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Critical currents in the anisotropic superconductor 2H-NbSe,:
Evidence for an upper bound of the surface critical-current density

G. Lazard, P. Mathieu, B. Plats, J. Mosqueird,and Y. Simon
Laboratoire de Physique de la Mat& Condense de I'Ecole Normale Supieure, F-75231 Paris Cedex 05, France

C. Guilpin
Groupe de Physique des Solides, F-75251 Paris Cedex 05, France

G. Vacquier
MADIREL, Centre Saint Charles, Universite Provence, 13331 Marseille Cedex 03, France
(Received 11 July 2001; published 22 January 2002

According to the Mathieu-Simon continuum theory of the vortex state, a large nondissipative supercurrent
can flow over a small depth from a rough surface, up to an easily estimated critical K/glaém) of the
surface current density. It is shown thi&t must saturate at high fields in an anisotropic crystal when the
surface roughness is increased, and the corresponding upper bound only depends on fundamental parameters of
the material. Measurements irH2NbSe crystals confirm this saturation effect quantitatively, as well as the
proposed idea that, in a large class of soft samples, the critical current should be entirely accounted for by
surfaceK currents.
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I. INTRODUCTION face to carry nondissipative surface curraltéA/m) distrib-
uted over a small deptihy<\ (the London penetration

Some years ago, Mathieu and Sim@MS) developed a  depth.?° The limiting valueK ; of the surface current density
continuum theory of the mixed staté The MS theory shed- in general increases with increasing roughness. Then, the
ded light on dc and ac transport properties of type-Il superechief point is that expected values Kf. fully account for
conductors. Basic questions have been reexamined, begibeth the order of magnitude and the field and temperature
ning with the mere equilibrium of a perfect bodsee Fig. 2  dependence of critical currents, such as those observed in a
of Ref. 2, where diamagnetic currents are treated on thdarge class of soft samples. We naturally exclude the case of
same footing as nondissipative transport curréritsirther  (hard samples crossed by interfaces or large bulk inhomo-
intricate and unsolved problems involving flux flow and dis- geneities, which can transport bulk nondissipative currents
sipation have been explained successfully, as, for examplémultiflaments in industrial wires, twin boundaries in a
the mechanism of flux-flow noiseand the frequency depen- YBaCuO (YBCO) crystal, sintered powders, etc
dence of the surface impedance across the so-called depin- Critical-current densities associated in this way with the
ning transitior’ Furthermore, surprising effects can be pre-surface roughness are readily estimated, so that one may at
dicted such as those discussed in this paper. least infer thaK currents represent in any case a large con-

The MS theory has given rise to some controversy aboutribution to the whole critical current. Moreover, as discussed
the location of critical currents, as well as the underlyingin previous papers;*there are experimental grounds for be-
physics. In this paper we present additional arguments, botleving that critical currents in many standard samples, in-
experimental and theoretical, concerning the very nature ofluding NbSe crystals used in this work, are nothing but MS
critical currents. Postponing theoretical detdiBec. 1), let  superficial current& . In such samples, any deviation of the
us first point out some qualitative conclusions of the MSideal electromagnetic response should be entirely governed
model for critical currents. by the state of the surface.

