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1. Introduction

The kinematic dynamo problem is rather well understood in the case of
laminar flows [1]. Several simple but clever examples have been found in
the past [2, 3, 4, 5] and more realistic geometries can be easily studied
numerically [6]. However, most flows of liquid metal are fully turbulent be-
fore reaching the dynamo threshold: indeed, the magnetic Prandtl number,
Pm = pgov, where pg is the magnetic permeability of vacuum, o is the
electric conductivity and v is the kinematic viscosity, is smaller than 107>
for all liquid metals. Since the dynamo action requires a large enough mag-
netic Reynolds number, Rm = pgo LU, where U is the fluid characteristic
velocity and L is the characteristic scale, one expects to observe the dynamo
effect when the kinetic Reynolds number, Re = UL /v, is larger that 10°.
The kinematic dynamo problem with a turbulent flow is much more diffi-
cult to solve. A theoretical approach exists only when the magnetic neutral
modes grow at large scale. It has been shown that the role of turbulent fluc-
tuations may be twofold: on one hand, they decrease the effective electrical
conductivity and thus inhibits dynamo action by increasing Joule dissipa-
tion. On the other hand, they may generate a large scale magnetic field
through the “alpha effect” or higher order similar effects [7]. Consequently,
it is not known whether turbulent fluctuations inhibits or help dynamo
action. More precisely, for a given configuration of the moving solid bound-
aries generating the flow, the behavior of the critical magnetic Reynolds
number Rm, for the dynamo threshold, as a function of the flow Reynolds
number Re (respectively Pm) in the limit of large Re (respectively small
Pm), is not known.

Another important open question concerns the prediction of the satu-
ration level of the amplitude of the magnetic field. This problem has been
considered several times in the past, but with very unrealistic values of the
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fluid parameters that cannot be achieved in laboratory experiments. Phe-
nomenological descriptions or perturbative calculations of the saturation of
the “alpha effect” have been performed[9, 10, 11, 12, 13] for a large scale
growing magnetic field with the assumption Pm of order one or very large.
The same assumptions (scale separation and large Pm) have been used in
models of dynamically consistent convective dynamos [14, 15, 18, 16]. The
only case considered so far without the assumption of scale separation con-
cerns the saturation of a Ponomarenko type fluid dynamo[19]. However, the
study has been performed in the limit of large Rm for which a lot of mag-
netic modes are strongly unstable. Or goal here is to study the saturation
of the the first unstable magnetic mode in the vicinity of the bifurcation
threshold Rm..

2. A fluid in solid body rotation and translation up to the dy-
namo threshold

We use the following simple idea in order to be able to study the saturation
of the magnetic field analytically: we consider the simplest possible flow,
i. e. a fluid in solid body rotation and translation. This is the only way to
avoid turbulence at dynamo onset. This may look unrealistic but an ex-
perimental configuration is possible. Consider for example the Herzenberg
dynamo [2]: it consists of 2 or 3 rotating solid spheres embeded in a static
medium of the same conductivity with which they are in perfect electrical
contact. A slightly different version of the Herzenberg dynamo was oper-
ated experimentally by Lowes and Wilkinson using two cylinders instead of
spheres [8]. Now, assume that one of the cylinders is hollow and filled with
liquid metal. The flow will remain in solid body rotation up to the dynamo
threshold. Above threshold the Lorentz force will slow down the fluid and
modify the flow, thus leading to saturation of the magnetic field.

We study here an even simpler configuration found by Ponomarenko[4]:
It consists of a cylinder of radius R, in solid body rotation at angular ve-
locity w, and translation along its axis at speed V', embeded in an infinite
static medium of the same conductivity with which it is in perfect electrical
contact. In the same way as above, we consider that the cylinder is hollow
and filled with a liquid metal with the same electrical conductivity. The
kinematic dynamo problem is thus the same as the one studied by Pono-
marenko. However, above the dynamo threshold the flow is modified by the
Lorentz force and we show that this saturates the growth of the magnetic
field.

Using respectively, R, uooR?, (oo R)™Y, p(uooR)™2 and /mop/poo R,
as units for length, time, velocity, pressure and magnetic field, the governing
equation for the velocity field, ¥(7, ), and the magnetic field, B(7,t), are
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V-B=0 (1)
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where P is the sum of the hydrodynamic and magnetic pressures and p
is the fluid density. Pm is the magnetic Prandtl number, Pm = pgov,
and the boundary conditions for ¢’ involves the magnetic Reynolds number,
Rm = pgoR+\/(V? + (Rw)? and the Rossby number, Rb = V/Rw.

