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The critical state and transport properties of the superconducting sheath are investigated, in slabs
parallel to the applied magnetic field, when it makes an arbitrary angle 6 with the direction of the ap-
plied current. The observation of critical currents governed by surface defects, and linear current-
voltage characteristics, corroborate the conclusion advanced by several authors in the past, that the sur-
face sheath of a real rough surface is populated by quantized vortices or “flux spots,” which should ex-
hibit the same pinning and flux-flow properties as usual vortices. Nevertheless, transverse voltages mea-
sured above H,, are at variance with the well-known general relation between macroscopic fields,
E= —v; XB, contrary to those observed in the mixed state. Making allowance for the observed anisot-
ropy of the surface critical current in parallel field, a model is proposed that accounts successfully for the
unexpected distribution of electric currents and fields above H,,. We emphasize that experimental re-
sults cannot be reconciled with the existence of surface vortices, and our analysis would lead to serious
difficulties in interpreting Joule dissipation, unless we rely on some unorthodox conclusions of a continu-
um theory of vortex motion developed recently by two of us. Measurements reported in this paper sup-
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port the correctness of this theory.

I. INTRODUCTION

This paper is concerned with the critical state and
transport properties of a slab in a parallel magnetic field,
particularly above H_,. Figure 1 shows several current-
voltage characteristics, such as commonly observed on
increasing the magnetic field across H,,. The persistence
of a critical current indeed confirms the capacity of the
superconducting surface sheath for carrying a reasonably
large current density, i, A /m, without dissipation.

At first sight, the unchanging shape of the I-V curve
suggests that some aspects or rules of the flux flow in the
mixed state should extend beyond H,,. In particular, and
as has long been noticed,""? i, is governed by (surface) de-
fects. Moreover, Hart and Swartz? (HS) inferred from
their experiments, that the superconducting layer of a
rough (real) surface should be permeated by an array of
quantized flux spots. As pointed out by several au-
thors,?~* many of the properties of the vortex lines in the
mixed state, in connection with pinning and flux flow,
may well pertain to these flux spots or surface vortices.
While developing our own argument, we recall in Sec. II
how this opinion prevailed at the end of the 1960s. Re-
cently two of us have proposed a continuum theory of
vortex motion in the mixed state,>® which we shall refer
to below as the MS theory. As discussed in Sec. II, we
believe that most of the ideas underlying the MS theory
may be generalized to describe the critical state and vor-
tex motion in the surface sheath, even though we are
dealing with a quasi-two-dimensional (2D) situation.

In the mixed state, under steady-state conditions, a
simple and well-known equation relates the electric field

E and the vortex line velocity v, viz. E= —v; XB. This
equation, relating macroscopic fields, has been derived by
Josephson7 in its stricter form, E'=—v; XB, where
0163-1829/93/48(10)/7376(7)/$06.00 48

E'=E+Vu/e is the gradient of the electrochemical po-
tential; the circulation of E’ is just what is measured by a
voltmeter. Josephson’s method of proof is one of great
generality. In the author’s own terms, it “is applicable to
(any) systems which are inhomogeneous with respect to
composition or flux line density.” E= —v; XB implies
the existence of strong transverse voltages in the mixed
state, when B makes an arbitrary angle 6 with the applied
current (Fig. 2), in full agreement with experiment.® We
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FIG. 1. Longitudinal voltage-current characteristics, V, (1),
of a Pb-In 17,5 at. % slab, for different values of the parallel ap-
plied field By, and 6=m/2 (see Fig. 2). The slab dimensions
along the xyz directions shown in Fig. 2 are, respectively, L=30
mm, W=8 mm, and t=1 mm. The distance between voltage
probes is Ax ~13 mm. At T=1.8 K, H.,=4700 Oe. The nor-
mal resistivity is p,=10.1uQcm. For B,> B, the limiting
slope of the V-I curve at large currents is the normal resistance
R,=p,Ax/Wt. At 5000 G, trailing of the curved part of the
V-I curve reveals a relatively large dispersion or critical current
along the sample, as explained in the text. By extrapolating at
V =0 the linear part of the characteristic at 5000 G (dashed
line) we obtain the mean critical current I, =3.5 A. When By is
aligned with the applied current (6=0), I, is reduced to 2.8 A
at 5000 G. On dividing these two values of I, by 2W, we get
representative mean values of the extreme current densities a
and b of the critical curve i.(¢) of Fig. 5.
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FIG. 2. The geometry of the sample. The magnetic field B is
aligned with the xy faces of the slab, and can be inclined at an
arbitrary angle 8 to the direction x of the applied current. A
100-200 turns coil, wound directly on the slab as shown,
presents mutual inductance with current loops along yz planes.
It is designed to confirm, through a low-frequency modulation
experiment, the occurrence of circulating transverse currents
above H,,.

