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Simple model for critical currents in anisotropic type-II superconductors
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Recently, a continuum theory of the mixed state in type-II superconductors was developed by two of us
(Mathieu and Simon). An unorthodox model for the critical currents in soft materials proceeded from this
theory. We show that this surface pinning model can be easily extended to soft high-T. superconductors
(HTSCs). It successfully predicts the order of magnitude of critical currents such as observed in monocrystals
or epitaxial films, and accounts for the existence and the position in the (H,T) plane of the irreversibility line.
In the framework of our model, the vanishing of critical currents appears as a simple consequence of the strong
anisotropy of HTSC’s; there is no need for any bulk phase transition of the vortex array.

The model for the critical current in soft conven-
tional samples, that follows from the Mathieu-Simon (MS)
theory, 2 provided a comprehensive view of the pinning and
motion of vortices in the mixed state,”> including some in-
tricate, indeed unexplained, features of the flux-flow regime,
in particular the flux-flow noise.” We believe that the MS
theory and pinning model are quite as relevant to HTSC’s.
For the present purpose, we only need to recall the MS equa-
tions for vortex equilibrium, and how to use them to define a
critical state in a soft material. By soft materials, we mean a
wide class of samples of standard bulk homogeneity in
which critical currents are governed essentially by surface
defects. As discussed in Ref. 2, such samples are not excep-
tional. It has long been observed that the critical current /.. of
foils of constant width W and varying thickness ¢, otherwise
prepared in the same way, is nearly constant.® The MS model
explains how the unavoidable roughness of the sample sur-
face enables a supercurrent to flow close to the surface, over
a small depth N\ (£=Ay=<M\), up to a superficial critical-
current density i. (in A/m). Granting that I .=2Wi_., we ac-
count for the order of magnitude of observed /., as well as
for their H and T dependence.’ By reporting I, data in terms
of a critical-current density J.=I./Wt (instead of
i.=1./2W) one obscures this striking and simple result. The
same remark can be made about HTSC’s. As an example, we
shall refer below to critical currents data in YBa,Cu;0,
monocrystalline platelets’ and epitaxial films,® when the ap-
plied field Hy= B/ is aligned with the ¢ axis, which itself
is normal to the sample plane. Typically, at 77 K
(T.—T=15 K) and low fields, J.~10° A/cm? in films
(¢~2000 A)%% and J.~2x10* A/cm? in monocrystals
(t~10 wm).”° By merely inspecting experimental data, it is
seen that J. « 1/t in a large range of thickness (2000
A=<r=<200 um)®' clearly meaning that, in this case,
i.~const~10 A/cm. So we claim that Y-Ba-Cu-O mono-
crystals are soft in the above restricted sense, and our first
concern will be to infer this order of magnitude of i, at low
fields. Consistently, the occurrence of the irreversibility line
[1.=0 at some field H*(T)<H_,] will appear as a simple
consequence of the strong anisotropy.

In the MS theory, the macroscopic free-energy density F
of the mixed state, regarded as a continuum, is expressed in
terms of a few macroscopic variables. Among them are the
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magnetic field B, the supercurrent density J; (or the super-
fluid velocity V), and the vortex field w=n¢yv, which de-
scribes both the local vortex density n and direction v (¢ is
the flux quantum). B=b, J,=J, and V,=v, are the coarse-
grained mean values of corresponding microscopic quanti-
ties, such as defined in the phenomenological Ginzburg-
Landau theory (GL). Microscopic or macroscopic here
means on a small or large scale compared with the vortex
spacing a. Letting ¥ = pe'? the order parameter, a the vector
potential, m the electron mass, and g= —2e the effective
charge, 2mv,=AV#—qa, and

jsi=”‘ikp2quk’ (1)

