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In this chapter, we focus on the effects of nonlinearity. After general considerations
in Section 2.1, we investigate therôle of nonlinearity in saturating the growth of
the magnetic field for a dynamo with a spatially periodic flow in Section 2.2. We
then turn to the more general situation of saturation in the vicinity of the dynamo
threshold; first in the lowRe limit in Section 2.3 and then in the highRe limit in Sec-
tion 2.4. We then address the issue of dynamo saturation in flows strongly affected
by rotation (with planetary applications in mind) in Section 2.5, and we present
some conjectures for the magnetic field generated by a turbulent flow whenRe and
Rm are both large in Section 2.6. Mean field dynamo saturation (with astrophysical
applications in mind) is discussed in Section 2.7. Finally,we return in Section 2.8
to the apparently simple disk dynamo model used as an introductory example in
Chapter 1 to show how rich the nonlinear dynamical behaviourcan be.

2.1. GENERAL CONSIDERATIONS

The study of dynamo action is motivated both by laboratory experiments and by ob-
servations of astrophysical or geophysical magnetic fields. Recently, the first homo-
geneous fluid dynamos have been successfully demonstrated:in Karlsruhe (Stieglitz
& Müller, 2001) using a flow in an array of pipes set-up in order to mimic a spa-
tially periodic flow proposed by G.O. Roberts (1972), and in Riga (Gailitis et al.,
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2001) using a Ponomarenko-type flow (Ponomarenko, 1973). Although there were
no doubts about self-generation of magnetic fields by Roberts or Ponomarenko-type
laminar flows, these experiments have displayed several interesting features:

• The observed thresholds are in rather good agreement with theoretical predic-
tions (Busseet al., 1996; Rädleret al., 1998; Gailitiset al., 2002) made by
considering only the laminar mean flow and neglecting the small-scale turbu-
lent fluctuations that are present in both experiments.

• The nature of the dynamo bifurcation, stationary for the Karksruhe experiment
or oscillatory (Hopf) in the Riga experiment, is also in agreement with laminar
models.

• On the contrary, the saturation level of the magnetic field, due to the Lorentz
force back reaction on the flow, cannot be predicted with a laminar flow model.
It has been shown indeed that different scaling laws exist inthe supercritical
dynamo regime depending on the magnitude of the Reynolds number (Pétrélis
& Fauve, 2001).

These observations raise several questions: we do not discuss here the effect of
turbulence on the dynamo threshold (Fauve & Pétrélis, 2003) or the characteristics
of magnetic field fluctuations (Bourgoinet al., 2002) but rather try to understand
the scaling law for the mean magnetic field amplitude above the dynamo threshold.
To wit, we take into account the back reaction of the magneticfield on the velocity
field. We thus try to solve the dynamic dynamo problem, or in other words, to
find a nonlinear equation for the amplitude of the linearly unstable mode at the
bifurcation. Solving this equation determines the sub-critical or super-critical nature
of the bifurcation and in the later case, the amplitude of themagnetic field as a
function of the distance to the dynamo threshold.

Both the Karlsruhe and Riga experiments operate in the vicinity of dynamo threshold
(typically 10% above threshold) and it is unlikely that a laboratory experiment could
reach highRm values (say10 times critical) because the power needed to drive a
turbulent flow increases like the cubic power of its mean velocity. It is also possible
that the Geodynamo does not operate too far from threshold but it is not the case of
other astrophysical objects for which huge values ofRm can be reached. Weakly
nonlinear theory is of little use in these situations as wellas in the case of a strongly
subcritical bifurcation that may be the case of the Geodynamo.

