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Depinning Transition in Type-II Superconductors
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The surface impedanceZs fd of conventional isotropic materials has been carefully measured f
frequenciesf ranging from 1 kHz to 3 MHz, allowing a detailed investigation of the depinnin
transition. Our results exhibit the irrelevance of classical ideas to the dynamics of vortex pinn
We propose a new picture, where the linear ac response is entirely governed by disordered bou
conditions of a rough surface, whereas in the bulk vortices respond freely. The universal law forZs fd
thus predicted is in remarkable agreement with experiment, and tentatively applies to microwave
in YBaCuO films. [S0031-9007(97)04152-5]

PACS numbers: 74.60.Ge, 74.25.Nf
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A perfect sample of a type-II superconductor in th
vortex (or mixed) state would be transparent to an ele
tromagnetic wave at very low frequencies. But defec
are always present and strongly alter the quasistatic a
low-frequency response; low frequencies here meansV ­
2pf ø Vd , a so-called “depinning frequency” [1] de-
pending on the material and vortex density. It is importa
for applications to know what kind of defects can pin vor
tices, how they hinder small vortex oscillations and thereb
restrain the penetration of an ac ripple. In this respect
study at low levels of excitation of both the resistive an
inductive part of the surface impedanceZsVd ­ R 2 iX
as a function of the frequency provides much informatio
about the dynamics of pinning. It is generally accepte
that bulk pinning centers limit the quasistatic skin effect t
a pinning (or Campbell’s) lengthlC , 1 100 mm, while
dissipation is vanishingly small, as observed [1,2]. N
model, however, has been able to account for variations
Z at higher frequencies. In particular, as the first increa
ing of Rs fd is stronger than expected, the understanding
dissipation remains a puzzling problem, including in hig
Tc materials [3].

Experiments are performed on a series of slabs of co
rolled polycrystalline PbIn and pure single-crystalline Nb
The slabs (xy) are immersed in a normal magnetic field
B; unless specified their thickness2d is much larger than
the flux-flow penetration depthdf (see below). At equi-
librium, up to the upper critical fieldBc2, a regular lattice
of vortex lines parallel toz is formed, with the density
n ­ Byw0, wherew0 is the flux quantum. Both faces of
the slab,z ­ 6d, are then subjected to an ac magnet
field b0e2iVt parallel to the length (x direction) of the
sample. Under such conditions, induced currents and el
tric fields, Jszd and eszde2iVt , are along they direction,
while vortices oscillate in thex-z planes. For low excit-
ing fields (b0 , 1 mT), vortex displacementsuszd , 1 Å
are very small compared with the vortex spacinga . n2 1

2

(,1000 Å , for B , 0.1 T) [Fig. 1(a)]. The electric field
e0 at the surfacez ­ d, e0 ­ esdd ­ 2es2dd, is mea-
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sured by means of a pick-up wound coil. The main e
perimental difficulty in such measurements is to ensur
precise calibration of the phasew of e0 (within better than
0.5± at 100 kHz). Thus we get the surface impedance
the slab, defined as the ratiom0e0yb0. Putting

iZ
m0V

­
ie0

Vb0
­ lp ­ l0 1 il00 ­ Leiw , (1)

the ac response will be conveniently expressed in ter
of the complex penetration lengthlp [4]. As is easily
seen,2b0L (a factor of 2 for two faces) represents th
amplitude of the ac magnetic flux penetrating the slab
unit length alongy. The lengthl00 measures the dissipa
tion, asl00yL ­ RyjZj is the sine of the loss anglew.

The analysis of the ideal response, though it is n
observed (unlessV ¿ Vd), is an important step in our

FIG. 1. (a) Vortex linesuszd (full lines), and field profiles
bszd (dashed lines) near one face of a thick slab are sketc
with arbitrary units; for clarity, the actual length scaling
u ø a ø df , is not preserved. For an ideal surface, vortic
end normal to the plane boundary, the weight of thek2 mode
[11] is lowered, and a large normal-like skin effect is observe
For a real rough surface, a vortex-slippage effect at the surf
induces a relatively strong bending of vortices over the de
lV , a, so that nondissipative currents associated with t
vortex curvature [9,10] are greatly screening the exciting fie
(b) An isolated superfluid vortex in a rotating box of helium
terminates at a wall asperity. If it is acted on in the bulk, th
vortex line bends near the wall so as to keep on ending nor
to the surface, making thus an angle with the mean smo
surface.
© 1997 The American Physical Society
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argument. A perfect slab would behave like a line
continuous medium, of resistivityrf and permeability
m ­ mrm0 (0 , mr , 1). Here rf . rnByBc2 is the
flux-flow resistivity, andm is the effective “diamagnetic
permeability” of the mixed state [5,6];mr increases
steadily with the vortex density and rapidly approach
unity (typically mr . 0.9 for B * 0.2Bc2 in PbIn). In the
absence of pinning, an electromagnetic wave,b ~

e6ik1ze2iVt , e ­ 7Vbyk1, can propagate in the bulk,
according to the simple equation of dispersionk2