where u;, is a symmetric dimensionless tensor. On taking
the z axis along the ¢ axis, in an uniaxial crystal [Fig. 1(a)],
Wi is diagonal, and its principal values can be written as'’
1= pmr=v" and py=y"*3, where y*=u,/p; is the an-
isotropic factor (uippm3=1). In isotropic materials,
Mix= O;; . Averaging curl v, and taking account of singu-
larities, one finds the macroscopic London equation,’'
B—m/e curl V;= w, stating that w#B in regions where cur-
rents are not curlfree. London and Maxwell equations are
constraints limiting the possible spatial variations of currents
and fields throughout a vortex lattice. Nevertheless, B, J,,
and w must be considered, locally, as independent thermo-
dynamic variables.”> Whether vortices move or not, MS as-
sume that W (r,¢) rigidly satisfies its equilibrium conditions
(namely, the first GL equations, including the boundary con-
dition) arguing from the smallness of its relaxation time. In
anisotropic crystals, the boundary condition reads:

dp
ik ax, n, =0, 2

which reduces to dp/dn=0 in the isotropic case; n is the
outward normal unit. Under these conditions, the macro-
scopic thermodynamic identity, obtained by averaging the
usual GL expression for the free energy F (or dF), takes the
simple form:!2

- 1 m
dF=—0dT+—B-dB——J;-dV,+ ¢ -dw. 3)
Mo €
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FIG. 1. (a) A uniform vortex array (w=B,J;=0) in an uniaxial
crystal, whose ¢ axis has been taken as the z axis. The vortex
potential €, such as defined by Eq. (3) and given by Eq. (4), lags the
vortex field @, when vortices are tilted with respect to the ¢ axis.
The lag is governed by the anisotropy factor 7; in the figure
y=1.6. For y=7 (YBaCuO) comparable angles a~20° would
result from angles 6 larger than 85°. (b) As explained in the text,
€ lines (thin line) may end while making a variable angle a with the
normal N to the mean smoothed surface. This entails a strong dis-
tortion of the vortex lattice over a small depth from the surface. A
supercurrent flows so as to balance the restoring force associated
with the vortex bending. Note that magnetic field lines (dashed line)
and vortex lines (bold lines) incurve in opposite directions. Typical
values (not followed in the figure) for YBaCuO, at T=77 K and
By=1T, are i,=10° A/m, a=10°, §=83°, ¢=<0.1°.

The local vortex potential &(@,T,V;), here defined as
JF/dw (A/m, in rationalized units), plays a leading role in
the MS model of pinning. Although it is related to the fotal
reversible magnetization of an ideal sample (see below), by
no means should it be regarded as a local magnetization.? In
many practical situations, the V; dependence of £ may be
ignored;z’12 in a London model, for instance, where the su-
perfluid density p? is uniform outside the vortex core, J,
o« V,, so that strictly, de/dV,=0. Therefore, we can adopt,
as a first good approximation, the value £(w,T) relating to a
bulk uniform lattice. In this case, where V,=0, J;=0,
w=B, explicit calculations of F(7,B=w,V,=0,w)
=f(T,w) are available in various approximations, from
which we derive €=4df/dw— @/p, (usually denoted as
—M in the literature).

For vortices making an angle 8 with the z or ¢ axis of an
uniaxial crystal, so that @w(w sin6,0,w cosé), € lies in the xz
plane [Fig. 1(a)]. Over the whole range of vortex fields
(0<w<B,,), the € components can be conveniently written
in the compact form:

(BCZ—w) .
M€= 2 2 ngHIGa
X
“)
(Bc2_w)
Mo€:= 2K§ ngOSo,
where g, (w) and g,(w) are numerical factors.

