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Critical exponents are calculated exactly at the onset of an instability, by using asymptotic expansion

techniques. When the unstable mode is subject to multiplicative noise whose spectrum at zero frequency

vanishes, we show that the critical behavior can be anomalous; i.e., the mode amplitude X scales with

departure from onset � as hXi / �� with an exponent � different from its deterministic value. This

behavior is observed in a direct numerical simulation of the dynamo instability, and our results provide a

possible explanation for recent experimental observations.
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In the vicinity of a continuous phase transition, the
amplitude of the order parameter, say, M, increases with
the departure from the critical point, say, �, as a power
law, i.e., M / ��. Mean-field theories predict simple
rational numbers for the exponent � (for instance, 1=2
for systems with cubic nonlinearities). It has been realized
for a long time that, because of thermal fluctuations,
the power law may differ from this mean-field prediction
[1]. The exponents are then said to be anomalous. By
using renormalization-group techniques, their value can
be calculated as a perturbative expansion in the critical
dimension minus the spatial dimension of the system [2].

Similarly, in the vicinity of a continuous instability in
an out-of-equilibrium system, the amplitude of the unstable
mode, say, X, grows with the departure from onset, say, �,
as a power law hXi / �� (where the angular brackets
denote time average). Dynamical systems obtained by using
normal form theory [3] provide simple rational values for
� (usually, 1=2 when the problem has the X ! �X sym-
metry, 1=4 at the tricritical point where the cubic nonline-
arity vanishes, and so on). Guided by the phase transition
observations, one may expect that fluctuations shift the
exponent � away from its mean-field value. Somehow
surprisingly, the overwhelming majority of experiments
on instabilities report simple rational values in agreement
with themean-field prediction for�: Anomalous exponents
seem not to be measured in this context [4,5]. In a recent
experiment in a turbulent flow of liquid sodium, the dynamo
instability has been observed, and some measurements in-
dicate that the first moment of themagnetic field displays an
exponent 0.77 [6]. It is possible that experimental biases
are responsible for this observation: The instability is
slightly imperfect, and the numerical value of the exponent
is then highly sensitive to the accuracy of determination
of the onset. Another appealing possible explanation is
that the turbulent fluctuations of the flow lead to the anoma-
lous exponent [7]. With the latter in mind, we now describe
a canonical model that leads to anomalous behavior similar
to the one measured in the dynamo instability.

In the dynamo context, the turbulent fluctuations act as a
multiplicative term in the equation for the magnetic field.
In contrast to the case of equilibrium phase transition
where additive thermal fluctuations prohibit phase transi-
tion in small dimensions, bifurcations are not destroyed by
multiplicative fluctuations even for small (possibly zero)
dimensions. We thus start with a zero-dimensional system
subject to multiplicative noise. For a multiplicative white
noise, on-off intermittency is a generic behavior close to
the threshold of instability [8,9]. Then the averaged ampli-
tude scales as hXi / �. Although the exponent differs from
the mean-field prediction, its value � ¼ 1 is in disagree-
ment with the one measured in the experimental dynamo. It
has been shown that on-off behavior is observed when the
departure from onset is smaller than half of the value of the
noise spectrum at zero frequency [10]. In the dynamo
experiment, on-off intermittency is not observed. We sug-
gest that it is due to the absence of a noise component at
zero frequency, and, to strengthen this hypothesis, we
investigate the effect of a noise whose spectrum at zero
frequency vanishes. We thus consider the dynamics of the
unstable mode X given by

_X ¼ �X� Xnþ1 þ _YX; _Y ¼ �FY þ �: (1)

Here � is a Gaussian white noise with h�ðtÞ�ðt0Þi ¼
2�ðt� t0Þ. F is a (potential) function of Y, and the sub-
index denotes differentiation with respect to this variable.
_Y acts as a multiplicative noise (for X) whose frequency
spectrum is controlled by the function FðYÞ. When the
potential F is such that the second moment of Y is finite,
the spectrum of _Y vanishes at low frequency (it behaves as
the square of the frequency f, for small f). Standard
estimates of the effect of noise on the onset of instability
(for instance, by calculating the evolution of the ensemble
average of logX from the linear part of the first equation
[11]) show that the onset of instability of the solution
X ¼ 0 is not affected by the noise and remains at � ¼ 0.
In contrast, the nonlinear regime above onset is strongly
affected. We display in Fig. 1 a time series of X for
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different functions F in the vicinity of the onset of insta-
bility (unless otherwise stated, numerical simulations are
performed in the case of cubic nonlinearities: n ¼ 2). For
Fig. 1(a), we used white noise, F ¼ 0, and on-off inter-
mittency is observed: Short bursts of finite amplitude (on
phases) alternate with long durations with negligible am-
plitude (off phases). In Fig. 1(b), the case F ¼ FOU �
�Y2=2 is presented. For this choice, Y is the Ornstein-
Uhlenbeck process. There is no off phase, and we expect
a behavior for the moments that differs from the one of
on-off intermittency. Figure 1(c) displays a time series for
F ¼ FAN � �jYj that results in an intermediate behavior.