Magnetic fields exist on a wide range of scales in astrophysics. Their orders of
magnitude as well as some associated relevant parameters for planets, stars and our
galaxy are given in Table I. It is perhaps meaningless to try to compare these data be-
cause these astrophysical objects have strongly differentphysical properties. How-
ever, we may observe that the strength of the magnetic fieldB is not strongly related
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Table I - Approximate parameters and magnetic field strength of someastrophysical
objects (Zeldovichet al., 1983). The sizeL is based on the typical length (radius
for spheres, thickness for disks) of the conducting region (not of the full object).
The magnetic field strength is an averaged one (in the case of the Sun, the field
can locally be103 times stronger). The resistivityη is usually based on molecular
estimates, except in the Galaxy for which it represents “ambipolar diffusion”.

the Sun Jupiter Earth White Neutron
Galaxy core dwarfs stars

|B| (T) 10−10 10−4 4×10−4 10−4 102 - 104 106 - 109

ρ (kg m−3) 10−21 1 103 104 105–1012 1013–1018

L (m) 1019 2×108 5×107 3×106 106 104–106

η (m2 s−1) 1017 103 10 2
|B|2L3/2µ0 1043 4×1022 1022 2×1017

|B|2Lη/2µ0 1022 109 4×107 2×105

to the size of the objectL, but seems to increase with its densityρ. If instead of look-
ing at the intensity of the magnetic field, we consider the typical magnetic energy of
the object〈|B|2〉L3/2µ0 (µ0 is the magnetic permeability of vacuum), we find the
expected ordering from the galaxy to the Earth. We may also consider the typical
value of the Joule dissipation. To wit, we divide the magnetic energy by the charac-
teristic magnetic diffusion timeL2/η (let us recall thatη = (µ0σ)−1, whereσ is the
electrical conductivity of the medium). We thus get an idea of the minimum amount
of power which is necessary to maintain the magnetic field against Joule dissipa-
tion. Again, we observe the expected ordering from the galaxy to the Earth. Note
that these values have certainly been underestimated. First, they are estimated from
the visible (poloidal) part of the magnetic field, and are thus strongly underestimated
if the azimuthal field inside the body is large compared to thepoloidal component.
Second, we have assumed that the length scale of the gradients of the magnetic field
is the sizeL of the conducting medium. Magnetic energy at smaller scaleswill lead
to a shorter diffusion time scale and thus to a higher dissipated power.

Let us first recall the induction equation (1.14) and the Navier-Stokes equation (1.26)
that we restrict to incompressible flows (∇ · u = 0), without the Coriolis force but
with the Lorentz force (1.17) included

∂B

∂t
= ∇ × (u × B) + η∆B , (2.1a)

∂tu + (u · ∇)u = −∇

(
p

ρ
+

|B|2
2µ0

)
+ ν∆u +

1

µ0ρ
(B · ∇)B . (2.1b)
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The flow is created, either by moving solid boundaries or by a body force added
to the Navier-Stokes equation. We have to develop equations(2.1a,b) close to the
dynamo threshold in order to derive an amplitude equation for the growing mag-
netic field. If the dynamo bifurcation is found to be supercritical, this allows us to
calculate the saturated magnetic field.

Thus, even in the simplest configuration, the problem involves three dimensionless
parameters. One may choose, the Reynolds number,Re, the magnetic Reynolds
number,Rm, and the Lundquist number,〈|B|2〉µ0(σL)2/ρ, leading in general to the
following form of law

〈|B|2〉µ0(σL)2

ρ
= f(Rm, Re) . (2.2)

Another possible choice is obtained by replacingRe by the magnetic Prandtl num-
ber,Pm = Rm/Re = µ0σν. For most fluids,Pm � 1 i.e.Re � Rm.

In general, the analytic determination off using weakly nonlinear perturbation the-
ory in the vicinity of the dynamo threshold is tractable onlyin the unrealistic case
Pm � 1 such that the dynamo bifurcates from a laminar flow (Re � 1). For
Pm � 1, many hydrodynamic bifurcations occur first and the flow becomes turbu-
lent before the dynamo threshold.