A sample where all thermodynamic local parameters In this respect, recent measurements of the surface imped-
would be slowly varying functions of position, and the sur- ance in thick slabs of conventional materials, either polycrys-
face of which would be smooth on the scale of the vortextals or single crystal§Pbin, Nb, and V, are particularly
distance, could be regarded as perfect with zero hysteresis oonvincing? The detailed frequency spectrum of the linear
critical currents. Of course, such an ideal sample cannot exac response has been quantitatively explained by a two-
ist, merely because any surface exhibits unavoidable irregunodes skin effect in accordance with the MS theory. The
larities on a scale comparable to or smaller than the vortegxcellent agreement between experiment and theory proves
spacing. Attention should be paid to these kinds of defectsthat bulk vortices do respond freely; the least bulk pinning
In fact, the surface roughness introduces disorder in thevould affect the penetrating mode significantly, and could
boundary conditions, giving rise to many possible metastabl@ot escape noticé.
states of equilibrium corresponding to many ways for vorti-  Another naive observation may provide a clue, although it
ces to terminate at the sample surfaéeéNow, according to is not a conclusive argument. Critical currents are generally
the MS equations for vortex equilibriufiEgs. (4) and (5)  expressed in terms of critical-current densitiks (A/m?),
below], this circumstance just causes the ability of the surtaking for granted that nondissipative transport currents are
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uniformly distributed over the cross section. However, when One essential point in the MS formalism is the imperative
data are taken in a series of films or foils of variable thick-distinction to be made from the outset betweeandB. On
nesst, JC (deﬁned ad C/Wt, whereW is the foil Wldth) is mu|t|p|y|ng nv by @0, ® and &, defined aso')E/aw, have
generally observed to increase with decreasingore pre-  peen conveniently but artificially expressed in tesla and A/m,
cisely, Joiner and Kufilreported an exact linear dependencerespectively(rationalized units Yet the expression “vortex
Jc vs 1t in PbBi foils. A similar behavior is retrieved in induction” for w, sometimes used in the literature, is mis-
YBCO films, when the thickness is larger than aboNt2.”  |eading. Local vortex currents, whetherd,=0 or not, do
for example,J;t~10 A/cm in the low-field limit at 70 K not contribute to the local macroscopic magnetic figld
The fact thatl .t = const in samples otherwise prepared in thelrrespective of the local vortex ordering, the fieRlat a
same way could be immediately and most simply interpretegjiven point is set up by currentk flowing everywhere else
by stating thak .= I./2W=const. in the sample, and also as by external currdgt&sources of
The fO”OWing objection has been raised. While nObOdythe app||ed f|e|dBo) Therefore, one may expect that, at
denies that surface pinning may play an important role, th&ome pointse andB have different values; in other words,
idea that in the same sample bulk pinning could be ineffecthere may be regions where magnetic-field lines do not co-
tive offends common sense. In this connection, we stress th@icide with vortex lines.
the ability of the surface to carry a nondissipative transport By using only the parametes to describe the vortex
current owing to the disorder of the boundary conditi®s |attice, MS theory deliberately disregards very small differ-
nota mechanism of pinning in the proper sense. It is not theances in energy associated with distortions of the unit cell
effect of local variations of the free energy in the vicinity of and related shear stresses. Consequently, the MS interpreta-
pinning centers that causes some locations of a vortex to bgon of the critical currents will hold for a “vortex liquid” as
favored over others. So the goal here is not to compare th@ell. This is a marked difference with classical theories of

relative weight of surface to bulk pinning, but to know pinning where the shear elastic consteg, however small,
whether the MS currents do or do not provide an alterna- plays a leading part.

tive relevant mechanism. It should also be noted that we are The second and third terms in E@) stand for the mac-
unable to get pinning parameters of an actual sample, such a§scopic magnetic and kinetic energies. At high fielsay,
the density of pins and the magnitude of the pinning forceg=0.58,), B%/2u, represents typically more than 90% of
allowing us to calculate related valueshfto be compared the free-energy density. The last term derives from small
with experiment. Therefore, no quantitative estimate can depositive corrections in the free energy arising from “micro-
cide for or against the importance of bulk pinning. On thescopic” oscillations of fields on the scale of the vortex spac-
contrary, in the exceptional case of strongly roughened S“ri'ng (on averaging quadratic terrbd> B2, etc). AlthoughB,

faces of anisotropic crystals,'absolute valueKgfcan be , andV, (or J) must be regarded locally as three indepen-
calculated exactly as a function of well-known parametersyent thermodynamic variables, it remains that their spatial

We thus expect the comparison in this case between theorgfz jations are subject to constraints, viz, Ampere's law and
ical K, and measuretl, to be very instructive. the macroscopic London equation:

IIl. THEORY OF THE CRITICAL-CURRENT DENSITY K curl B= ugJs, 2)
IN AN ANISOTROPIC SUPERCONDUCTOR

A. The continuum equations for vortex equilibrium B— —curlVe=o. 3

In this section, we briefly recall the basic MS equations

with regard only to nondissipative states. The mean freeEquation(3) follows from a proper average of cupk (the
energy density of a vortex continuum can be expressed igyomentum of the supercurreritcurl p=0 everywhere ex-
terms of a reduced set of macroscopic variables; “macrogept on the vortex lines, and the line integralpgfaround a
scopic” here means averaged on a scale larger than the Voggsed path encirclingN vortices isNh. It reduces to the
tex spacing. Thgn, the macroscopic the_rmodynamlc identity,syal London equation in the absence of vortiaes-0). In
such as that derived by averaging the Ginzburg-Lan@l)  regions where the vortex lattice is perfectly regular, there are

free energy, reads no macroscopic currentds=0 andV=0), and Eq.(3) re-
- 1 m duces to the familiar equalitty=B (B=ngy).
dF=—-0¢dT+ —B-dB— —JdVt & - dw. ) Minimizing the magnetic free enthalpy against small
Ho e variations ofB, Js, andw, subject to constraint®) and(3),

leads to the following equilibrium conditions, which also

B=b, Js=js, and Vs=vg are the macroscopic magnetlcegovern nondissipative statds:

field, supercurrent density, and velocity, respectively. Th

vortex field w=neyr describes both the local densityand Jtcurle=0 (4)
directionw of the vortex array ¢ is the flux quantum Two s '
simple results have come outF/dB=B/u,, andJs is the eXn=0 (5)

conjugate variable of/;. Otherwise, explicit calculations
and/or approximations are required to obtain the fundamentalhere n is the outward normal unit vector at the sample
equations of statd(T,w,Vy ande(T,w,Vy). surface. As required by a continuum description, in deriving
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Eqg. (5), the surface has been supposed to be ideal, that is,
smooth on the scale of a few vortex spacings. We shall return
later to rough surfaces.