Below the dynamo threshold, B =0 and solid body rotation is solution
of equations (3, 4). The corresponding kinematic dynamo problem has been
solved by Ponomarenko[4]. Using cylindrical coordinates, he considered un-
stable modes of the form

B(7,t) = b(r) expi(mb + kz + wot) + c.c., (5)

where c. c. stands for complex conjugate. We get from (2) that b;(r) is an
eigenmode of the operator L, defined by

Lb; =i (wo + pl'(r)) b; — Ab;, + (boundary terms)b; =0, (6)

with 4 = mw + kV, T'(r) =1 if r < 1 and zero if » > 1, A results from the
Laplacian operator applied to (5).

This formulation is of course equivalent to Ponomarenko’s one and the
boundary terms are the mathematical translation of the discontinuity in the
derivative of b, induced by the discontinuity of velocity at the boundary.
The interest of this formulation will become clear in the nonlinear analysis.

The critical magnetic Reynolds number Rm.(Rb, m,k,wy) reaches a
minimum Rm,. = 17.722 for Rb = 1.314, k = —.388, m = 1, wg = 0.410.
The growth rate above Rm, is a = (0.0268 4 0.00174 ¢)(Rm — Rm,).

3. Nonlinear saturation of the growing magnetic field

If the magnetic field saturates at a small amplitude just above the dynamo
threshold, we see from (4) that the velocity perturbation that results from
the Lorentz force is proportional to the square of the field amplitude. We
thus choose the scalings: Rm = Rm, (1 + Ae), P = (Py+eP + 2Py +- - ),
T = T + ety + G+ -+, G = T (1 +Ae), Pp = By (14 Ae), B =
Ve (EO +eB1+€2By+ ...), T = et, where € is a small parameter representing
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the distance from criticality and A is of order one. vy (respectively Pf) is
the velocity (respectively the pressure) in the absence of magnetic field and
vy (respectively Pp), is the value of the corresponding field at onset. T is
the slow time that describes the growth of the magnetic field.

At first order we get

LBy =0, (7)

ov -
5L+ (#;.V)3 = —VP; + Pm Ady, (8)

L being the operator defined by equation (5). We thus have
Bo(t,T) = A(T)B, + c.c. = A(T)gp expi (mb + kz + wot) +c.c.,  (9)

where Ep is Ponomarenko’s eigenmode. ¥y represents solid-body rotation
and translation and is thus solution of Navier-Stokes equation without mag-
netic field.

At second order we get

. 0B - =
LB1=—6—TO+AVX (thy x By) + V x (¥ x By) (10)
a—» - — —
% + (50.V)# + (61.V)ip = VP, + Pm A + (Bo.V)By  (11)

From equation (11), we can calculate the perturbation in velocity in-
duced by the magnetic field (see appendix B).

Using the solvability condition for equation (10), we get the amplitude
equation for A(T). Let C be in the kernel of L' the adjoint operator of L
(see appendix A). We have

= = dA = . — — N —
(C|B,) TE=A (CIV x (@ x Bo)) + (CIV x (1 x By)),  (12)
which is of the form A
= aA + BlAPA. (13)

We thus find the normal form of a Hopf bifurcation. Although this is obvious
from symmetry considerations, we note that the calculation of the coeffi-
cients requires the solvability condition which cannot be easily guessed as
in most examples of nonlinear oscillators or pattern forming instabilities.
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The first term on the right hand side of equation (12) gives the linear
growth rate
a = (0.0268 + 0.001754)(Rm — Rm,), (14)

in very good agreement with Ponomarenko’s stability analysis.

The second term on the right hand side of equation (12) traces back to
the magnetic retroaction on the velocity field. Pm being very small for all
liquid metals, we approximately have (see appendix B)

1
~ Bp = =——(—0.0034 — 0.0015%). 15
BBy =5 i) (15)

Thus, the bifurcation is supercritical (Re(3p) < 0) and the amplitude sat-
urates. This gives for the magnetic field in the M.K.S.A. unit system

L 281 ;
Bou ~ - %V\/Rm — Rm, Re(B,). (16)

We have for the velocity perturbation,

7.88
poo R

—

Vsat ~

(Rm - Rmc) Uy (17)

where 7 is the zero frequency component of the solution of equation (11)
(see figure 1).

