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PACS 47.27.-i – Turbulent flows
PACS 47.27.De – Coherent structures

Abstract – We report the experimental study of the bifurcations of a large-scale circulation that
is formed over a turbulent flow generated by a spatially periodic forcing. After shortly describing
how the flow becomes turbulent through a sequence of symmetry-breaking bifurcations, we focus
our study on the transitions that occur within the turbulent regime. They are related to changes
in the shape of the probability density function (PDF) of the amplitude of the large-scale flow.
We discuss the nature of these bifurcations and how to model the shape of the PDF.

Copyright c© EPLA, 2016

Introduction. – Experiments on nearly two-
dimensional flows generated in a thin layer of fluid
by a spatially periodic forcing have been first performed
to study the generation of large-scale flows [1,2] and the
properties of two-dimensional turbulence [3–6]. These
flows have been modeled using the two-dimensional
Navier-Stokes equation with an additional term describ-
ing fluid friction on the bottom boundary of the fluid
layer. Thus, besides the Reynolds number, Re, a second
dimensionless parameter, Rh, describes the ratio of the
inertial force to fluid friction. The stability of the linear
response of the flow to different forcing geometries has
been investigated analytically [7] and the sequence of
bifurcations leading to a chaotic behavior in space and
time has been studied using numerical simulations [8,9].
It has been found that the first instabilities observed as
the control parameters (Re and Rh) are increased, break
the planar symmetries of the forcing and give rise to time
periodic and quasi-periodic behaviors. As the control
parameters are increased further, chaos is observed and
the system explores in phase-space one among different
attractors (images under planar symmetries). Then,
these attractors merge through a crisis and this gives rise
to a symmetric attractor. Thus planar symmetries are
statistically restored.

It is indeed a common belief that in strong enough tur-
bulent regimes, the system explores the whole available
phase-space because turbulent fluctuations trigger transi-
tions between symmetric attractors. However, several ex-
amples of transitions between different turbulent regimes

have been reported, for instance the drag crisis that corre-
sponds to a modification of the geometry of the turbulent
wake behind a sphere or a cylinder [10], the generation of a
large-scale flow in turbulent convection [11], broken sym-
metries in turbulent von Karman swirling flows [12,13].
In the case of two-dimensional confined flows, it has been
predicted [14,15] and observed [3,4] that the inverse cas-
cade of energy either leads to an homogeneous turbulent
flow displaying a wide range of wave numbers k with a
k−5/3 scaling law, or to a condensate regime that results
from an accumulation of kinetic energy in the lowest mode
of the fluid layer. The transition between the two regimes
depends on the importance of large-scale friction, i.e. on
the value of Rh. In the presence of friction, the inverse
cascade stops at a length scale lI . When Rh increases, lI
reaches the size of the fluid layer L and energy accumulates
at the lowest wave number, thus leading to a dominant
large-scale circulation.

Here we study the evolution of a large-scale mode in a
configuration with a small scale separation. After shortly
describing the sequence of bifurcations that leads to a tur-
bulent regime when Rh is increased for Re large, we report
in this letter an experimental study of the transitions that
occur within the turbulent regime when Rh is increased
further. We first observe that the probability density
function (PDF) of the large-scale velocity changes from
Gaussian to bimodal when Rh is increased. Above a criti-
cal value Rh6, we show that the PDF can be fitted by the
superposition of two symmetric Gaussians with a separa-
tion between their mean values increasing like

√
Rh − Rh6

64004-p1



G. Michel et al.

Fig. 1: (Color online) Top: pictures of the flow as a function of Rh. From left to rigth: laminar flow, first bifurcation, chaotic
flow, turbulent flow with moderate large-scale flow, turbulent flow with strong large-scale flow (condensate). Bottom: sketch of
the PDF of large-scale circulation. Symmetry breaking indicates that depending on the initial conditions one of the two states
(i.e. one of the two peaks of the PDF) will be observed.

and a nearly constant standard deviation. The bimodal-
ity becomes more and more pronounced as Rh is increased
and is related to random reversals of the large-scale cir-
culation. The average waiting time between successive re-
versals becomes longer and longer and a condensed regime
with no reversal is finally observed. Thus, the regime with
random reversals of the large-scale circulation is located
in parameter space between the condensed state and the
turbulent regime with Gaussian large-scale velocity.

Experimental set-up and techniques. – A thin
layer of liquid metal (Galinstan) of thickness h = 2 cm, is
contained in a square cell of length L = 12 cm and is sub-
ject to a uniform vertical magnetic field up to B0 � 0.1 T.
A DC current I (0–200 A) is injected at the bottom of the
cell through an array of 2×4 electrodes (see [16] for a more
detailed description of the experiment). The Lorentz force
associated to the current and the magnetic field drives a
cellular flow, described in the next section.