In Fig. 2, the first moment is displayed as a function of�
for the two functions FOU with � ¼ 0:2 and FAN with
various values of �. For the FOU case, we observe for � 2
½3:10�4; 10�1� an evolution that seems compatible with a
power law. A best fit determination of the associated ex-
ponent results in the value 0.69, thus different from 1 and
1=2. However, when� is very small, the slope changes and
the deterministic exponent 1=2 is recovered: The apparent
anomalous behavior disappears at criticality [12]. This is
confirmed by a perturbative expansion performed on the
Fokker-Planck equation (not presented here). This expan-
sion predicts that X is concentrated around the value X� at
which a weighted average of the nonlinear effect balances
the linear growth rate � ¼ X�n R1

�1 �ðYÞ expðnYÞdY,
where �ðYÞ / e�F is the stationary probability density
of Y. Thus, in this case and for n ¼ 2, the first moment
scales as

ffiffiffiffi
�

p
as observed numerically.

A simple potential F for which this expansion can break
down is FAN ¼ �jYj. Indeed, if � > n, the expansion holds
and results in normal scaling � ¼ 1=n but breaks down
(because X� vanishes) when � < n. In Fig. 2, where the
first moment for this potential is displayed, we observe that
hXi / � for small � and hXi / ffiffiffiffi

�
p

for large �. Anomalous

behavior with an exponent between 1=2 and 1 is observed
for � of the order of 1. In this regime and in contrast to the
FOU case, the exponent remains anomalous for the smallest
achievable values of �. This numerical result is confirmed
by a new perturbative expansion that we now sum up.
By using � ¼ logX � Y � log�=n, the Fokker-Planck

equation for P, the stationary probability density function
of � and Y is

0 ¼ ��@�ð1� en�þnYÞPþ @YðFYPÞ þ @2YP: (2)

Since the derivative in� is multiplied by a small parameter
(we are interested in the limit � ! 0), we introduce a
WKB-like expansion and search for Pð�; yÞ ¼
exp½Pm¼�1�

mSm�, where the first term S�1 depends
only on �. At lowest order we obtain

@2Yr0 þ @YðFYr0Þ þ S�1;�ðen�þnY � 1Þr0 ¼ 0; (3)

where r0 ¼ exp½S0�. This equation can be solved exactly
for positive and negative Y. The two solutions are then
matched at Y ¼ 0, which selects the value of S�1:

n ¼ 2�I�½	en�=2�K�½	en�=2�; (4)

where 	2 ¼ �4S�1;�=n
2, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2=n2 � 	2
p

, and I� and

K� are modified Bessel functions of order �. The solution
for r0 is then

r0¼
�
Að�Þe�F=2I�½	enð�þYÞ=2�K�½	en�=2� ðY<0Þ
Að�Þe�F=2K�½	enð�þYÞ=2�I�½	en�=2� ðY>0Þ: (5)

The amplitude Að�Þ is determined from the solvability
condition at the next order. Up to this order, we have then
obtained the expression P ¼ exp½��1S�1ð�Þ�r0ð�; YÞ,
where all the dependence in � is in the exponential. As
displayed in Fig. 3, this asymptotic result is in good
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FIG. 1 (color online). Time series of the solution of Eq. (1) for � ¼ 0:01. Top, linear scale; bottom, log scale. (a) F ¼ 0
corresponding to a white noise; (b) FOU ¼ �Y2=2, Ornstein-Uhlenbeck noise with � ¼ 1:5; (c) FAN ¼ �jYj, with � ¼ 0:75. Note
the differences in the y-coordinate values.

PRL 108, 014501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

6 JANUARY 2012

014501-2



agreement with the numerical simulations of the Langevin
equations (1).

From this formulation, we can calculate the moments.
The exponential term acts as a cutoff for large � and is of
the form expf���1 exp½n��=ðn� �Þ�g. Therefore for
� ! 0 and � < n, only very negative � have to be con-

sidered. In this limit the amplitude Að�ÞK�½	en�=2� tends
to a constant, and, after several standard estimates of the
asymptotic behavior of the Bessel functions, we obtain
for � < n

� ¼ min

�
1

�
; 1

�
: (6)

We tested our prediction by numerically calculating the
first moment for different values of � and for n ¼ 2 and
n ¼ 3. The results are shown in Fig. 4. For all cases, the
predictions are within the error bars of the numerically
calculated values of �, and thus the predictions are veri-
fied. To discuss one particular value, the numerically com-
puted exponent for � ¼ 1:5 and n ¼ 2 is� ¼ 0:66� 0:02,
which is in perfect agreement with the theoretical predic-
tion 2=3. We have also performed several numerical simu-

lations using potentials of the form F ¼ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2
0 þ Y2

q
. We

have observed that only the behavior of F for large values
of jYj is important. In other words, the universality classes
of the problem (i.e., the models having the same critical
exponents) are determined by the behavior of the tails of
�ðYÞ. Incidentally, this shows that the anomalous scaling
is not caused by the nonanalyticity of F at Y ¼ 0.
At this stage, we emphasize that our perturbative expan-