1 ­
imVyrf ­ 2iyd

2
f [4]. The wave fieldbszd would be ac-

cordingly: b10 coshsik1zdy coshsik1dd, whereb10 ­ mrb0

if one makes allowance for a surface screening by diama
netic currents. This leads tolp

ideal ­ mrlf tanhsdylfd,
where lf ­ s1 1 iddfy2. Assuming mr . 1, this
(undisputed) result involves all features of a normal sk
effect. In the so-definedthick limit (thick slabs and/or
high frequencies), sayd * 2df, l

p
ideal ­ mrlf . lf ,

so thatl0 ­ l00 ­ dfy2. In the thin limit, say d & df,
l

p
ideal ­ mrd . d, which means perfect transparency.
As shown in Fig. 2, the actual response is qui

different: after a low-frequency plateau,lp . l0s0d
(l00 . 0, w . 0), the loss angle increases with frequenc
so that the ideal skin effect (lp . lf , w ­ py4) is
recovered beyond some depinning frequencyVd; this
can be precisely defined as the midfrequency for whi
w ­ py8. Note, in passing, that the observation of
linear response is not consistent with predictions of
naive critical state model: A critical-current density a
small asJc , 10 Aycm2 should restrict the penetration

FIG. 2. The frequency dependence of the effective penetrat
depth lp ­ l0 1 il00 in the thick limit sd * 2dfd. Experi-
mental data: (o) Pb0.82In0.18 (2d ­ 1.26 mm,rf ­ 4.8 mV cm,
Vdy2p ­ 6 MHz). (d) pure niobium (2d ­ 0.85 mm, rf ­
4.3 nV cm, Vdy2p ­ 6 kHz). Full lines are theoretical fits
using Eq. (5), wherelS is the only adjustable parameter; the
flux-flow resistivity rf (thendf or lf ) is measured from the dc
voltage-current characteristics. According to Eq. (5) the un
versal Argand diagram oflps fdylps0d is the quarter circle
shown in the inset:f1 1 sVyVdde2ipy4g21. For comparison
the dashed line is the diagram predicted by the Campbell eq
tion (2).
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of fields b0 , 1 mT to depthsL ­ b0ym0Jc & 1 mm,
which is much smaller than observed, and seeing
L ~ b0, no linear regime could exist at all. The line
skin effect over depthsL , 100 mm was first reported by
Alais and Simon [7], and then misinterpreted by cons
ering the possibility of thermally activated vortex motio
Soon after, Campbell suggested that the linear signal
due to small reversible oscillations of vortices in the
pinning potential wells [2]: if a pinning restoring forc
2nKu (per unit volume) is introduced in the equation
vortex motion, the propagation of thek1 mode is greatly
altered. At low frequencies, it becomes a nondissipa
evanescent mode decaying exponentially in the sam
over a small depthlC ­ sBw0ym0Kd

1

2 , 1 100 mm.
HereVd ­ rfKyBw0 [dfsVdd ­ lC

p
2, w ­ py8] [1].

Assumingmr . 1 andlC ø d, the Campbell expressio
for lp reads

2k2
1 ­

1
lp2

­
1

l
2
f

1
1

l
2
C

sd * 2lCd . (2)

With l
2
f ­ id2

fy2, Eq. (2) accounts for the low-frequenc
plateau and the related order of magnitude ofVd . Other-
wise, no satisfactory fits of bothl0sVd and l00sVd can
be obtained from Eq. (2), as shown in Figs. 2 and 3.
spite of recent attempts to improve the treatment of b
pinning, the same difficulties are encountered in fitti
Rs fd in YBaCuO [3]. Note in this respect that th
inclusion of thermal flux-creep effects [4] may enhan
the dissipation in an intermediate range of frequencies
required (Fig. 4); it should be emphasized, however, t