then expect that the transverse field suddenly falls to zero
at H_,, unless vortex motion takes place in the surface
sheath. If so, and in so far as E=—v; XB is a funda-
mental relationship pertaining to any kind of vortex
motion, a similar effect ought to have been observed
above H ,, in spite of the fact that nearly the whole of the
sample is in the normal state.

Transverse-voltage measurements are reported in Sec.
III. We did observe transverse fields above H,,, but their
behavior is totally at variance with the equation
E=—v; XB. Nevertheless, as explained in Sec. III, this
is not inconsistent with the presence of vortices in the
surface sheath, provided that the MS equation relating E’
and v; [Eq. (7) below] is used in the place of
E=—v; XB. In most situations, in particular those re-
garding bulk flux flow, both equations are very much the
same.® Thus, the surface superconducting sheath ap-
pears, in this respect, as an unusual case well suited to
support the correctness of the MS approach.

By relying on the observed anisotropy of surface criti-
cal currents, a model is proposed (Sec. IV) which well ac-
counts for transverse voltages above H.,. As a proof, a
mutual inductance experiment, has been designed to
probe the predicted current distribution. From these ex-
periments it emerges that steady distributions of trans-
verse electric fields and currents may occur, where a bulk
normal Joule effect is balanced by a negative surface Joule
effect. This rather surprising result again is well ex-
plained by the MS theory of flux-flow dissipation as dis-
cussed in Sec. IV.

II. THE CRITICAL STATE
OF THE SURFACE SHEATH:
A PRELIMINARY DISCUSSION

Earlier attempts to interpret i, as a fundamental ther-
modynamic property of the surface sheath have been
highly unsatisfactory. Abrikosov® and Park!® calculated
the maximum current density i,,, which can be passed
through the surface sheath, in accordance with the
Ginzburg-Landau equations. But i, <<i,, by 1 or 2 or-
ders of magnitude.>? While i,, certainly makes sense as a
theoretical upper bound, it was clear that something else
limited surface currents far below.
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Fink and Barnes,!! then Park,!? defined the critical
state of the surface sheath as that state for which the
magnetic free-enthalpy difference G, —G, between the
superconducting state and the normal state is zero. Criti-
cal current densities obtained in this way are much lower
than those given by Abrikosov® and Park,!° and turn out
to be the order of magnitude observed. However, besides
the fact that minimum free-energy arguments are quite
questionable when dealing with transport phenomena,
severe objections have been made to this line of reason-
ing.»? Though deriving unlike expressions for i,, both
models''? make it to be dependent on the foil thickness
and/or width; such a size dependence of i, has never been
observed.? Another common prediction is worth men-
tioning, as it is inconsistent with our own results. In an
experiment reported in Sec. IV, we have been led to des-
troy surface superconductivity on one face of the slab by
nickel plating. Now, according to both models,'"!? the
measured critical current in this case should be reduced
by a factor of V2. As far as both faces of the slab have
been prepared alike, we instead observe that I, is smaller
by a factor of 2 (Fig. 1), as clearly expected if i, is caused
by surface defects. But the most direct criticism is still to
argue that no transition to the normal state is observed,?
as readily seen by mere inspection of the I-¥ curve at
large currents, where V' /IR, the normal resistance of
the sample.