In the isotropic case, for instance is directed along vor-
tices, and Eq(5) states that vortex lines must terminate per-
pendicular to the sample surface. This is consistent with the
“microscopic” GL boundary conditiorvp/dn=0 for the or-
der parameteW (p=|V|), which requires a vortex core line
¥=0 to end normal to the surface. Taking the cross product
of Eqg. (4) with ¢qv, this may be read as the balance of a
Lorentz force,JgX ¢owv and a restoring force, cud X ¢qv,
resulting from vortex curvature with a line tensiew,.

The equilibrium of a simplgoerfectbody (sphere, cylin-
der, slab, etg.of rather large size, immersed in an external

f'eld, Bo, Is determlned bY the abovg set of qu)_(S)_z normal fieldB,. Owing to surface irregularities on the scale of the
Vortices are uniformly d_'smbUted in the bulket =B, vortex spacing, many such configurations may arise near the sur-
=cons}, but they curve in near the surface over a small;zce \ortex distortions take place over a small healing degth
depth Ay, so as to fulfill the boundary conditiofb). On <) _  while vortices remain straight and uniformly distributed in
inserting the second equation of stat¢T,w,Vy) INto EQS.  the bulk. The vortex field represents both the vortex densityep,
(2)—(4), explicit expressions fok, can be derived® Cur-  and direction of vortex lines. The vortex potentigko), defined in
rents Jg flowing in this surface layer to ensure the equilib- Sec. Il A, is the local thermodynamic parameter that governs the
rium of bent vortices are nothing but Meissner-like diamag-existence of macroscopic currerlts When e is inclined to thec
netic currents. The resultingversiblemagnetic moment of axis by an angl®, € makes a smaller angle with the c axis. The
the body ig left inset shows they dependence of the upper critical field. If
vortices are bent in thgz planes as shown in this figure, currents
Js= —curle, ensuring vortex equilibrium flow systematically in the
y direction. These supercurrents may appear on the scale of the
. . sample either as nondissipative transport currents or hysteretic dia-
whereV is the volume of the body, aneh (T, w,) is the bulk  \agnetic currents. Note that vortex bending is of relatively low cost
constant value of. The second integral expression 81 i, free energy, as long as the magnetic field itself is not very dis-
in Eq. (6) is a strict consequence of Eq8) and (5). It (orted. In the perturbed layer, magnetic-field lines are not vortex
provides a formal interpretation of the vortex potentiaglas  Jines, and they are slightly deviated in the opposite direction at
an equivalent mean magnetizatienM/V, and thereby a angleso~ uoK/Bo~1073.
way to measure: through a reversible magnetization curve.

In the MS modelSec. Il O, nondissipative transport cur- then, when dealing with an anisotropic crystal, by the prin-
rents and diamagnetic currents obey the same4gso that  cipal valuesm,;, m,, andmg, of the reduced mass tensor
the parametere(T,w,Vy) also governs amplitudes of the (defined so tham;m,m;=1, andm,,= &, in the isotropic
critical-current densitiek , (given a state of the surfacéor  case.°
a given material, at a given temperatutegssentially de- Here we consider only layered uniaxial crystals, like
pends of the vortex field. As discussed elsewheté’the  NbSe, for which m;=m,<m;, wherem; is the principal
V dependence of may be ignored in most practical cases, value of m in the directionz of the ¢ axis. Thus the anisot-
so that the local value of at any point of a distorted lattice ropy is described by one parameter, for instance athisot-
will be approximated by that of a uniform lattice of the sameropy factor.
density and orientation. Note that, according to the fdiyn , "
of the thermodynamic identity; is not directly dependent on y=(mz/my (Mm=mp=7y"2" mz=+"). (@)
B. We stress that-e does not have the primary physical grom theoretical calculations of the reversible equivalent
meaning of a local magnetization. As discussed in Ref. 2, agnetizatiot®!! we infer thate lies along the vectom-»
the introduction of local field® andH in the mixed state, (or &;=my ). 22 More explicitly, if vortices are inclined to

even as substituting notations fere andB/uo+ &, is UN-  the7 or ¢ axis by an angl®, say, in thexzplanes(see Fig. 1,
necessary and misleading. As explained below, supercurrenfsysg lies in thexz planes but makes a smaller anglevith

Js= —curl € may contribute to transport currents, contrary t0he ¢ axis with  and « being simply related by
equivalent magnetization currentg in a magnetic material,

which are defined as cukl. Also, we can no longer identify tanf= vy’ tana. (8
curl H as the transport curreft.