FIG. 3. The complex penetration depthlp ­ Leiw of the
PbIn slab referred to in Fig. 2 has been measured as a fun
of the magnetic fieldB, for three values of the driving
frequency. Experimental data are plotted as the sine of
loss anglew as function of the ratioLymr df, so as to verify
the relationL ­ mr dfsV, Bd sinw (straight line) resulting from
Eq. (5). The limit sinw ­ 1y

p
2 corresponds to the norma

state or to the depinned vortex array. The Campbell equa
(2) leads to much smaller loss angles:L2 ­ 1

2 d
2
f sin2w (dashed

line).
2539
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FIG. 4. The microwave surface resistanceR of an YBaCuO
film (sample No. 2 of Ref. [3]) vs frequency plotted in a log-lo
scale. (d) are experimental data taken from Fig. 6 of Ref. [3
The full line is a fit using our Eq. (5), and takinglS and rf
(or lf ) as two adjustable parameters (we findlS ­ 0.07 mm,
rf ­ 0.4 mV cm, Vdy2p ­ 100 GHz). This fit is very close
to the empirical power lawR , f1.27 proposed by the authors
The dashed line shows the best fit obtained in Ref. [3] from t
Coffey-Clem flux creep model [4].

flux-creep models [4,7] predict an unobserved divergen
l0 ­ l00 ~ V

2 1

2 , asV ! 0 [8].
The model of the critical state based on the Mathie

Simon (MS) continuum theory of the mixed state [9,10
has prompted us to an alternative interpretation. W
briefly recall the points of importance in the MS theory
(i) each vortex line (unit vectorn) must terminate normal
to the surface (n 3 n ­ 0); whence the leading part of
the boundary conditions (rough or smooth surface) in a
problem of equilibrium or motion of vortices. (ii) Vor-
tex lines are not always field lines, so that the vortex fie
v ­ nw0n and the mesoscopic fieldB must be regarded
as two locally independent variables. The conjugate va
able ofv, ´ ­ ´sv, T d n , appears as a local line tensio
w0´ sJymd in the MS equation for vortex equilibrium or
nondissipative motionJs 1 curĺ ­ 0. (iii) The classi-
cal picture of a local diamagnetism is misleading [6].
diamagnetic current, just like a subcritical transport cu
rent, is a true nondissipative supercurrentJs (­ 2curĺ )
flowing near the surface over a small vortex-state pene
tion depthlV (&l0, the zero-field London depth). Any
deviationv 2 B also heals beyond the depthlV , so that
v ; B in the bulk sample. Although the mean magneti
moment density of a perfect body turns out to be2´, the
quantity 2´ has not the primary physical meaning of
local magnetization, normr , conveniently defined as the
ratio vysv 1 m0´d, that of a true local permeability [6].

Let us return to the ac response of the slab in the stand
geometry of Fig. 1, and suppose that bulk motions are u
restrained (no bulk pinning). As pointed out by Soninet al.
[5], the distinction betweenv andB implies additional de-
grees of freedom, and a secondk2 mode appears beside
2540
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the classicalk1 mode (k1 ­ 6iylf); this is a London-
like nondispersive evanescent mode, which dies off o
the depthlV (k2 ­ 6iylV ) [11]. Note that, in practice,
lV ø df, L andd. In a purek2-mode vortex and field
lines bend in opposite directions, whereas they coincide
a purek1 mode. More explicitly [6,11],

n1x ­
b1

B
­

u1

lf
, n2x ­ 2

b2

B
mr

1 2 mr
­

u2

lV
,

(3)

where nx ­ ≠uy≠z (n1x ­ ik1u1x , n2x ­ ik2u2x) and
byB measure the slopes of vortex and field lines, resp
tively. Then the responsebszd will be that combination of
the modes,b1 1 b2, which satisfies the field continuity
b0 ­ b10 1 b20, as well as the correct boundary cond
tion for vortex lines. The latter condition will determin
the relative weightsb1 ­ b10yb0 and b2 ­ b20yb0 of
the modes (b1 1 b2 ­ 1), and, therefore, the effective
penetration depthlp ­ b1lf 1 b2lV . b1lf (since
lV ø df and L). For an ideal surface, the vorte
boundary condition is clearlynx ­ 0 [point (i) above];
then using Eq. (3), we just recover the simple classic
diamagnetism result, that isb1 ­ mr . Now, the point
is that the surface roughness may considerably cha
this boundary condition, so as to enhance the weigh
the second mode [Fig. 1(a)]. Thus we argue that sm
effective skin depths at low frequencies should not res
from restricting the penetration of thek1 mode, but from
its amplitude being reduced due to the screening effec
the second mode.