We first present the structure of the perturbation analysis of weakly nonlinear theory
in the vicinity of the dynamo threshold in the tractable caseRe � 1. We then
discuss the realistic situation (Re � 1) and, using dimensional or phenomenological
arguments, show that the expression of the generated magnetic field as a function of
the fluid parameters strongly differs from the caseRe � 1.

Astrophysical or geophysical dynamos involve many more parameters due to the
nature of the driving of the flow. A particularly important one is the global rotation
rate. We shortly review how this may affect the saturation ofthe magnetic field.
Finally, we discuss some conjectures in the limit ofRe andRm both large for a
turbulent flow without global rotation.

2.2. SATURATION OF A DYNAMO GENERATED

BY A PERIODIC FLOW

It has been shown by G.O. Roberts (1970, 1972) that many spatially periodic flows
generate a magnetic field at a large scale compared to their spatial periodicity. In
that case the weakly nonlinear problem above the bifurcation threshold is also more
easily tractable (Gilbert & Sulem, 1990). We recall some of these linear and non-
linear results obtained for periodic flows and that have beenrecently used to discuss
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the results of the Karlsruhe experiment (Tilgner & Busse, 2001; Rädleret al., 2002).

2.2.1. SCALE SEPARATION

We consider a spatially periodic velocity field with wavelength ` and zero mean
value, and we assume that a magnetic fieldB0 is generated on a spatial scaleL. A
magnetic field with spatial periodicitỳ is generated by the interaction ofB0 with
the flow. We thus write

B = B0 + b , (2.3)

with 〈b〉 = 0, where〈·〉 stands for the spatial average over one wavelength`. Insert-
ing (2.3) in the induction equation, and averaging over space, we get the evolution
equation for the mean fieldB0

∂tB0 = ∇ × 〈u × B〉 + η∆B0 . (2.4)

Subtracting (2.4) from the induction equation, we get the evolution equation for the
fluctuating fieldb

∂tb = ∇ × (u ×B0 + u × b − 〈u × b〉) + η∆b . (2.5)

We have to findb as a function ofB0 using equation (2.5) in order to get a closed
equation for the mean field from (2.4). Equation (2.5) may be solved easily ifb = |b|
is small compared toB0 = |B0|; we then have at leading order a diffusion equation
for b with a source term depending onB0 and the velocity field. Then, we get

η
b

`2
∼ uB0

`
, thus b ∼ u`

η
B0 . (2.6)

Using this expression forb in order to estimate〈u × b〉, which does not depend
any more oǹ after being averaged, we get from (2.4) the following condition for
dynamo onset onuc = |u|:

u2
c`

η

B0

L
∼ ηB0

L2
, thus uc ∼

η√
L`

. (2.7)

We first observe thatb ∼
√

`/LB0 � B0 provided that̀ � L. In this limit, the
magnetic Reynolds number defined on each eddy of size` is thus very small whereas
the one defined onL is large. We observe that the relevant definition here for the
magnetic Reynolds number would be

Rm2 ≡
|u|

√
L`

η
, (2.8)
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the critical value of which for dynamo onset is of order one. Consequently, even if
the above mechanism works, we cannot reach the dynamo onset just by increasing
scale separation. Forη and|u| fixed, it does not help to decrease`. Scale separation
makes it possible to keep the magnetic Reynolds number smallat dynamo onset if
it is defined on the scale of each eddy,`. In this limit, the fieldB0 is not strongly
distorted by the fluid motion. This allows easier analyticalcalculations.