All four of the above-mentioned theories suppose
that the local magnetic field be everywhere parallel to a
perfect planar surface on the scale of the coherence
length &£(7). HS rightly noticed that such ideal condi-
tions are unattainable, in practice, so that the field has a
nonzero normal component over most of the surface.
Therefore, in discussing their results, HS proposed that
the magnetic field, locally inclined to the surface, crosses
the superconducting sheath as an array of quantized flux
spots. Not long after, Kulik,® following Abrikosov’s ap-
proach, showed that the superconducting layer, in an in-
clined field, actually has a vortex structure similar to the
Abrikosov lattice. The mapping of the magnetic field
sketched in Fig. 2 of Kulik’s paper illustrates and
confirms the flux spot picture. Confining himself to rec-
tangular unit cells, Kulik obtained a square vortex lattice
at equilibrium, whose period d is given by

9—12

d’B sina=¢, , (1)

where ¢, is the flux quantum. B sina is the normal com-
ponent of the magnetic field. For small inclination angles
a,d =(¢0/Ba)1°/2. For instance, taking B=5000G, and
a=1°,d $5000 A. However careful the alignment of the
whole slab with the field, one cannot avoid large-scale
roughness of the surface, and thereby penetration of mag-
netic flux through the sheath. So it is to be expected that
a large number of Kulik’s vortices populate the surface.
The generation of surface vortices, which may be pinned,
enter a critical state, and move, provides an attractive ex-
planation for all observations.

Let us return, for further comments, to the set of I-V
characteristics as shown in Fig. 1. The curved part at the
foot of the characteristic, though of minor importance, is
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a constant feature, which gives indirect evidence of the
prominent part of defects, above and below H,, alike. As
the distribution of defects is hardly homogeneous in prac-
tice, each segment x of the sample has a different critical
current, I.(x), in a finite range, say from I, to I;". Thus
the curved region of the overall characteristic, between I,
and I/, results from the sum of individual linear charac-
teristics. This fact is easily checked by using a series of
close voltage probes.!3 It is easily seen that the critical
current I, usually obtained by extrapolating the linear
part of the I-V curve, represents the mean value of I.(x)
between the voltage probes. In discussing experimental
results, it will be convenient to assume that the distribu-
tion of surface defects is homogeneous and isotropic. Un-
der such ideal conditions, the I-V curve should display
the standard broken shape: V=0 for I<I, and
V=R(I—I,) for I>I. Below H,, R=R <R, is the
field-dependent flux-flow resistance. Near H_,, the con-
ductivity difference, o £—0,, is an effect associated with
the relaxation time of the order parameter.%* Vortex
motion, if it occurs in the surface sheath, must entail
similar time-relaxation effects. Because of the smallness
of the volume involved, however, their contribution to
the total dissipation is not significant, so that R cannot be
distinguished, within experimental accuracy, from the
normal resistance R, (see Fig. 1).

The constant intercept of the linear part of the charac-
teristic suggests that the surface sheath, above H,, re-
tains its ability to carry a constant nondissipative current
I,. That is its maximum value I, as much as allowed by
surface defects, while the voltage is proportional to the
dissipative excess current I,=I—I,=V/R,,.

The MS theory just leads to the same naive interpreta-
tion of the customary flux-flow regime in the mixed
state.>® Yet there is an objection to be made: How does
one explain the large part VI, =VI_ of the Joule power
VI, if I, itself does not contribute to dissipation? There is
no inconsistency, however, as discussed at some length in
Ref. 6. Whether below or above H,,, we are clearly faced
with the same problems. We shall return to this point at
the end of Sec. IV.

To begin with, we shall avoid arguing about the de-
tailed nature of the pinning and dissipative mechanisms.
First of all we wish to consider the previous and less com-
plicated question of how electric fields and currents are
distributed in the “vortex flow” regime above H,,, espe-
cially when the magnetic field is inclined at arbitrary an-
gles 6. In whichever model of transport, a current I > 1,
may be separated into a surface part I, =1, (current den-
sity i;) and a bulk part I, (normal current density
J,=o,E). We may accept as an experimental fact the
existence of associated Joule effects: E-i (W /m?) and
E-J,( W/m?), but the very nature of dissipative mecha-
nisms, however, will come into question inevitably, when
we discuss our experimental results.