FIG. 1. Schematic of a possible equilibrium configuration of the
vortex array near amb face of an uniaxial crystal, immersed in

M=f %rx\]sd?’r:f —ed’r=—g,V, (6)

)1/2

Equation(8) states thate tends to keep aligned with the
axis, or at least lags considerably, whers increased. Tak-
ing y=3, as corresponds to Nbger=20° when# has ex-

In the phenomenological GL theory, a material is characceeded 70°. Stated in another way, vortex currgnteshich
terized(at a given temperaturdy two parameters, say, the flow in planes normal te, 1%'tend to stay in theb planes
GL parametek and the thermodynamic critical fieBl., and ~ when vortices are inclined to theaxis.

B. The vortex potential of an uniaxial crystal
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Again, the MS boundary conditio(b) is consistent with 0.10 —_——
the GL boundary condition for the order parameter. In an L T
anisotropic crystal, the latter reads | NbSe, 42K
; K,=20
P N =3
Mik =0, C) I>o !
' % 0.05

reducing todp/dn=0 in the isotropic case. Herg; = mij(l I
is the inverse mass tensor. Equati® requires that vortex '
lines enter the sample along the directiepn,, or equiva-
lently, that the vectom;, v, must be normal to the surface. |
That is just what is required by the conditi¢®). 0.00 T~
The amplitudes of the vortex potential decreases when 0.0 0.5 1.0
the vortex densityw is increased, and vanishes wheno b= 1
- ('J/Bc2

=B.»(0), an upper critical field depending on the vortex
FIG. 2. The vortex potentiad of NbSe (at 4.2 K) as a function

orientation agFig. 1):
of the vortex densityw, when the vortices are parallel to thexis

Bco(6) - _ —o . ~12 (6, «=0; triangular lattice The full line results from a numerical
B2 =R(O)=ru[y*sin* 9+cos 6] (10 calculation of an exact solution of the GL equations. The dashed
line is the linear approximation such as given by EiR) with ¢
wherex, = k(0)=«kmy, so thatx,=«(7/2)=yk, . The an-  =0; in reduced unitg§ =%,=(1—b)/2B8,«, . Replacings by —M,
isotropy factor is currently estimated from the upper critical-and w by By, this curve can be interpreted, more familiarly, as the
fields ratioB.,(7/2)/B¢,(0). reversible magnetization of a slab in normal field. However, it must
NearB,,, the components of decrease linearly aB, be borne in mind that & does not have the primary physical mean-
— . For (w sin6,0,» cosé) we have® ing of a local magnetization.
_Bea(8)—w sing 11 line tensione has fallen to zero, even though the local mag-
ST 2u0Ba K2 (D netic field B itself is far belowBg,. Notwithstanding the
expression “critical field” for B, or B,, neither the local
Beo(0) — » cosd conditionB=B,, or B.,, in a type-l or -l sample, nor the
T o K (120 conditionBy=B, or B, for the applied field, implies a tran-

sition to the normal state. We known that thin type-I films
where,=1.16 for a triangular lattice. In Eqél1) and(12)  remain superconducting in parallel fields much larger than
we have ignored terms smaller than unity in the denominato3.. In the present case, as explained in Sec. IIC, a normal
which can be fully neglected with respect to the quantitylayer may arise at a rough surface in normal fieBlg
2k?Ba whenk>1. The above expressions of ande, have  <By, .

been derived under the assumption tiBab,— w<B,,.'°
Their range of validity, however, is much larger than ex-
pected. Following a numerical procedure proposed by
Brandt!? a precise solution of the GL equations can be com- The best samples are hardly free from surface irregulari-
puted for a regular vortex latticeybitrary fieldso=B, and  ties. If the surface is rough on a scale comparable to or
vortex orientation. In this way, we have calculated the con-Smaller than the vortex spacingjs a highly variable vector,
stitutive relations:,(w) ande,(w) for several values o, in ~ and, as pointed out above, the boundary conditndoes
NbSe at 4.2 K (x, =20, y=3; see, for instance, Fig)2lt not make sense in a continuum theory of the mixed state.