In addition to h, L, B0 and I, the relevant physical
parameters are the fluid density ρ = 6.44 kg m−3, its vis-
cosity ν = 3.72 · 10−7 m2 s−1, its electrical conductivity
σ = 3.46 · 106 S m−1 and the magnetic permeability of
vacuum μ0. Four independant dimensionless numbers can
therefore be constructed based on these parameters. How-
ever two of them can be ignored since the magnetic field is
strong and the flow speed is small. More precisely, in the
limit of large Hartmann number Ha = hB0[σ/(ρν)]1/2 ∼
102 and small magnetic Reynolds number Rm = σμUcL ∼
10−2 (with Uc the characteristic speed of the flow), the

velocity field is nearly two-dimensional, and its vertical
average satisfies the two-dimensional Navier-Stokes equa-
tion with an additional linear damping term −v/τH with
τH = h2/(νHa) [17].

This quasi-2D flow depends on two dimensionless num-
bers, e.g. the usual Reynolds number Re = UcL/ν and
Rh = UcτH/L which is the ratio of inertia to linear fric-
tion. For large Re and Rh, the characteristic velocity Uc

is set by a balance between inertia and the Lorentz force
and reads Uc =

√
IB0/(ρh). The ratio Re/Rh, indepen-

dent of the injected current, is equal to Ha(L/h)2 ∼ 104.
By changing I we vary Rh between 1 and 50. Since vis-
cous dissipation becomes efficient at scales smaller than
l = L

√
Rh/Re ∼ 10−3 m, dissipation at large scale is

mainly due to the friction term. It follows from these or-
der of magnitude estimates that Rh is the relevant control
parameter for the large-scales dynamics, which is well ver-
ified experimentally [18].

In the following we focus on the behavior of the large-
scale velocity component measured by the potential differ-
ence between a pair of electrodes in the external magnetic
field [19]. One of the electrodes is located in the middle of
the cell and the other one close to the lateral wall, 5 mm
away from it (see figures in [16]). The flow induces an
electromotive force ΔV =

∫
L/2(u × B0) · dl � φLB0/h

where L/2 is the distance between the two electrodes and
φL is the flow rate between the center and the wall. From
now on, we consider the spatially averaged velocity nor-
malized by Uc, i.e. V = 2φL/(h L Uc), which is therefore
the large-scale velocity coarse-grained on size L/2.
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Fig. 2: (Color online) Square of the amplitude of the unsta-
ble mode for the first three bifurcations as a function of Rh.
The squared amplitudes of both Hopf bifurcations have been
multiplied by 10.

First bifurcations, appearance of a chaotic
regime. – A summary of the evolution of the velocity
field is presented in fig. 1 together with pictures of the
flow. In the vicinity of each electrode (diameter d = 8 mm
flush to the bottom of the fluid layer), the current den-
sity j is radial so that the associated Lorentz force density
fL = j × B0 creates a local torque. For Rh ≤ Rh1 = 1.55,
this forcing drives a laminar flow made of an array of 8
counter-rotating vortices. The large-scale velocity van-
ishes as expected from the symmetries of the forcing. In-
creasing Rh makes this base flow unstable.

– A first bifurcation takes place at Rh1. The stream-
lines of one of the two pairs of diagonal vortices merge,
leading to the appearance of a large-scale circulation
through a direct steady pitchfork bifurcation. Conse-
quently the amplitude of the large-scale flow increases
proportionally to (Rh − Rh1)1/2 (see fig. 2).

– For slightly larger Rh, at Rh2 = 1.7, a secondary
bifurcation takes place. The flow becomes time-
dependent. This is a direct Hopf bifurcation with
period at onset T2 = 4.2 s. The amplitude of the cor-
responding Fourier mode increases proportionally to
(Rh − Rh2)1/2.

– A second Hopf bifurcation takes place at Rh3 = 2.
Its period T3 (1.1 s at onset) cannot be expressed as a
simple rational number times T2 (the two periods vary
continuously and with opposite monotony with Rh).
There is thus no frequency-locking between these two
oscillations. In phase-space, a torus is generated, as
sketched in fig. 3. Here again, the amplitude of the
corresponding Fourier component increases propor-
tionally to (Rh − Rh3)1/2.

– The following bifurcation, at Rh4 � 2.6, corresponds
to a destabilization of this torus. In phase-space, the
system spends long durations close to this torus, but
is unstable: a component at a non commensurate fre-
quency increases and the time series is chaotic before
the system is re-injected close to the torus. This is
similar to the second Pomeau-Manneville scenario of

Fig. 3: Bifurcation diagram as a function of Rh. The base
state is unstable toward a steady state through a direct pitch-
fork bifurcation. It is followed by two direct Hopf bifurcations.
The generated torus (in phase-space) is unstable and an inter-
mittent regime appears. At larger Rh, the time series do not
display anymore the intermittent phase.

intermittent transition to chaos describing the desta-
bilization of a limit cycle [20].