III. TRANSVERSE VOLTAGES:
EXPERIMENTAL RESULTS

Longitudinal and transverse voltages, ¥, and V,, have
been measured in a series of 10-20 lead-indium slabs
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aligned with the applied magnetic field, for various values
of the angle 6, as shown in Fig. 2. Typically, the dimen-
sions L, W, and ¢ of the slab, along the x, y, and z direc-
tions, respectively (Fig. 2), are L =3 cm, W <1 cm, and
t=0.5-1 mm. Cast ingots of the solid solution Pb-In
17.5 at. % were annealed for 2 weeks under purified ar-
gon (~10"* mm Hg) within about 10°C of the solidus
point. Slabs were spark cut, either directly from the in-
got, or from 0.5-1 mm sheets obtained by rolling, or by
pressing a piece of ingot between glass microscope slides
in a hydraulic press. Pressed samples exhibited a mirror-
like finish, a good parallelism of the faces, and yet rela-
tively large critical currents above H,, (i, R 1A/cm).
Samples were used as rolled or as pressed, or after various
surface treatments (mechanical or chemical polishing,
electroplating).

For the sake of the discussion, we shall refer to simple
standard conditions, in which samples are assumed to ex-
hibit a homogeneous and isotropic distribution of (surface)
defects, as stated in Sec. II, as also bulk homogeneity.
Such conditions entail a translational symmetry along xy
planes (Fig. 2). In the vortex state macroscopic space
charges and Bernoulli effects are negligibly small, so that
p=const in a homogeneous sample, and, in any case,
E'=E. Moreover, translational symmetry and steady
conditions (VXE=0, V-E=0) require E to be uniform
everywhere inside the sample.

In the mixed state, strong transverse voltages in an in-
clined field (6 /2) have long been observed,? and ex-
perimental results fully agree with theoretical predic-
tions. Let us recall them briefly, for comparison with the
unexpected and contrasted behavior of transverse fields
above H_,. Except for the intricate situation where B is
aligned with the applied current (6—0), bulk flux flow in
the mixed state is well understood. Vortex lines (density
n, direction v), defined as the lines on which the order pa-
rameter Y vanishes, lie along the direction of the magnet-
ic field B so that

B=n¢ov N (2)

and all theories of vortex motion state that, under sta-
tionary (and standard) conditions,®

E'=E=—v, XB, (3)
E=pf(B)J2_L y (4)

where p, is the flux-flow resistivity, and J,, is the com-
ponent of the bulk current normal to vortex lines. In
Eqgs. (2) and (3), B stands for the field inside the sample.
Due to magnetization, B differs from the applied external
field By=poH,. Note, however, that, in the parallel flat
slab geometry, B and B, remain parallel, and
B=const(8). Equation (3) alone prescribes a strong con-
straint on the direction of the electric field, since E must
be normal to B:

E,=—E, /tanf . (5)

If J, is assumed to flow in the x direction, we have

E,=E sinf=p,J,sin’6 . (6)
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As p,=const (0) in the geometry used, measurements of
the apparent flux-flow resistivity, E, /J, or dV, /dI, for
10°S0<90°, entirely confirmed the predicted sin%0
dependence. As 6—0, too large critical currents prevent-
ed us from observing a linear flux-flow regime.

It is noteworthy that the flux-flow constraint (5) must
hold so long as some vortex structure exists. If, for in-
stance, 6=m/4, E,=—E,, so that E makes a constant
/4 angle with the applied current up to H,,, despite the
fact that the sample is approaching the normal state con-
tinuously (¢—0 and B=B;). Equation (3) breaks down
at H,,, and E is expected to line up suddenly with the
direction of the applied current as it should be in the nor-
mal state, giving rise to jumps in longitudinal and trans-
verse voltages. That is just what we observed. As shown
in Fig. 3, when H, is increased at constant I, |V, | first
increases (in the same ratio as V, ), and falls off abruptly
at H_, (over about 20-30 G). However, significant trans-
verse voltages persist above H,,, according to a mecha-
nism to be determined. Whatever it may be, it has to be
ascribed to surface superconductivity: nickel plating
both faces of the slab indeed makes V, vanish above H,
within experimental accuracy. It is to be noted that, be-
cause H,, is very sensitive to the indium concentration,
unannealed samples may exhibit a blurred transition over
a few hundred G (see, for example, the data of Ref. 8). In
spite of a narrow liquidus-solidus range, careful annealing
is required to make the alloy composition uniform. In
practice, we found that a sharp decrease of |V, | at H,,
was the best way of testing bulk homogeneity, ensuring
that the whole bulk sample has entered the normal state.