turns out that expressioris1) and(12) may be used down to Nevertheless, the set of continuum E(5—(4) can be main-

w~0.3B,, with an accuracy better than 5%. tained, while assuming ideal smoothed surfaces, provided
As expressiong11) and (12) have been established for a that the condition(5) is released. MS theory suggested to

uniform lattice wherew=B, they are usually expressed as rgpla_ce it by an inequality similar to a friction angle condi-

functions ofB.,— B, instead 0B, — w. Moreover, by virtue  tion in mechanics:

of EQ. (6), —&,=— &(w;=B,) is directly written as giving

the equivalent reversible magnetizatidh= M/V of any |EXN|<sinay, (13

simple shaped body as a function of thgernal field B,

= w; . Nevertheless, that is a restricted physical meaning oivhere €=¢/¢ is a unit vector, andN now stands for the

e. As we will discuss further below, we shall have to esti-normal unit to the idealized mean surface. The physical

mate nondissipative currents, such as given by @y.at  meaning of Eq(13) is clear. Consider, for example, the iso-

points where the vortex fiele of a distorted array may be tropic case where&=w»: the vortex array may undergo a

very different fromB: there, the local vortex potentialmust  collective (macroscopitbending near the sample surface so

be expressed as a function®@fand notB. Thus, the “vortex  as to be inclined by an angteto the mean norma\l. If a is

density” @ may well reach the critical valuB,, while the  not too large, each vortex line, at the cost of very small

C. Rough surfaces and nondissipative transport currents
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displacements, may still terminate normal to the actual ir- w; bB:
. " c2

regular surface as required by the GL boundary condition. =

Equations(2)—(4), completed by conditior{13), lead to

an infinity of nondissipative metastable solutions. The magi et us return to thesotropic case momentarily. A9=a

netic moment of a body may strongly differ from the ideal seldom exceeds 20°, we may disregard, as a first approxima-

value (6). Not only may diamagnetic currents change, caustion, the variation of the vortex density near the surface.

ing hysteresis, but also nondissipative transport currents poshus, assumings=w; ande=¢;, Eq. (17) reduces toK

sibly occur. All these currents obey the same equations, ands ¢ | sine. To a maximumK=K., the MS critical-current

therefore, they flow near the surface over the same depth  density is

Now, we confine ourselves to the standard geometry in-

vestigated in Sec. Ill. A slaffthicknessAz=t, width Ax K.=e1sSinay,, (isotropic slap. (18

=W) is immersed in a normal applied fieR}(0,0B,). The

slab is an uniaxial single crystal, the thickness of which is Collectingl . data in slabs or foils of conventionislotro-

perpendicular to thab planes(xy planes. Vortex lines are pic and soft material¢lead alloys and pure metaland let-

regularly distributed in the bulk with a vortex density;  ting K.=1./2W, Mathieuet al. extracted empirical values of

=B,, the internal magnetic fieldFig. 1). Magnetizing ef- «,, within the range 0.5°—25°212 Note that siny,, al-

fects are negligible so thd&;=B,. The bulk vortex poten- though it is an adjustable parameter, was always found to be

tial £1(0,0£,) is a decreasing function of thheduced field  reasonably less than the unity, as it should be. Furthermore,

the temperature dependence &3f well accounts for ther

(17)

w—= - .
cosf cosé

w; By dependence of critical currert$The limiting anglea,, is a
b= B_ézz B_éz (14) s;atistical and geometrical pro_perty of a roug_h surface, for a
given density (;=w1/¢g) Of intersecting points between
as shown in Fig. 2. vortex lines and the surface. Cleatdy, increases with in-

Whereas the vortex density and orientation have unifornereasing roughness. It also increases when the vortex density
and well-determined values in the bulk, undetermined stati¢); iS decreased at low fields. In the absence of any treatment
distortions of the vortex array may settle over a depth  to make the surface very smooth or very ruggeg,is typi-
from the surface. Suppose, for example, that vortices bendally of the order of a few degrees. In this cases w;
uniformly in thexzplanes as sketched in Fig. 1, and intersectwithin better than 1%, and the approximated form(18) is
the (mean surface with an angle of incidengeAs stated by  quite justified in the whole field range.

Eq. (8), € makes a smaller angle(#) with the normalN. If Conclusions are quite different for amisotropic mate-
a(0)<aq,, the vortex lines may fit the rough surface on arial. While «y, should sweep the same range of values, we
“microscopic” scale. According to Eq(4), the currentsl;  can no longer ignore the increase in the vortex density ac-
that balance this vortex bending must flow in theirection.  companying the strong vortex bending. To be explicit,jlet