2.2.2. THE G.O. ROBERTS DYNAMO

We consider the spatially periodic flow (see Section 1.4.1) with velocity field

u(x, y, z) = (U sin ky, U cos kx, V (sin kx + cos ky)) . (2.9)

We have〈u〉 = 0 and the mean helicity ish = 〈u · ∇ × u〉 = −2kUV . Assuming
thatb is small compared toB0 = |B0|, we get from equation (2.5)

b ≈ 1

η k
(U B2 cos ky, −U B1 sin kx, V B1 cos kx − V B2 sin ky) , (2.10)

whereB0 = (B1, B2, B3). We thus get

〈u × b〉 ≈ UV

ηk




1 0 0
0 1 0
0 0 0


 B0 . (2.11)

We observe that if a large scale field exists along thex or y–axis, the cooperative
effect of small scale periodic fluctuations is to drive a current parallel to the large
scale field. This has been understood by Parker (1955) and is due to the helical
nature of the flow. Any fieldB1 along thex–axis is distorted in the vertical(x, z)–
plane by thez–component of the flow of amplitudeV . The field is twisted out of the
(x, z)–plane by the toroidal component of the flow of amplitudeU . This drives field
loops in the(y, z)–plane, i.e. a current parallel tox, which generates a magnetic
field with a non-zero component along they–axis,B2. B2 can then regenerateB1

through the same process. The mean electromotive force〈u × b〉 in the mean field
equation (2.4) was described by Steenbeck & Krause (1966) asthe “α–effect” (see
for instance Krause & Rädler, 1980). In this terminology, G.O. Roberts’ dynamo
is anα2–dynamo. Definingα = UV/ηk, we have for a mean field of the form
B0(z, t) = (B1, B2, 0) ,, whereB1 andB2 satisfy

∂B1

∂t
= −α

∂B2

∂z
+ η

∂2B1

∂z2
,

∂B2

∂t
= α

∂B1

∂z
+ η

∂2B2

∂z2
. (2.12a,b)

DefiningA = B1 + iB2, we get

∂A

∂t
= −iα

∂A

∂z
+ η

∂2A

∂z2
. (2.13)
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The linear stability analysis of the solutionA = 0 (i.e. B0 = 0) is straightforward.
We consider normal modes of the formA ∝ exp(ηt± iKz) and get from (2.13) the
dispersion relation

η = ±|αK| − ηK2, (2.14)

which shows that there exists a branch of unstable modes at long enough wavelength
(K < |α|/η).

We observe that dynamo action vanishes ifU → 0 or V → 0 in agreement with anti-
dynamo theorems. It is interesting to consider the behaviorof α when the magnetic
Reynolds number becomes larger. To wit, the calculation ofb should be performed
at higher orders in equation (2.5). Solving perturbativelythis equation forb as an
expansion in powers ofU/ηk, one gets

α =
UV

η k

(
1 − U 2

2 η2 k2
+ ...

)
. (2.15)

α increases linearly withV but its behavior as a function ofU is more complex. It
first increases but reaches a maximum and then decreases asU is increased. This
behavior is due to the expulsion of the transverse field by therotating eddies, as
already shown in Rädleret al. (1998) by numerically solving (2.5). It has been
found thatα decreases toward zero at largeRm. Note however that the largeRm
limit should be considered carefully. As stated above, the great simplification of
scale separation results from the fact that the magnetic Reynolds number evaluated
on the small scale of the flow is small whereas the one evaluated on the large scale
of the mean field is large. This is clearly apparent in our second order result (2.15).
Truncating the expansion in|u|/η k is not accurate ifRm is too large such that the
magnetic Reynolds number related to the azimuthal motion ofthe eddies becomes
of order1.

Theα–effect has been demonstrated experimentally by directly measuring the mean
electromotive force generated by a helical flow of liquid sodium in the presence of
an external magnetic field (Steenbecket al., 1968). Self-generation of a magnetic
field by theα–effect has been achieved recently, using a periodic arrangement of
counter-rotating and counter-current helical vortices that mimic G.O. Roberts’ flow.
Axial and azimuthal sodium flows are driven by pumps in an array of helical ducts
immersed in a cylinder (Karlsruhe experiment, Stieglitz & Müller, 2001).