Let us now examine the outstanding features of trans-
verse voltages above H_,, as compared with those ob-
served below H,,. First of all, ¥, changes sign (V,>0 in
the case of Fig. 2, where I =1, >0). Moreover, while the
longitudinal characteristic V, (I) has the common shape,

0.05| \
0 —
= 0 =45°
% [ I=11A
= -
~02 77; J
0.4 B (Tesla)

FIG. 3. The transverse voltage V) as function of the magnet-
ic field at 7=1.8 K, and constant current /=11 A. Orienta-
tions of the applied magnetic field and current are those shown
in Fig. 2. Voltage contacts are carefully aligned perpendicular
to the direction of the applied current, or else a potentiometer
set up is used as shown in the inset. Anyway, it is advisable to
verify that ¥, contrary to ¥V, is an odd function of 6. ¥V, and
V, are both even functions of B, and odd functions of I. Nega-
tive transverse voltages below H,, are fully explained by usual
flux-flow equations. The unexpected observation of positive
transverse voltages above H,, are the subject of this paper. The
abruptness of the voltage jump at H,,, over about 20-30 G, at-
tests a good homogeneity in indium concentration after anneal-
ing.
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V, increasing linearly at large currents, the transverse
characteristic V,(I) shows a flat plateau (Fig. 4). This
implies that, at given 0, the direction of the electric field
is now current and field dependent: E,/E, may take any
positive value, though rapidly decreasing with increasing
ITorB(I— o or B—B, E,/E,—0).

Seeing that a vanishing vortex structure near H,, still
forces the orientation of E, we are not surprised that the
superconducting sheath, thin though it may be, can affect
the electric field direction. Moreover, referring to steady
standard conditions, where E is uniform throughout the
sample, we are aware that any constraint on E in the
sheath must extend to the bulk. But the only reliable
equation that presumably applies to any systems involv-
ing flux line motion (see Sec. I), E=—v; XB, happens to
be inconsistent with our experimental results above H,,.
In particular, E, has the wrong sign. Whatever way we
turn to interpret voltages along the surface sheath, we
first have to remove this difficulty, unless we renounce
surface vortices.

As far as its main ideas are readily extended to the sur-
face vortex state, the phenomenological MS theory of the
mixed state provides a satisfactory answer. The originali-
ty of the MS theory essentially lies in realizing from the
outset’ that (i) at equilibrium, vortices must terminate
perpendicular to the surface sample; (ii) Eq. (3) is not of
general validity, and holds only for curlfree (in particular,
in the absence of) supercurrents. In a thermodynamic
treatment of the mixed state, regarded as a continuum,
the vector @=n¢yv, which describes the local density
and direction of vortex lines, and the macroscopic mag-
netic field B must be considered as local independent
variables: for a given value of @ at some point M, B(M)
still may be varied by any change in the distribution of
currents elsewhere. Most of equilibrium and transport
problems may be reexamined from this point of view.
Consider, for example, the equilibrium of a perfect
cylinder or sphere in an external field B, (see Fig. 2 in
Ref. 6): it is found that vortex lines curve in over a small
depth near the surface to end normal to the boundary,
while field lines in this perturbed layer are bent in the op-
posite direction. A condition for the local equilibrium of
vortices>® requires that supercurrents to be associated
with the local distortion of the vortex array, while J=~0
and @=~B in the bulk. These are nothing but the
Meissner-like diamagnetic currents. Now, consider the

0.1
T=18K “
B =5000G 0 =45°
S
g
=
0 = 80°
0 1(A) 20

FIG. 4. Transverse voltage-current characteristics, v, (1),
above H,,, showing the voltage saturation at large currents. No
transverse voltage is observed for 6=0° and 6=90°. The effect
has a maximum for 6 $45°.
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case of a rough slab in perpendicular field: there are no
diamagnetic currents. But in the presence of surface
roughness on a scale comparable to or smaller than the
vortex spacing, there are many ways for the vortices to
end normal to the actual surface, allowing for a large
number of metastable or nondissipative solutions.® Asso-
ciated supercurrents in this case may well appear as non-
dissipative transport currents J;. Again, across a thin
surface layer, vortex lines (i.e., the singular lines ¥=0)
strongly deviate from magnetic field lines, and @B (see
Fig. 3 of Ref. 6).