It should be emphasized that, in such a distorted layer=3 (NbSe), Bo=w,=0.7B;, (b=0.7), and suppose that
vortex lines and magnetic-field lines bend in opposite direcw=20° as allowed by an enhanced roughness. According to
tions (Fig. 1). Otherwise, the Lorentz force and the restoringEgs.(8) and(10), vortices intersect the mean surface with an
force would act in the same direction and could not counterangle of incidence o®=73°, for which the upper critical
balance each other. Therefore, this kind of equilibrium couldfield B,(6=73°) is larger tharBéz by a factor of 2.3. Now,
not be conceived, as long as the vortex lines and magnetiers required by Eq(17), the vortex density at the surface
field lines were confused. The equilibrium of bent vorticesshould be as large as %4=2.4B,>B,(6). This means
immersed in diamagnetic currents near the faces (fés-  that forb=0.7,s and the current densit¢(«) have fallen to
fect) slab inclined to the applied field is quite similar. With zerq pefore 20tas shown in Fig. 8 andK () is amaximum
this dlfferencg, in the 'Iatte.r case, currents on both faces oft some intermediate value,. As pointed out above, what
the slab are in opposite directions and cancel out. Insteagecomes critical here is the vortex density, whereas the mag-
currents on both faces of a rough slab may flow in the sam@etic field remains practically uniform throughout the slab

direction, giving rise to a net transport current. ~including where the vortex lattice is distorted.

On integratingJs, over their penetration depth, we find Making use of Eqs(8), (10), and(11), and substituting
the surface current density and the reduced field as independent variables ferand 6

in Eq. (16), we obtain
Ky=—g\(w), (15
BL
where w is the vortex fieldat the surface In magnitude K(a)z—czztana[(l-‘r Yy tart ) " Y?—b]. (19
(A/m), 2poPBak’
. At a given applied field, the nondissipative current density
K=[ex(@,0)|=5(w,0)sina. (18 K is a maximum for some angley:

The vorte_x densityv at the _surface is larger than thg bulk ap=tan 1(7—1W)_ (20)
density w4, in accordance with the law of conservation of
the number of vortex linegr div w=0). As easily seen, On substitutinge for « in Eq. (19), we find
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20 —m8————————————1— A
- b=0.4 (isotropic : - B;=20T -
[ B5=2T 7 Usotropic) 4 ] 00 e I oG- & 4
[ K%,=20 ] : -
L5 ™ -
= [ v=3 g Sample S5b
S 1ol g T=42K
< . b=0.7 (isotropic) = 05r By Lab :
e i g =
0.5 b=0.7 . A, o Increasing field
[ 7 k=19 ® Decreasing field -
5 J _1.0 MRS R S S T R T S
0.0 L— 1.0 1.5 2.0 2.5

0 10 20

o (degrees) Bo (D
o ) ) ) FIG. 4. The magnetization of the sample S5b in normal field.

FIG. 3. An equilibrium configuration of the vortex array, like gpen and full circles correspond to increasing and decreasing fields,
that sketched in Fig. 1, where vortices are bent inxbplanes, is  yggpectively. These data have been corrected for a small paramag-
kept balanced by supercurrents flowing in telirection. For a  petic contribution mainly due to the sample holder. Straight lines
given value of the bulk vortex density,=By=bBg,, such a con- are fits to the linear expressiofi2), letting M=—¢,(0=0,
figuration is uniquely determined by the angle at the surface, _ Bo). SO we obtaink, =20+ 1, andB.,= 2.0+ 0.1 T. The absence
between the vectar and the normal to the mean smoothed surface.; 4 “peak effect” in magnetization curves made the fit easier.
The total surface current densiy obtained by integratings, over
z, (IjS ploét?\_dll(;lbth[l:s Ifllgi_ure asa furllctllon o(;f :or a féavxivalgjes cln(f_ the e obtain ag=14° for y=3, but ay=37° for y=1. The
re_uceL_'e - l"les are calculated from 419) by taking former is readily accessible, but the latter exceeds the limit-
v=3, k=20, andB;,=2 T, i.e., the relevant parameters of NpSe .
at 4.2 K. Dashed lines are obtained by merely substitufird. for ing angles of the roughest surfaces.
vy=3. The maximum ofK(«) for relatively low values ofa is a

characteristic feature of the anisotropy. This maximum explains that Il. EXPERIMENTAL RESULTS
critical currents become saturated when the surface roughness is
increased. Single crystals of NbSehave been grown from prere-
acted polycrystalline powder by a standard method of chemi-
Bl cal vapor transport using iodine as a gas vector in a three-
Ko(b)=K(b,ag)= — 2 (1-b?332  (21)  zone thermal profilé-°The crystal structure was confirmed
2moBaYK] to be in the H phase by x-ray diffraction. Crystals obtained