2.2.3. SATURATION OF DYNAMOS DRIVEN BY THE α–EFFECT

Saturation of anα–dynamo may involve the generation of a large scale flow gener-
ated by the large scale magnetic field (Malkus & Proctor, 1975). If this large scale
flow is not forbidden by the geometrical configuration, it is likely to exist without a
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magnetic field and to play arôle already at the level of the kinematic dynamo prob-
lem. On the contrary, if any large scale flow is forbidden, as in the Karlsruhe experi-
ment, the saturation is due to the modification of the small scale velocity field which
reduces the elecromotive force related to theα–effect. In that case, the perturbation
method based on scale separation can be easily extended to the study of the dynamic
dynamo problem, as shown in the case of the G.O. Roberts’ flow (Gilbert & Sulem,
1990). The mean field equation (2.4) is unchanged but the meanelectromotive force
〈u× b〉 should be calculated using both equation (2.5) and the Navier-Stokes equa-
tion (2.1b). The simplest way to generate G.O. Roberts’ flow is to add a body force
f = −ν∆u0 to (2.1b) whereu0 is given by (2.9). In the presence of a magnetic
field, we have to leading order

η∆b ≈ −(B0 · ∇)u , ν∆u +
(B0 · ∇)b

ρµ0

+ f ≈ 0 . (2.16a,b)

The first equation is formally unchanged compared to the kinematic calculation al-
thoughu is no longer prescribed, but should be obtained by solving the linear system
(2.16a,b). The velocity fieldu0 in the absence of magnetic field is modified by the
Lorentz force. Note that(B · ∇)B ≈ (B0 · ∇)b up to terms of order

√
`/L � 1

from the assumption of scale separation. Solving (2.16a,b), we get for the electro-
motive force

〈u × b〉 ≈ UV

ηk




(
1 +

σB2
1

ρνk2

)
−1

0 0

0

(
1 +

σB2
2

ρνk2

)
−1

0

0 0 0




B0 . (2.17)

We thus find that theα–effect saturates when the magnetic field amplitude increases
because of the action of the Lorentz force on the velocity field. This saturation
should not be confused with that observed for large|u| in (2.15) which is a linear
effect due to flux expulsion. Defining

B̃i

2
=

σB2
i

ρνk2
, (2.18)

we obtain from the mean field equation (2.4)

∂B̃1

∂t
= −α

∂

∂z

[
B̃2

(1 + B̃2
2)

2

]
+ η

∂2B̃1

∂z2
, (2.19a)

∂B̃2

∂t
= −α

∂

∂z

[
B̃1

(1 + B̃2
1)

2

]
+ η

∂2B̃2

∂z2
. (2.19b)
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Numerical simulation of these equations shows that the magnetic field cascades to
large spatial scales during the saturation process (Gilbert & Sulem, 1990).

We thus observe that the saturated mean magnetic field obeys the following scaling
law

〈B2
0〉 ∝

ρν

σ`2
(Rm − Rmc) , (2.20)

with Rm =
√

UV
√

Ll/η.

In the case of an isotropic flow, a nonlinear evolution equation for the mean field can
be easily obtained by symmetry considerations. We get

∂TB0 = α∇ ×
(
1 − γB2

0

)
B0 + η ∆B0 . (2.21)

In the absence of large scale flow, we expect similar nonlinearities in the case of
α2–dynamos generated by small scale turbulent fluctuations. Phenomenological de-
scriptions leading to equations of the form (2.21) have beenproposed (Kraichnan,
1979; Meneguzziet al., 1981, Gruzinov & Diamond, 1994). We do not expect how-
ever thatγ corresponds to the laminar scaling when the Reynolds numberof the flow
is large (see below). Different scaling laws have been also proposed in relation to
the helicity injection rate and dynamics.