B.,=B.\2 k(6) is the 6#-dependent upper critical field,
with x(8)= k[ y*cos?6+sin’6]" 12, k.= k(m/2)=yk, and
K, = k(0). In the low-field limit (0—0),
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F=f=wH_(6),"> where H.=H,lnk*/2«*, and
g.=8&,=Ink*=Ink+0.5. When the vortex density is in-
creased, ¢, and ¢, fall off and rapidly approach the Abriko-
sov line. In a London model (B, <w<B,,)," g,=g,=1
InyB,/w(71~1). Near B_,, but actually in a quite broad do-
main, g, =g,=const, and g=B-1(8=1.16) if k,>1."" For
numerical calculations we used an interpolating formula for
g(w), which is very close to that deduced from free-energy
calculations by Hao et al."®

It is worth noting that, in a large range of vortex densities
(including the limit =0, but not a small range w=<B_ ),
g.=&.,, so that § and the angle « between ¢ and the ¢ axis
are simply related:'

tanf= y*tana, (5)

meaning that £ tends to keep aligned with the ¢ axis, or at
least £ lags considerably, when 6 is increased: if y=7
(YBaCuO), «=10° when 6 has exceeded 80°.

In equilibrium states, the second GL equation merely
states that j=j, as defined by Eq. (1), so that
J=J,=curlB/u,. Furthermore, by minimizing the magnetic
free-enthalpy (7 and H,const) against small changes in
J,B, and w distributions (subject to constraints mentioned
above), MS derived the local condition for vortex
equilibrium,”> J,=—curle, and the boundary condition
£Xn=0. On combining these equations with the fundamen-
tal equation of state €(w,T) and Maxwell equations, one
equilibrium structure of the vortex lattice (at H,,T) is deter-
mined. In simple shaped samples (ellipsoid, cylinder, slab in
inclined field, . . .), vortex lines are uniformly distributed in
the bulk with constant values w; =B, and £; but, in order to
satisfy the boundary condition (€Xn=0), € lines must bend
to terminate normal to the surface. A correlative deformation
of the vortex lattice takes place, and associated currents
J,= —curle flow, over a small depth \,, from the surface.'*
These currents are nothing but Meissner-like diamagnetic
currents, which are responsible for the whole magnetic mo-
ment ..7Z of the sample (reversible when changing H, or T);
Aby=—€,V, where V is the sample volume.” The con-
tinuum theory applies, and then the above results hold, on
condition that the sample has no defects on the scale of
a=<1000 A. But the best soft samples hardly are free of
surface roughness on a scale comparable to or smaller than
a. Nevertheless, MS suggested that the continuum descrip-
tion could be maintained, while still assuming idealized sur-
faces, provided that the macroscopic boundary condition was
released and replaced by some inequality (like a friction
angle condition in mechanics). We must go back to this step
in connection with HTSC’s.

The condition £=n can be interpreted as a requirement
about the direction of vortices at the surface. In tensorial
form, Eq. (5) reads u; e, =kw;, where k is a scalar function.
So, £=n at the surface implies that vortices end parallel to
the vector u;n,. When stated in this form, the boundary
condition holds on a microscopic scale: as required by the
GL boundary condition (2), a vortex line, i.e., a singular line
p=0, must enter the sample along the direction w;n;. It
should also be noted that microscopic currents j,, round a
vortex core, flow in planes normal to &, whereas v;- @=0,
in accordance with Eq. (1). In isotropic media, vortices end
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normal to the boundary. We predicted and observed this ef-
fect for superfluid vortices in He IL.'®

In the presence of surface irregularities, there should be
many ways for the vortices to terminate on the actual sur-
face, so as to satisfy the microscopic boundary condition (2),
implying that currents j, flow tangential to the surface. As
happens frequently in disordered systems such a circum-
stance allows for a large number of metastable solutions.
According to the MS model, the surface roughness (of a slab
in normal field) may induce a strain of the vortex array over
a small depth \ inside the sample. In view of their strong
interaction, vortex lines here cannot be considered individu-
ally, and the deformation is collective; but, on a large scale,
both the amplitude and orientation of the vortex bending is
randomly distributed, with some correlation length c: from
recent noise measurements in conventional alloys we may
infer that typically c=1 um. More precisely, the vector
makes with the normal (n)=N(0,0,1) to the mean
smoothed surface a random angle « (brackets mean an aver-
age, in the xy plane, on a scale larger than c); the standard
deviation a™ (say ~1°, or ~10°) should increase with the
surface roughness.