sion (in �) allows us to calculate an exact (nonperturba-
tive) expression for the value of the anomalous exponent.
This exponent transitions from its on-off value 1 for � � 1
to its deterministic value 1=n for � � n. In the simple case
of cubic nonlinearities, we predict an exponent between
1=2 and 1. Interestingly enough, the scaling reported in the
dynamo experiment belongs to this range.
We have focused here on the first moment of the un-

stable mode. The behavior of higher moments is also of
interest. It can be characterized by the set of exponents �p

defined by hXpi / ��p . In the absence of fluctuations or at
usual equilibrium phase transitions, monoscaling is ob-
served, which means that �p ¼ p�1. The situation is

richer here: There is no linear relation between the expo-
nents (for instance, it can be easily proved that �n ¼ 1).
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FIG. 2 (color online). First moment hXi as a function of � for
the solution of Eq. (1) for F ¼ FAN with (j) � ¼ 0:125, (r)
� ¼ 1:125, (d) � ¼ 1:375, (m) � ¼ 1:75, and (w) � ¼ 2:5. The
data are presented in loglog scale and have been normalized by
their value at � ¼ 0:01. The results for F ¼ FOU with � ¼ 0:2
(�) are presented and shifted for comparison. The thick con-
tinuous lines indicate the exponents 1=2, 0.69, and 1.
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FIG. 3 (color online). Probability density function � of
�þ logð�Þ=n ¼ logðXÞ � Y. The continuous line is the theo-
retical prediction and the symbols are the probability density
function calculated from the numerical solutions of the Langevin
equation. Here � ¼ 1, and the three curves are associated (from
left to right) to � ¼ 1:78	 10�5, � ¼ 3:16	 10�4, and
� ¼ 5:6	 10�3.

FIG. 4 (color online). Exponents of the first moment as a
function of � for (h) n ¼ 2 and (
) n ¼ 3. The continuous
lines are the theoretical predictions, and the symbols are ob-
tained from the numerical solutions of the Langevin equation.
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Thus, the solutions of model (1) display multiscaling. This
is related to the complex structure of the probability den-
sity function of X. In particular, it cannot be expressed as a
simple one-parameter distribution characterized by its first
moment in contrast to the scaling hypothesis close to the
critical point of an equilibrium phase transition [13].

Another important issue is the effect of spatial dimen-
sion. The model (1) is zero-dimensional (X depends only
on time and not on space) while the magnetic field in
magnetohydrodynamics (MHD) depends on three spatial
dimensions. Analytical predictions for the critical behavior
at larger (nonzero) dimensions would be of great interest
but are still out of reach at present. To investigate further
the pertinence of our model to the dynamo instability, we
have performed direct numerical simulations of the MHD
equations. To increase our control on the velocity temporal
behavior, we used the infinite Prandtl number limit [14]. In
this limit, the velocity is slaved to an external mechanical
forcing and the Lorentz force

r2u ¼ Fþ b � rb�rP;
where b is the magnetic field and F is the body force. It is
proportional to the ABC flow F ¼ An½5 sinðzÞ þ
2 cosðyÞ; 2 sinðxÞ þ 5 cosðzÞ; 2 sinðyÞ þ 2 cosðxÞ� (see, for
instance, [15]). An is an amplitude that changes every
time interval 
 based on a discrete version of our model
Anþ1 ¼ A0 þ ðYnþ1 � YnÞ and Ynþ1 ¼ Yn � 
FðYnÞ þ rn,
where rn is a random number. The magnetic field satisfies
the induction equation

@b

@t
¼ r	 ðu	 bÞ þ Rm�1r2b:

The MHD equations were solved in a periodic box of size
2�L by using a standard pseudospectral code [16] on a grid

323. The magnetic Reynolds number defined by Rm ¼
hkuk2i1=2L=� was varied above the onset value Rmc ’
11:65. In Fig. 5(a), we display time series of the magnetic
energy and note that they are similar to those presented in
Fig. 1. The first moments are displayed in Fig. 5(b) for
several values of �. We observe that the exponent of the
first moment decreases from 1 to 1=2 when � increases.
Estimates of the exponent are computationally demanding
so that a quantitative comparison with our model is out of
reach. Nevertheless, the results reported here support the
robustness of the behavior we have identified.
In summary, we have presented a simple model that

results in anomalous exponents which lie between the
deterministic value and the on-off intermittent one. The
exact value of these exponents was calculated by using an
asymptotic expansion. The model emphasizes the role of
the noise spectrum at zero frequency. It remains to be
understood whether and when turbulent fluctuations can
be modeled as the noise considered here [17]. In addition,
how such a noise affects other phase transitions and
whether the present expansion can capture other critical
exponents are interesting open questions.
We greatly acknowledge Stephan Fauve for raising our

interest on this topic [7] and also for several discussions
and constant support. Computations were carried out on
the CEMAG computing center at LRA/ENS and on the
CINES computing center, and their support is greatly
acknowledged.
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[10] S. Aumaı̂tre, F. Pétrélis, and K. Mallick, Phys. Rev. Lett.
95, 064101 (2005); S. Aumaı̂tre, K. Mallick, and F.
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