by this method appeared in the form of thin faceted platelets
Equation(21) represents an upper bound for the nondissipawith a mirrorlike surface perpendicular to thexis. Rectan-
tive MS current for a given applied field\s far as vortices gular slabs were cut out of large-sized crystakse Table)l
can fit the rough surface freeland the surface is rough Transition temperatures, as determined by low-field magnetic
enough so that,,> ag, the expected critical-current density sysceptibility, were close to 7.15 K. The residual resistivity
is Ke=Ko. If am<ag, Kc=K(ap) such as given by Eq. ratio (RRR) defined as the ratioR(300K)/R(7.5K) is
(19), andK <Kp. around 40-50. These values of RRR dndagree with those
As a conclusion, we predict that critical currents of anpreviously published**® and attest to the good quality of
uniaxial slab become saturated, when the roughness of thgr crystals.
faces is increased. Moreover, the saturation critical currentis  All measurements reported in this paper were carried out
expressible in terms of the fundamental parameters of thgt the temperature 4.2 K. Experimental data in Figs. 4 and 5
material[Eq. (21)], without any adjustable parameter. refer to the three samples described in Table I. Critical cur-
In theory, the above equations hold in the isotropic caserents| . were measured in perpendicular fi@gL ab, in the
However, the condition for observing the saturatiey,  range 0.2:b<1. We used a standard four-lead arrangement,
>ap (b, y=1) cannot be achieved except in a too restricteccopper wires being attached to the crystal with silver paste.
field range neaB.,. For example, taking=0.5in Eq.(20),  ThenK,=1,/2W is compared with theoryFig. 5.
The magnetization of some of the slabs was studied, in
TABLE |. The residual resistivity ratio and dimensions of the perpendicular and parallel fields, with a commercial super-
NbSe slabs referred to in Figs. 4 and 5. Samples S5a and S5b haV@onducting quantum interference magnetomé®@uantum

been detached from the same ampoule. Design, model MPM$ From the reversible part of the mag-
_ _ netization curved , (Bo) andM(Bg), we could extract the
RRR  Width(mm)  Thicknessmm)  Length(mm) three parameters involved in equations of Sec. Il, which
sS4 54 2.2 0.12 8.1 characterize the uniaxial crystal, nameﬂgi,z, Kk, ,andy. A
S5a 44 1.5 0.17 115 fit of the linear part ofM, (By) to Eq. (12), assumingM
S5b 15 0.14 5.4 =—¢g,(w=Bgy,0=0), givesB,,=2.0T and«, =20 (Fig.

4). Note that the demagnetizing effects are completely neg-
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4 ; ’ v ' r ' . ; how this saturation value is attained after two successive
h Sample S4 ] sandblasting processes. If we confine ourselves to these
A l—Sample S5a qualitative features, however, we cannot decide on any par-
& e o Asgrown 1 ticular mechanism, even though surface defects are clearly

@ . involved. Nor do we know whethefy(b) represents some

S = o After sandblasting 1 : L

< i practical limiting value, or a fundamental upper bound of

< 2 s & After sandblasting 2 -

= n; K¢(b).

v at The striking and conclusive result here, is that the ob-
served saturation currei€y(b) is close to the theoretical
maximum of the MS nondissipative current in an uniaxial
crystal, also denoted asy(b) in Sec. lI[Eg. (21) and the
full line in Fig. 5]. The quantitative agreement between

%_2 0.4 0.6 0.8 1.0 theory and experiment is as satisfactory as we could hope for
because of the experimental errors and underlying approxi-
b mations:(i) The usual accuracy in measurihgand W, (ii)

FIG. 5. The surface critical-current density, defined g  the uncertainty in the fundamental parameters, in particular
=1/2W, as a function of the reduced magnetic fibldbefore and k1 (k. =20+ 1; see Figs. 4 and)pand (iii) the use of ap-
after two successive sandblasting processes. In the first process, tREOXimated expressions faer. Also by taking,=1.16, we
nozzle-sample distance was 8 cm, and the time of exposure have deliberately ignored a small increase in the Abrikosov
=1 min. In the second proces$=4 cm, andr=20s. The full line ~ parameterB, associated with the deformation of the basic
Ko(b) is the upper bound df.(b) such as predicted by the theory cell of the vortex lattice in the vicinity of the surfacg@v) In
of Sec. Il C. HereKy(b) has been calculated by letting=3, addition, the approximation inherent in a continuum descrip-
=20, andB,=2T in Eq. (21). The dashed area stands for the tion of the vortex state, especially as the depth, is not
experimental uncertainty in these parametensinly in «, ). much larger than the maximum standard deviation of the
surface profile. These remarks should not obscure the main
outcome of this work: we are able to predict the absolute
value of the critical currents of a rough crystal of NbSe
without any adjustable parameter.

ligible. The demagnetizing factdd of a slab such as the
sample S5b(Table ) is about 0.9, and in writingM |, =
—¢& (w=Bgy) we disregard a small correcting term of the
order (1- D)/2Kf,8A~ 10 *. Finally, the anisotropy factor
y=3 was obtained as the ratio of the upper critical fie&ﬂ§
andBg, .

