our analysis shows that destruc-
tion of long-range order near the surface is not essential for the peak effect, which is governed
by the mean-square-root deformation, but not by the mean-square-root displacement.

In the third step we derive the boundary condition eq. (2) by taking into account VL
elasticity (collective pinning). In the AC experiment, the electromagnetic fields produce addi-
tional quasistatic uniform displacements u superimposed on the static random displacements
induced by pinning. Because of surface disorder the uniform displacement produces a ran-
dom force on vortices, which can be obtained from expansion of the random pinning force
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f(ri) = −εϕ0∇ζ(ri + u) with respect to u: δfm(ri) = −εϕ0un∂
2ζ(ri)/∂xm∂xn. However,

the uniform displacement does not produce an average force: 〈δf(ri)〉 = 0. The fluctuating
force produces fluctuating displacements δu(ri), which can be found in the Fourier presen-
tation where δu(k) = δf(k)/C(k). In contrast to the uniform displacement, the fluctuating
displacements δu(ri) do produce an average pinning force which should be balanced by the
uniform line-tension force:

∂um

∂z
+

〈
∂2ζ(ri)
∂xm∂xn

δun(ri)
〉

= 0. (8)

Since δu is proportional to u, we arrive at the boundary condition eq. (2) imposed on the
averaged, i.e., uniform displacement with slippage length given by

1
lS

� εϕ0

4π2

∑
Q

∫
dk |k + Q|2

[
Q2 − (k ·Q)2

k2

]
× Sζ(k + Q)

C(k)
. (9)

The same approximations as in calculating 〈(∇u)2〉 yield

1
lS

� εϕ0a
2
0

8π

∫ 2/a0

0

k dk
C(k)

∫ ∞

0

Sζ(Q)Q5 dQ ≈
√

εB

C66

5!a0

2l20
. (10)

Comparing with the expression lS = l0Lc/a0, we see that the size of the Larkin-Ovchinnikov
domain is Lc ∼ l0a0

√
C66/εϕ0. In deriving eq. (10) we have used the perturbation theory,

which is valid until Lc � a0, or lS � l0.
For low magnetic fields B 
 Bc2, one has ε ∼ (ϕ0/µ0λ

2) ln(Bc2/B), C66 ∼ ϕ0B/µ0λ
2

and, according to eq. (10), lS ∝ √
B/ ln(Bc2/B). Then the surface pinning length LS ∝

[B/ ln(Bc2/B)]3/2 grows with B in qualitative agreement with the experiment (fig. 3). This
is the regime of collective pinning when lS > l0. At the same time, since rd 
 a0, the
vortex lattice shear deformation remains small according to eq. (7). For fields close to Bc2,
ε ∼ (Bc2 − B)/µ0κ

2, C66 ∼ (Bc2 − B)2/κ2, and rd ∼ a0 ∼ ξ. Then eqs. (7) and (10) yield
〈(∇u)2〉 ≈ (ξ2/l20)Bc2/(Bc2 − B) and lS ≈ (l20/ξ)

√
(Bc2 −B)/Bc2. Thus lS decreases when

B approaches Bc2 and for Bc2 − B < Bc2ξ
2/l20 becomes smaller than l0. This means that

surface pinning ceases to be collective and the crossover to individual pinning occurs. At the
same time, at Bc2 − B ∼ Bc2ξ

2/l20, the deformation 〈(∇u)2〉 becomes of order unity, which
means that the crystalline order at the surface is destructed even at short scales ∼ a0. We
can call this state surface glass. Thus the crossover from collective to individual pinning is
accompanied by the crossover from a weakly disordered crystal to a glass state at the surface.

Still, this crossover cannot explain a fully developed PE. Despite lS ∝ √
Bc2 −B de-

creases at B approaching Bc2, according to eq. (1), 1/LS continues to decrease proportion-
ally to

√
Bc2 −B, whereas in the experiment (fig. 3) 1/LS(B) increases on the left of the

peak. Nevertheless, the growth of the deformation 〈(∇u)2〉, which accompanies the de-
crease of lS, eventually invalidates the linear elasticity theory used above. Qualitatively
this can be corrected by introducing the renormalized deformation-dependent shear modu-
lus: C̃66 = C66(1 − α〈(∇u)2〉) ≈ C66(1 − B/Bpk). Here the field Bpk corresponds to the
crystal-glass transition, where C̃66 = 0, and α is an unknown numerical factor, which could be
close to 0.1 as in the Lindemann criterion. Using renormalized modulus C̃66 in place of C66 in
eq. (10) we obtain that lS (as well as LS, see eq. (1)) decreases proportionally to 1/

√
Bpk −B

in qualitative agreement with experiment (fig. 3). On the right of the peak, pinning is indi-
vidual and lS ∼ l0 does not depend on B, while 1/LS ∝ (Bc2 − B) decreases with B. We
should stress, however, that our “surface-disorder” scenario is relevant only for a close vicinity
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of the peak effect. At further approach of the magnetic field to the upper critical field Bc2

disorder should expand from the surface to the bulk where in principle it can compete with
the transition to the liquid state. Therefore our results do not contradict observations of the
bulk vortex-liquid state above the peak effect in ref. [14].

The close relation between PE and vanishing of the shear modulus of VL was suggested
in the early studies of PE [3, 4]. The new feature of our scenario is that at B < Bpk the
shear modulus vanishes only at distances on the order of the deformation penetration depth
1/p ∝ 1/

√
C̃66 from the surface. Our scenario agrees with STM imaging of the vortex array

by Troyanovski et al. [16]. They revealed that PE is accompanied by the disorder onset on the
surface of a 2H-NbSe2 sample, but they related it with bulk pinning. In order to discriminate
two scenarios, it would be useful to supplement the STM probing of the vortex array at the
surface by probing vortex arrangements in the bulk.

In conclusion, we presented the experiment and the theory, which support a new scenario
for the peak effect based on competition between vortex-lattice shear rigidity and weak sur-
face disorder. The peak is accompanied by a crossover from collective to individual vortex
pinning and from a weakly disordered crystal to a glass state at the sample surface. Beside
its experimental relevance, this mechanism offers an interesting paradigm for elastic systems
at the upper critical dimension for disorder.
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