It may look surprising that the field saturates at a larger value when
the viscosity is large whereas the velocity perturbation does not depend on
the viscosity. This is due to the fact that the Lorentz force is balanced by
the viscous term in the equation for the velocity perturbation (11).

For a turbulent flow, we expect a different balance between v} and By.
Indeed, the saturated field amplitude should not depend any more on the
kinematic viscosity in the large Re limit. Dimensional analysis then gives

[ p [Rm — Rm,
Bsat X /,L[]O'2R2 Rmc Y (18)

which is larger than the above laminar scaling by a factor Pm~'/2. The
later scaling is likely to be appropriate for the “Karlsrhue” and “Riga”
experiments (see these proceedings) and gives a magnetic field of the order
of 100 gauss 10% above threshold.

There is of course never energy equipartition close to the dynamo thresh-
old since the kinetic energy is finite whereas the magnetic energy tends
to zero. In our example, we have for Joule dissipation, P; o B2,
L2(R,, — Rm.) whereas for viscous dissipation, P, o vZ,, &< (Rm — Rm)?%.
Thus, close to threshold, most of the mechanical power is used to create
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the magnetic field. This is due to the nature of the basic flow. In turbulent
flows, it would be interesting to check whether Joule dissipation scales like
the additional viscous dissipation that results from the perturbed velocity
field above dynamo threshold.

Appendix A: the adjoint problem

For B, of the form given in (5), we define the scalar product, <§a|§b> =
Jo° b (r) - by(r) rdr, where b is the complex conjugate of b,. With this
definition and for €' = ¢ expi(mf + kz + wot), we have

LT = —i(wy + pl'(r))é — AZ+ (boundary terms)'é (19)

Except for the boundary terms, L' is obtained from L with the transfor-
mations: wy — —wqg, 4 — —M, i. e. by changing the signs of all velocities.
However, the boundary terms dramatically change the form of the eigen-
vectors of L: indeed, the eigenvector & has no component in the z direction
and is not even divergenceless. Thus, the adjoint problem of a kinematic
dynamo problem may be not a dynamo problem, as already observed by
Roberts [20].

Appendix B: calculation of the velocity perturbation

We calculate the velocity perturbation ¢, by solving equation (11). This
is a linear second order equation for #;, with the forcing term (EO.V)EO.
The response ¥; involves a zero frequency component and two oscillatory
components at frequencies: £2(mf + kz + wpt). The non-zero contributions

to the scalar product <6 |V x (U7 x E?O)> come from the zero frequency and

the second harmonic components of #;. We call By (respectively ;) their
contribution to the value of the coefficient 3 in (13).

We first calculate the response at zero frequency. Since we have to con-
sider velocity and pressure fields that are only functions of r, the resolu-
tion is easy. Equation (3) implies v1, = 0 and the equations for the other
components of ¥; are decoupled. The boundary conditions are, the non-
slip condition, #7(1) = 0, and, in order to keep the velocity field smooth,
v1,(0) = 0, v1p(0) = 0, v},(0) = 0. We solve the equations for vip(r) and
v1,(r) with Mathematica (see figure 1). Note that @; and thus [y are in-
versely proportional to Pm because the right hand side of (11) does not
contribute to the zero frequency response.

The calculation of the harmonic two response is more complicated be-
cause two components of the velocity field vy, v19 and the pressure are
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Figure 1. Zero frequency velocity perturbation for Pm = 1.

coupled. Taking the divergence of (11), we get
AP, — 2w (”ﬂ + v'19> + dimwt — V- (By.V) B, = 0. (20)
r r

The boundary conditions for the pressure are P(0) = 0 and P(co0) = 0.
We solve (20) outside the cylinder where the velocity field is zero, and
then solve (11) inside the cylinder using the continuity of the pressure at
the boundary. The velocity and pressure fields are displayed in figure 2 for
Pm = .2.
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-0.05
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Figure 2. Real part of the complex amplitude of the harmonic-two response of
the pressure and velocity for Pm = 0.2.

We observe that the harmonic-two response of the fluid velocity is locally
enhanced on one part of the oscillation cycle, which may explain that Re(8y)
is positive. Contrary to By, B4 is not inversely porportional to Pm. In order
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to compare it with Sy, we plot Real(8;) and —Real(fy) versus Pm in figure
3. For small Pm we observe that — Real(/3p) is much larger than Real(8,).
Thus the retroaction of the magnetic field on the amplitude of the unstable
mode mostly results from the zero frequency response.
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Figure 8. —Re(Bo) and Re(B4) versus Pm and Im(84) versus Pm.
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