Using a standard rigorous method, MS derived a com-
plete set of transport equations. In particular, under sta-
tionary conditions, the equation [Eq. (39) of Ref. 6]

(E'~)E=—v, X0 ¥

is obtained as a straightforward consequence of conserva-
tion laws.>® Equation (7) should be substituted into Eq.
(3) for more general applications.

It should be noted that the normal ending of vortices at
the sample surface is consistent with (required by) the
Ginzburg-Landau boundary condition, d|v|/dn =0,
where 90/0dn is the normal derivative at the surface.
Kulik’s vortices do not make an exception to this rule,
though this is not pointed out by the author. By simple
inspection of Kulik’s solution for the order parameter in
the surface sheath, it is seen that the lines ¢¥y=0 are
indeed normal to the surface, whatever the angle a be-
tween surface and field may be. Since surface vortices are
very short and melt away rapidly in the normal bulk,
they cannot change direction through the surface sheath.
According to Eq. (1) the vortex density n =a ~2, and thus
, are a dependent, so that w should be a highly variable
function of position, in particular w, changes sign, along
a rough xy face of the slab. The vector @, however, keeps
close to the z direction. Therefore, it is clear that any
direction of the electric field in the xy plane becomes
compatible with the new transport equation (7).

IV. ANISOTROPY
OF SURFACE CRITICAL CURRENTS:
A MODEL OF TRANSVERSE VOLTAGES ABOVE H_,

Due to Ohm’s law, J,=o0 ,E, the existence of a trans-
verse field E, >0 at large currents implies that of a trans-
verse normal current J,, =0 ,E,>0. This is a marked
difference with bulk currents J, in the mixed state, which
are flowing in the x direction. Since no net current can
flow in the y direction (I, =0), surface currents must flow
on both faces in the negative y direction so that

2iy,+1J,,=0, (8)
while the applied current I > I is
I=1,=W(Q2i,, +tJ,,), 9

where I, =2Wi,, >0 and J,, >0. Therefore, for large
currents, the surface current density i, makes an angle
with the x direction, except for 6=0 and 7/2. If we
succeed in explaining the clockwise rotation of i,, we
should state, conversely, that a normal current must re-
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sult from the backflow of the transverse surface currents,
giving rise to transverse voltages:

V,=—2Wi,,/to, . (10)

For 6=0 and 7 /2, no transverse voltages are observed,
as expected from symmetry considerations. This fact
warrants that no preferred direction exists on the surface
except for that of the magnetic field itself. For I >1,,

iv=i=I1./72W . (11)

As discussed in Sec. II, we only have access, in actual
samples, to average values of critical currents between
voltage probes, and all current densities i; and J, in the
above standard equations should be replaced by appropri-
ate mean values. Nevertheless, as we systematically ob-
served that I, (6=m/2) were 20-30 % larger than I,
(6=0), we may reasonably conclude that surface critical
currents are locally anisotropic: the maximum current
density i;=i,, that the surface is capable of carrying
without dissipation, depends on the angle ¢ between i,
and B. Thus, an ideal standard sample would be charac-
terized, for given values of T and B, by a critical curve
i.(p) such as sketched in Fig. 5; extreme values
i,(m/2)=a>b=i,(0) correspond to I (6=m/2)=2Wa
and 1.(60=0)=2Wb, respectively.