Slightly further above this transition, the attractor in
phase-space explores both signs of the amplitude of the
large-scale circulation. The symmetry of the forcing is sta-
tistically recovered. Increasing Rh above Rh5 � 3.1, the
time series become more chaotic and the laminar phases
disappear.

For all these transitions, bifurcation theory provides
scaling laws once the broken symmetry is known. Many
hydrodynamic systems going from a laminar to a chaotic
state can be characterized in such a way, well-known exam-
ples being Rayleigh-Benard convection or Taylor-Couette
flow.

Next bifurcations, appearance and disappear-
ance of reversals. – For Rh slightly below Rh6 � 11, the
amplitude of the large-scale circulation fluctuates around
zero. We stress that the flow is turbulent in the follow-
ing sense: even though scale separation between the forc-
ing scale and the container size is not large, the temporal
spectrum of the velocity field displays a continuous part
over more than three decades in frequency. In addition,
energy can be measured up to large wavevectors due to the
direct cascade of enstrophy. Note also that visualization of
the large-scale vorticity [18] displays interacting vortices
of different sizes.

The next transition is related to the appearance of co-
herent states where the flow maintains its direction for
long duration. Such events are visible in fig. 4 (bottom),
while at lower Rh (top), the amplitude is most of the time
close to zero and displays short bursting events.

We now want to quantify the appearance of this non-
zero state, that would correspond to the amplitude of the
unstable mode in usual bifurcations. This is not straight-
forward as the basic state is already turbulent. We thus
rely on statistical properties of the signal. The variance
(〈V 2〉) and the kurtosis (〈V 4〉/〈V 2〉2) are displayed in
figs. 5 and 6. We note that at Rh6 � 11, a transition
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Fig. 4: (Color online) Time series of the large-scale circulation
at Rh = 10 (top) and Rh = 20 (bottom).
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Fig. 5: Amplitude of the large-scale velocity 〈V 2〉1/2 as a
function of Rh.

occurs. The distribution is Gaussian (K = 3) for Rh ≤
Rh6 and becomes non Gaussian above Rh6.

To obtain a finer description of the bifurcation, we have
to consider the PDF of V . We point out that this can
be technically difficult: in such experiments, any imper-
fection would bias the system even slightly toward one
direction of rotation (i.e. one sign of V ). Several analyses
presented hereafter, in particular involving fits, are highly
sensitive to any asymmetry of the system. For such analy-
sis, we restrict to experiments for which the system is well
equilibrated and the distributions are symmetrical.

As displayed in fig. 7, the shape of the PDF changes
with Rh. It is close to a Gaussian at Rh = 12, it is flatter
at its center at Rh = 14 and, at Rh = 20, it is bimodal

Fig. 6: (Color online) Kurtosis of the large-scale velocity field:
〈V 4〉/〈V 2〉2.

with a local minimum at V = 0. The evolution of the
PDF traces back to the modification of the time series of
V : the appearance of non-zero temporary attractive states
is responsible for the bimodal structure of the PDF.

The evolution of the shape of the PDF can be captured
using the following model. We consider that it is the sum
of two normal distributions of width σ and centered at
±dX . We write

P [V ] = (2
√

2πσ)−1(exp(−(V − dX)2/(2σ2))
+ exp(−(V + dX)2/(2σ2))). (1)

For Rh below Rh6 a single Gaussian provides a good
fit to the PDF, and this corresponds to dX = 0. For
larger Rh, we extract dX and σ from best fits of the whole
PDF. They are displayed in fig. 8. Note in particular that
both the center and the tails of the PDF are well fitted by
eq. (1). The standard deviation σ of each PDF remains
nearly constant, whereas its center, dX , increases with
Rh. As displayed in the insert of fig. 7, this behavior is
compatible with a power law (Rh − Rh6)1/2. As often
when trying to extract critical exponents, we note that
due to the error bars, our measurements do not exclude
values of the exponent close to but different from 1/2.

The PDF becomes bimodal at a larger value Rh7 � 17.
This corresponds to dX = σ, the Rayleigh criterion for
separating two lines in an optical spectrum. This sec-
ondary bifurcation of the PDF, associated to the appear-
ance of bimodality is similar to the one of the free-energy
in the context of second-order phase transition in the
model of Landau. Led by this analogy, in the vicinity of
the transition (here close to Rh7), we model the PDF as

P [V ] ∝ exp (aV 2 + bV 4). (2)

We emphasize that this model is restricted to small values
of V (it is not expected to model the tails of the PDF).
Landau’s assumption is that a varies linearly in the con-
trol parameter and changes sign at the transition while b
remains roughly constant.