According to the MS model [9,10,12,13], if the surfac
has irregularities on the scale ofa, vortex lines can bend
over a depthlV , making thus an anglea with the mean
smoothed surfacez ­ d. On the average, and in an
direction x, a should not exceed a critical valueac ,
1± 10±: knxlz­d # nxc ­ sinac , 1022 1021 [9,10].
As stated above, superficial nondissipative supercurre
(Js ­ 2curĺ ) can result from such distortions of th
vortex array; integrating2curĺ , the net current density
in the y direction is iysAymd ­ k´xl ­ ´knxl, where
´ . Bs1 2 mr dymr . A dc subcritical current can be
regarded as a frozen purek2 mode in the limitV ! 0.
To the maximum,iy ­ ic ­ 2nxcBs1 2 mr dymr is the
surface critical-current density. Starting from an eq
librium, whereknxl ­ 0, a shift of the bulk vortex array
is expected to induce a vortex curvature in the oppos
direction, nx ­ fsubulkd with nxc ­ fsu , ad. Perhaps
such avortex slippage(nx , 0 if u . 0) is more intuitive
when dealing with superfluid vortices in a rotating bo
[see Fig. 1(b)]. In helium, bulk pinning does not exis
and only asperities of the walls can pin vortices [14]. W
are just extending this idea to collective motions of
vortex array along a rough surface of superconductors

Linearizing nx ­ fsubulkd for small displacements we
can writenx ­ 2ubulkyl, wherel is a real length charac
terizing the surface roughness:l ­ ` would correspond
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to an ideal surface; in practice we expect thatl , aync ,
0.1 10 mm. As far aslV ø df, this condition applies
quasistatically in the ac response by takingubulk ­ u10,
so that thevortex-slippage conditionreads

nx ­ 2
u10

l
. (4)

Now, substituting Eq. (4) fornx ­ 0 in the above calcu-
lation of b1 and b2, and considering thethick limit, we
obtain

1
lp

­
1

mrlf
1

1
lS

sthick limit, d * 2dfd , (5)

wherelS ­ lmrys1 2 mr d , Baym0ic is the real limit of
lp . b1lf as V ! 0 (lf ­

p
2i dfy2). Note that set-

ting mr ­ 1 from the beginning would lead wrongly to
lp ­ lf ; that is the ideal response. While giving th
same low- and high-frequency limits as Eq. (2),lps0d ­
lS (real) andlps`d ­ mrlf (depinning), Eq. (5) remark-
ably fits experimental data in the intermediate rangeV ,
Vd (Figs. 2 and 3). According to Eq. (5), the grap
lpsVd in the Argand diagram must be a quarter circ
(Fig. 2). This universal behavior should be easily test
in any case, irrespective of any adjustable or available p
rameters, only providing that the thick limit is achieved.

From data taken below the thick limit (not shown in
the figures), we retain an important result. When2d is
decreased under conditions wherelC or lS ø df sV ø
Vdd, we observe that the ac response becomes thickn
dependent as soon asd & 2df, as predicted: just substi-
tute lf tanhsdylfd for lf in Eq. (5). In particular, the
loss angle is significantly smaller than stated by Eq. (5
According to the one-mode Campbell model, size effec
should arise for much thinner slabs such asd & lC. Note
in this respect that our “pinning length”lS, contrary to
lC , does not represent an actual penetration depth. T
mere observation that size effects arise ford , df, not
d , lC , attests that the bulkk1 mode propagates freely,
and reveals the need for a two-mode electrodynamics.

In conclusion, the MS model of the critical stat
completed by the vortex-slippage condition (4) accoun
quantitatively for the surface impedance of a variety
conventional samples, which all have standard critica
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current densities (ic , 10 Aycm: polycrystalline lead-
indium slabs and single-crystal slabs of pure niobiu
(Figs. 2 and 3). For the application to the case
YBaCuO atf , 10 GHz, our derivation of Eq. (5) has to
be reexamined, especially because of the anisotropy
high-frequency correcting terms in the dispersion equat
for the two modes [11]. Nevertheless, it is worth notin
that Eq. (5) may account for the observedf dependence
of R in YBaCuO from 1 to 20 GHz (Fig. 4) [3]. These
results support the argument, developed in previous wo
[9,10,12,13], that bulk pinning is absolutely ineffective i
a large class of “soft” materials (devoid of strong bu
inhomogeneities). Contrary to the common idea that a
crystal defect may be a pinning center, we are led to t
conclusion that a normally homogeneous sample in
mixed state rather imitates the behaviour of a superflu
vortex array enclosed in a rough box.
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