Once we have accepted the anisotropy of surface criti-
cal currents as an experimental evidence, it is a simple
matter to establish the connection between this anisotro-
py and the observed behavior of the transverse voltage-
current characteristics above H,,. For this purpose we
still refer to simple standard conditions, where the criti-
cal state of the surface sheath, at any point of the surface,
is uniformly described by the same curve i .(¢). Then we
make the reasonable assumption that transport currents
are so distributed as to minimize the total power input
V.I,=V,.I: at I constant, this means V, minimum, in
particular, V, =0 as far as allowed by critical properties
of the surface. Low nondissipative surface currents can
flow in the x direction up to i}, =i.(0)=O0M (Fig. 95).
The transport current I =2Wi,, can be further in-

FIG. 5. Graphical construction of the critical state of the
surface sheath in inclined fields. As shown by experiment, the
critical surface current density i.( 4 /m) is anisotropic, and de-
pends on the angle @ between the direction of the magnetic field
and that of the surface current density i;. Assuming homogene-
ous surface conditions (referred to as standard conditions in the
text), any point of the xy faces should be characterized by the
same theoretical curve i.(¢). i;=OC represents the current
density in the critical state, defined as that state achieving the
maximum transport current i, for zero longitudinal voltage.
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creased, while maintaining V, =0, provided that the sur-
face current i; rotates clockwise along the critical curve.
When i;=O0C (Fig. 5), the critical current is attained:
I=1I(60)=2W OH. Any excess current I —I_. will ap-
pear as bulk normal currents J,, >0. As i, is rotating, a
transverse voltage ¥, arises, which is associated to the
normal backflow in accordance with Eq. (10). ¥, comes
to saturation for i,, =HC (Fig. 5). The curve traced out
by the vector OH, from A4 to B, is the so-called pedal
curve of the curve i (). If the critical curve is approxi-
mated by an ellipse with semiaxes a and b, it is easily
shown that HC has a maximum a —b near
0=m/4[tan0=(b/a)'’?]. Hence, Eq. (10) yields the
maximum transverse voltage to be expected:

Vy max=(2W HCpp ) /10,

~2W(a —b)/to,=AI/to, , (12)
where Al =1 .(m/2)—1.(0). V., can be estimated by

using the experimental mean values of critical currents;
taking, for instance, data from Figs. 1 and 4 at 5000G, we
find AI_=0,7 A and, from Eq. (12), ¥}, ,,,, =71 uV, which
is close to the measured saturation value for 6= /4 (Fig.
4). In view of the dispersion of critical currents in actual
samples, perhaps such a quantitative agreement is fortui-
tous, but the predicted order of magnitude remains
significant.

This model well accounts for the main features of
transverse voltages above H_,: sign, amplitudes, and sat-
uration at large currents. This could have been our con-
clusion, but we cannot evade a last difficulty, in connec-
tion with the transverse current distribution implied by
our interpretation. Before coming to this point, let us re-
port the result of an experiment designed to confirm the
presence of the transverse superconducting-normal
counterflow.

A pickup coil consisting of n turns of wire was wound
close to the slab surface as shown in Fig. 2. Surface
currents i;, on both faces, and return normal currents
J,,, form double current loops in the yz planes. By sym-
metry, the magnetic flux through the coil as a result of
these transverse currents is zero. By nickeling one face of
the slab, the superconducting sheath is destroyed on this
face, so that transverse currents i;, and J,, now form a
single loop: I. and V, are reduced by a factor of 2, but a
magnetic flux (~nuyi;, Wt) links the coil. If then the
sample is driven by a modulated current I +1*e'®* along
the rising part of the V,(I) characteristic, ¥, and i,, are
modulated accordingly, and we expect an induced emf in
the coil, which we estimate roughly as

(pickup signal)e ~wnuyif, Wt ~onpu, Vy*tzan . (13)

The frequency w is low enough to ensure a quasistatic
modulation of the characteristics, as checked experimen-
tally. With I*~0.4 A, o/27=130 Hz, n=200 turns,
and data of Figs. 1 and 4, Eq. (13) predicts e ~1-10 uV,
a signal readily measured by a lock-in amplifier. We did
observe such a signal under the required conditions.
That is, at I* =const, the signal vanishes, as expected, in
the normal state, in the mixed state, and, immediately
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above H,,, for either subcritical or large currents (as V), is
saturated). It vanishes also at any current and field, when
either no face or both faces are nickel plated.