Extracting the values of a and b directly from the
PDF results in large error bars and numerical values that
strongly depend on the range over which the fit is achieved
and on the possible asymmetry of the PDF. This is not the
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Fig. 7: (Color online) PDF of the amplitude of the large scale
velocity for Rh = 12, 14, 20 (from top to bottom). Symbols
are experimental datas. The blue continuous curve is eq. (1),
the sum of the two gaussians displayed with magenta dashed
curves. The green dash-dotted curve is eq. (2). For Rh = 12,
the two Gaussians are very close to each other, so that the
whole PDF is nearly Gaussian. It becomes flatter close to
V = 0 at Rh = 14 and it is bimodal at Rh = 20.

case with the following data treatment: eqs. (1) and (2)
are expanded close to V = 0 and we then express a and b
as a function of σ and dX . The obtained values of a and
b are displayed in fig. 9. a increases linearly with Rh and
changes sign in the vicinity of Rh7. This corresponds to
the change of concavity of the PDF at V = 0, and the ap-
pearance of two non-zero maxima. b becomes very small
below Rh6, in agreement with the Gaussian behavior of
the PDF. It becomes more negative when Rh increases.
As displayed in fig. 7, eq. (2) is a good fit of the PDF
only for small values of V : it does not describe the tails
of the PDF.

Fig. 8: (Color online) Parameter dX (�) and σ (◦) of eq. (1) as
a function of Rh. Insert: same data, dX2 as a function of Rh.

Therefore, although eq. (2) seems a more natural de-
scription for the transition of the PDF, it provides a less
accurate fit than eq. (1) that is also valid for the tails of
the velocity distribution. Equation (2) would be obtained
for a system described by a free-energy proportional to
−aV 2 − bV 4 and subject to additive fluctuations. In con-
trast eq. (1) is expected if V is the sum of a constant
velocity ±dX and random fluctuations of constant energy.

When Rh is further increased, the value of the PDF
close to V = 0 decreases. This corresponds to the large
scale circulation becoming more and more stable, and the
reversals between these two directions of the flow becom-
ing less and less frequent. Ultimately, no reversals are
observed on the maximum measurement time (set by the
stability of the experiment). The obtained PDF becomes
asymmetric and is peaked close to the sign of rotation that
is selected initially.

Discussion. – We have studied the different bifurca-
tions that the large-scale flow undergoes. At small Rh, a
sequence of bifurcations drives the system from zero large-
scale circulation to a steady non-zero one, then to a time-
periodic state followed by a quasi-periodic one. When
increasing Rh further, the system becomes chaotic and
explores successively positive and negative values of the
large-scale circulation.

Other bifurcations then occur over a fluctuating back-
ground. Bifurcations in that context are by far less
documented than bifurcations occurring over a steady
or time-periodic state. Relevant quantities are statistical
ones, such as moments or the PDF of the variable.

The PDF undergoes three bifurcations as Rh increases.
First, it becomes non-Gaussian, with a kurtosis departing
from 3. The whole PDF is then well described by the sum
of two non-centered normal distributions. The distance
between their centers increases while their standard devi-
ations remain roughly constant, so that a second bifurca-
tion occurs: the PDF becomes bimodal. We can describe
this phenomenon using an analogy with Landau’s theory:
the behaviors of the parameters a and b follow Landau’s
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Fig. 9: (Color online) Parameter a (◦) and b (�) of eq. (2) as
a function of Rh.

assumption, which was not obvious since this theory fails
in low dimension when spatial fluctuations are of impor-
tance. Here the unstable mode is at large scale so that
spatial coupling is not relevant.

This evolution is associated in the time series to the
appearance of long-lived coherent states during which the
circulation does not change sign. The time series can then
be described as random reversals between these two coher-
ent states. We had studied in detail the spectral properties
of these time series [16]. For Rh between 10 and 30, the
time series display 1/f noise. This behavior results from
the distributions of the duration between sign changes that
are heavily tailed. We note that 1/f fluctuations occur for
10 < Rh < 30. They are therefore observed for Gaussian,
non Gaussian and bimodal PDF.

At even larger Rh, the mean duration between sign
changes diverges. When it is larger than the duration of
stability of the experiment (several hours), the observed
PDF, measured over this maximum duration, will be re-
stricted to positive or negative values (depending on the
initial condition). We have thus observed in this exper-
iment, two different scenarios that describe the disap-
pearance of a regime of reversals. At large Rh, reversals
become less and less likely and eventually are no longer
observed. The system remains stuck in one of the two
states. At low Rh, reversals disappear because the time
series are so fluctuating that one cannot identify anymore
the two states connected by reversals. We expect that

these two possible ways to destroy or create reversals are
generic and are observed in other contexts [21,22].
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