According to J,= —curlg, and secing that £ =N in the
bulk, the vortex curvature requires a macroscopic surface
current i= £,,X N [i = £(a)sina]. Now, the statistical distri-
bution of i can be more or less “polarized” so that a net
current flows. For example, by systematically bending vortex
and € lines in the negative x direction [Fig. 1(b)], a net
current will be transported in the y direction: 0<(i,)<i..
The critical current density i. will be estimated as the value
of i for some mean representative values a.~a*:

i.=e(a.)sina.=|e(a.)|. (6)

By constraining € lines to make an angle a~ a,. with the z
axis, an irregular surface should also give rise to a correlative
bending for the vortices near the surface, up to a large angle
0~ 6. [see Eq. (5)]. Then, vortex bending entails an increas-
ing vortex density: w= w,/cos6, as required by the conser-
vation of the number of vortex lines (divw=0). Here,
w;=B, is the bulk vortex field. Given a value of «a.,
6.=arctan(y*tana,), and substituting w(6,)=w,/cosb, in
the equation of state £(w,T), we obtain i. through Eq. (6).
Conversely, from experimental data, we can estimate the
critical angle a,; for example, from the irreversible magne-
tization curve of a platelet (radius R, thickness ¢) in a normal
field By: . #=. oy * 3R>I, where . #,.,= wR’te,. Note
that the reversible magnetization and its hysteretic deviations
are both governed by the vortex potential &.

In conventional isotropic samples (lead alloys, pure
Nb)*!2 we found values of a, ranging from a few degrees to
20°, depending on the surface treatment. Since there
6.=a., w and & keep close to their bulk values, so that
i.=gsind.. It is obvious that any pinning model involves at
least one adjustable parameter. However, we had to find val-
ues of sina, reasonably smaller than unity. In this sense, the
MS model is able to predict orders of magnitude of critical
currents. In lead alloys, we observed that, at different tem-
peratures (1.5 to 4.2 K) and fields (0.8H.,<H,), a, was
nearly constant.’ This means that, in this range, a, was a

30 T -1 T T T T T
YBaCuO T=77K
g i
L
<
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FIG. 2. Theoretical estimate of the critical current density i, of
an YBaCuO surface (y=7, «,=20), at T=77 K (B.,,=8 T), in
normal applied field B, as shown in Fig. 1(b). The critical angle
a. in Eq. (6), which characterizes the surface roughness, has been
taken as 10°, a typical mean value suggested by previous experi-
mental results in conventional soft materials (1<a<20°).

property of the rough surface, and that the (H,,T) depen-
dence of I, was that of €.

Let us return to HTSC’s. As an example, let us consider
YBaCuO at T=T.—15 K=77 K. Reported critical field
slopes dH ,/dT|r_(0.5—0.55 T/K||c) yield typical anisot-

ropy ratios of 6—8.!7 Reported values of k, are much more
scattered, from «,<10,'” to x,<60." From B.(0)~1 T,
one finds «,=20 in the dirty limit. For definiteness we have
picked out y=7, «,=20, B,(6=0,77 K)=8 T. Then tak-
ing @,=10° as a representative value over the whole field
range, i.(By) has been calculated from Egs. (4)—(6) and
w=w,/cosf. Results are shown in Fig. 2 and could speak
for themselves; the low-field limit, i.~10 A/cm, as also the
field at which critical currents vanish, B*=5 T=0.6B_,,
are in fair agreement with standard data from Y-Ba-Cu-O
single crystals.3%!8

In calculating i. as €,(a,) in Eq. (6), we make use of the
first Eq. (4), where =6, , sinf,=1, and w= w,/cos0,>w,.
As a practical estimate of maximum critical current densities
at low fields, we may take the extrapolated value at w=0 of
the Abrikosov line:

HCZ(W/Z)

26 <H(m/2)<H(0), (7)

iCzez\’(a(‘)S

For instance, with data of Fig. 2, Eq. (7) reads i, <11 A/cm,
H.(m/2)=62 A/cm (78 Qe), H,(0)=280 A/cm (350
Oe). In isotropic materials, wg,+=w;, and we find similarly
i.<H_sina,<H.,. Thus, in either case, H., (A/m) repre-
sents a wide upper bound for maximum surface critical cur-
rents. This explains why conventional and HTSC’s materials
finally have comparable performances, as far as critical cur-
rents are concerned. The occurrence of large J, in hard
samples should not alter this general remark; the introduction
of many bulk inhomogeneities (cavities, precipitates, sin-
tered powders) more or less amounts to increasing artificially
surface effects by multiplying interfaces.

The vanishing of critical currents over a rather large field
range below H,,, appears here as a simple consequence of
the strong increase in vortex density near the surface. On
stating that the surface vortex density, w=B,/cosé,, has
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reached the upper critical value B_,(6=6.), so that e—0,
we obtain a simple expression for B*:

B*= Bclz (8)
(1+ y*tan’a,) " °

Note that, in any case, B* is strictly smaller than B,,. In
isotropic materials, however, this effect is hardly significant:
for y=1 and a.~10°, B*=B_, within better than 2%. Tak-
ing y=7 and a,=10°, we find B*/B.,,=0.63 (Fig. 2),
in agreement with a number of reported results in
YBaCuO.3*!® Otherwise stated, B* data yield, through Eq.
(8), a reasonable value of the critical angle «,; their fair
reproducibility should not be surprising, insofar as crystals
are made by using few standard methods. The ratio
B*/B.,, decreases rapidly with increasing anisotropy, as ob-
served in BiSrCaCuO;'® taking, for example, y=50 and
a.=10°, B*/B_,,=0,11. According to the naive mean pic-
ture of Fig. 1(b), with &= @ .= const, a normal sheath devel-
ops at the surface above B*; actually, an intricate distribution
of growing normal spots should populate the surface at high
fields. As far as nondissipative surface currents (i), macro-
scopic on the sample scale, are concerned, a rough surface
above B* behaves as an ideal surface: (i)=— £ XN, that is
zero in normal field, is uniquely determined, so that magne-
tization becomes reversible. However, the response of a
rough surface, in the reversible region, should be very differ-

ent in general from that of an ideal surface, when the vortex
array is subject to various probes or disturbances (surface
impedance, flux flow noise).

In conclusion, we wish to point out some marked differ-
ences between the MS theory and the classical elastic con-
tinuum theory (EC). Besides the fact that it only deals with
small deformations of the vortex lattice, the EC theory is
unable to account for equilibrium configurations such as that
shown in Fig. 1(b), where vortex lines and magnetic field
lines separate (w+ B). In fact, this question arises indepen-
dently of any pinning model or anisotropy effect; near the
surface of an ideal isotropic sphere at equilibrium, vortices
and fields lines must bend in opposite directions.” Taking the
vector product of J;= —curle by ¢, v, this can be interpreted
as the equilibrium between the Lorentz force J; X ¢, and the
restoring force curleX ¢, associated with the vortex bend-
ing. Deformations such as described by the EC theory
wrongly presuppose that w=B, so that both forces, acting in
the same direction, never can counterbalance one another.
Thus, in order to account for critical currents, the EC theory
must have recourse to the small shear modulus cgg; if
ce6=0, pinning should be ineffective. Whence, the opinion
widely held, that the vortex lattice melting along a phase
transition line B*(T) would explain the vanishing of critical
currents. Instead, by using only one parameter w to describe
the vortex state, we have deliberately left out small differ-
ences in energy between, for example, triangular and square
lattices, and thereby, we ignore shear stresses.
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