Let us return to the graphic construction of the trans-
verse current in a standard sample (Fig. 5). As i, rotates
from OM to OC, V), increases, while ¥, =0. Then, as I is
further increased, Vy =const, while V, starts rising.
Indeed, we are prevented from observing such an ideal
behavior, for the critical-current dispersion makes both
V,(I) and V,(I) characteristics spread out over a large
current interval (Figs. 1 and 4). Nevertheless, we are en-
titled to consider the standard case as being physically
possible. Thus, within a short current interval
(OM <I/2W <OH), E may be a purely transverse field
(E,=0). Under these conditions, the bulk normal Joule
effect E-J, turns out to be exactly balanced by a negative
surface Joule effect, E-i1=Eyiy <0, associated with vor-
tex flow in the surface sheath. Note that, according to
Eq. (7), electric field and vortex motion are inseparable.
This is a most unusual situation. In dc experiments we
are not accustomed to obtain circulating steady currents
in an imperfect conductor without needing the emf of
some generator to keep them going. Note, however, that
no physical law is violated. As pointed out at the end of
Sec. II, the difficulty lies elsewhere, in connection with
the usual interpretation of terms such as E-i, in the Joule
effect.

Consider an operating point (I, ¥) in the flux-flow re-
gime along any longitudinal characteristic, either below
or above H_,. VI represents the electrical power input to
the sample. In steady conditions, energy is transferred at
the same rate to the heat reservoir, as required by the law
of energy conservation. It is also generally stated that VI
is the rate at which energy is dissipated within the portion
of circuit considered. For instance, the part
V(I —1,)=V?/R; of the Joule effect, in the mixed state,
is clearly associated with the viscous vortex flow: the dis-
sipation rate by unit length of vortex can be written as
nv:, where n=Bd¢,/p  is a viscosity coefficient.!> The
remaining part of the Joule effect, VI, =VI,, which is the
integral sum of terms such as E-i;, is not so easily ac-
counted for (including above H_,,), but it is usually
thought of as resulting from the same damping mecha-
nism as 7mv%: elastic instabilities at the pinning sites
should give large local fluctuations of v, so that
vi> (v, )?, where ¥V, =E /B stands for the mean velocity
of the vortex array. Thus, 7(v, )? should correspond to
V(I —1I,), while név? should be responsible for the extra
dissipation VI,. Though very ingenious, this model is not
entirely satisfactory,'® but that is not the point.

As argued in Sec. II, there is no reason to believe that
the mechanism underlying the Joule effect V1, is different
above and below H_,. Now, if E-i; has to be associated
with some dissipative mechanism, it must be positive, a
condition which is inconsistent with the intermediate re-
gime described above. The model for critical currents
and surface Joule effect in soft materials,>® that proceeds
from the MS theory of transport, avoids this further
paradox.

In conclusion, we briefly recall the relevant arguments
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of the MS theory with regard to pinning and dissipation
in soft samples. The current density J is separated into
two parts, as J;+7J,, where J,= —curlev is the nondissi-
pative part of the supercurrent. Here e(w) is a “vortex
potential” closely related to the reversible magnetization
curve.® J | is defined at any point and time as the super-
current (including diamagnetic currents) that would come
into equilibrium with the vortex array in its instantane-
ous configuration. J; does not enter into the dissipative
function, but it may contribute to transport currents. As
stated in Sec. III, in the presence of surface irregularities,
there are many vortex configurations allowing nondissi-
pative transport currents J; to flow close to the surface.
On the scale of the sample these currents can be regarded
as surface currents i;. The instantaneous critical current
is defined as the flux I, of J; through a cross-section aver-

aged over the measured length of the sample. Small fluc-
tuations of I, (~1073-107%), resulting from stronger lo-
cal fluctuations, are responsible for the flux-flow noise.!’
Critical-current data,'® as also a number of old or more
recent experiments,®!” have confirmed this point of view.
Now, an important convective term e(w)wv, appears in
the general expression of the energy flux.® In usual
flux-flow regimes, because of the mean steady bending of
the vortex lines near the surface, the surface normal com-
ponent of ewv; is pointing outwards, and contributes to
the heat ejected to the surrounding medium (see Fig. 4 of
Ref. 6). In any circumstances, the net outward flux of en-
ergy due to the term ewv, is just VI,, but clearly, noth-
ing in this description requires it to be necessarily posi-
tive.
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