As-grown crystals have very low critical curreritewer
curve in Fig. 5. When interpreted as MS surface currents The fitting of the vortex lattice to the disordered boundary
through Eq.(19), they correspond to a limiting angle as low conditions of a rough surface offers the possibility of qua-
asa,~1°. As explained in Sec. Il, such values @f, have  sisuperficial nondissipative transport currents. We stress
been found to be typical of the best polished surfaces in again that this mechanism is not one of vortex pinning in the
variety of conventional materials. In order to appreciate theproper sense. Measurements of critical currents in NMbSe
effect of increasing roughness on the critical current, bothuniaxial crystals, at intermediate and high fields, provide
faces of the slabs were roughened by moderate and gradusttong support for the correctness of the MS interpretation,
sandblasting. For this purpose, we used a commercial systeamd reinforce the idea that MS currents account for the whole
(Sandmaster GF 1-9®perated with 92m alumina powder, critical current in many soft samples. However, we cannot
and low gas pressur€l.5 baj. We still had to adjust the exclude that, in some samples, vortex pinning or some other
distanced between the nozzle and the sample, and the time mechanism comes into play, giving rise to an additional
of exposure; typicallyd~5-10cm, andr<1 min. Sand- source of critical currents. In any case, the contribution of the
blasting must be gentle enough to preserve the sample thich4S currents should be taken into account.
ness, while yet achieving large roughness anglgs 20°. In this connection, let us refer to an incidental observa-
The state of the sandblasted surface was controlled by atomim®n. While working out the growth method, the analysis of
force microscopy. Maximum rms standard deviations of thethe first crystals obtained revealed a lack of stoichiometry,
surface profile were about 50—60 nm. and the presence of crystallized phases of iodoselenides. At

The fact that the critical current, of a slab increases the same time, these samples exhibited a strong “peak ef-
when its surface is sandblasted is in itself not surprisingfect” near H,(0.8<b<1), including those in the magneti-
Independently of any theoretical interpretation, the rough=zation curves. In th&(b) curves, the peak effect appeared
ness dependence of critical currents becomes more signifas a superimposed contribution insensitive to an increase in
cant and simply stated, when expressed in terms of the suthe surface roughness. These chemical defects were removed
face critical-current density defined d&6.=1./2W. First, by a more careful preparation of the prereacted powder; cor-
slabs of different dimensions, subject to the same surfaceelatively, peak effects disappear, except perhaps for a small
treatment by sandblasting, acquire the same critical-currerresidual effect in theK (b) curve (see Fig. %, which does
densityK.. Then, while increasing roughnes§, seems to not affect our conclusions. We suggest that the enhancement
reach a reproducible saturation vakig(b). Figure 5 shows of critical currents in the “peak effect” might be due this

IV. DISCUSSION
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time to a very strong pinning effect, which becomes effectivearray, randomly directed, preexist along the surf&c8uch
nearHg,. distortions should be hysteretic or metastable states depend-
Theoretical considerations of Sec. Il should apply toing on the past history of the sample. They prevent the satu-
YBaCuO. The order of magnitude of critical currents in theration current from being observed, while accounting for the
low-field limit, as quoted in Sec. I, are well explained by the vanishing of the critical currents at high fielt’sThe exis-
MS model:° Clearly, however, the saturation effect is not tence of frozen deformations implies free-energy barriers. As
observed. In particular, critical currents vanish in the so+he vortex line tensiom ¢, falls off for strong bending, it is
called vortex liquid phase above the irreversibility line. Now, pjausible that strong deformations be paradoxically of less
as pOInted out in Sec. Il A, the MS model works for a Vortexfree energy than weak deformationS, g|V|ng rise to free-
|IQUId as well. On account of the usual roughneSS of epitaCti%nergy barriers_ If we were ab'e to prepare a vortex State7
YBaCuO/ critical current ought to exist up tél.,. The  free from large surface distortions, in the region of the phase
question thus arises as to why the NpSeenario is not diagram usually assigned to the vortex liquid, we should re-
recurring in YBaCuO. In Sec. II C, an essential condition fortrieve a nonzero critical current at the first onset of a dc
observing the saturation effect has been stated: vortices mugfirrent. An experiment is planned to verify this assumption.
fit the surfacefreely, in order to achieve the configuration
that maximizes the current density. We think that this condi-
tion possibly fails in YBaCuO, for reasons that need to be
elucidated. In an attempt to explain the irreversibility line in
the frame of the MS model, Simon, P&s, and Mathieu J.M. acknowledges a grant from the FundaciGaixa
made the assumption that collective distortions of the vortexzalicia.
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