2.3. SATURATION IN THE LOW ReLIMIT

IN THE VICINITY OF THE DYNAMO

THRESHOLD

2.3.1. A PONOMARENKO TYPE DYNAMO AS A TRACTABLE

PROBLEM WITHOUT SCALE SEPARATION

In the absence of scale separation, it is much more difficult to derive an amplitude
equation for the magnetic field in the vicinity of the bifurcation threshold. We have
performed such a calculation using the following trick. We slightly modified Pono-
marenko’s original configuration (a cylinder in solid body rotation and translation
along its axis, embedded in an infinite static medium of the same conductivity with
which it is in perfect electrical contact) by considering that the rotating cylinder is
hollow and filled with a liquid metal of the same conductivity. This gives a very
simple flow, i.e. solid body rotation and translation, whichis the simplest way to
avoid turbulence at dynamo onset. The kinematic dynamo problem is thus the same
as that studied by Ponomarenko. However, above the dynamo threshold, the flow is
modified by the Lorentz force and is expected to saturate the growth of the magnetic
field.



70 Stephan FAUVE & François ṔETRÉLIS

We will not present here the calculation of the amplitude equation (see Nuñezet al.,
2001) but simply show the structure of the perturbation analysis.

2.3.2. STRUCTURE OF THE PERTURBATION ANALYSIS

The structure of the weakly nonlinear analysis above threshold is as follows: the
forcing generates a velocity fielduf and the dynamo bifurcates foruf = uc, i.e.
Rm = Rmc. We write (2.1a) in the form

L
(
B(0)

)
= 0 , (2.22)

whereB(0) is the neutral mode at threshold andL is a linear operator that depends
on the bifurcation structure (stationary or Hopf bifurcation). In the case of the Pono-
marenko dynamo, we have a Hopf bifurcation with neutral modes of the form (Pono-
marenko, 1973)

B(0) = A(T )Bp + c.c. = A(T )bp(r) exp i(mθ + kz + ω0t) + c.c., (2.23)

where(r, θ, z) are cylindrical coordinates and c.c. stands for the complexconjugate
of the previous expression.

The flow is forced slightly above threshold,uf = uc + εud + · · · , with ε = (Rm−
Rmc)/Rmc � 1. In addition, the leading order flow distortion by the Lorentz force,
εu(1), yields

u = uf + εu(1) + · · · . (2.24)

We have forB B =
√

ε
(
B(0) + εB(1) + · · ·

)
. (2.25)

We first computeu(1) from equation (2.1b) at orderε,

∂tu
(1) + (uc · ∇)u(1) +

(
u(1) · ∇

)
uc = −1

ρ
∇

(
p1 +

|B(0)|2
2µ0

)

+ ν∆u(1) +
1

µ0ρ

(
B(0) · ∇

)
B(0) . (2.26)

If Pm � 1, the flow is laminar at the dynamo threshold, and the Lorentz force is
mostly balanced by the modification of the viscous force, thus

|u(1)| ∝ |B(0)|2L
µ0ρν

. (2.27)

We get from equation (2.1a) at orderε,

L
(
B(1)

)
= ∂TB(0) − ∇ × (ud × B(0)) − ∇ × (u(1) × B(0)) , (2.28)
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whereT = εt is the slow time scale ofB(0) slightly above threshold. The amplitude
equation forB(0) that governs the saturation of the magnetic field is obtainedby
applying the solvability condition to (2.28),
〈
C|L(B(0))

〉
=
〈
C|∂TB(0)

〉
−
〈
C|∇ × (ud ×B(0))

〉
−
〈
C|∇ × (u(1) × B(0))

〉
= 0 ,

(2.29)
where〈a|b〉 =

∫
a · b dx . Thus

〈
C|∂TB(0)

〉
=
〈
C|∇ × (ud ×B(0))

〉
+
〈
C|∇ × (u(1) × B(0))

〉
, (2.30)

whereC is an eigenvector of the adjoint problem. The first term on theright hand
side of (2.30) corresponds to the linear growth rate of the magnetic field whereas the
second describes the nonlinear saturation due to the modified velocity fieldu(1). For
nonlinearly saturated solutions, we thus getud ∝ u(1). In the vicinity of threshold,
µ0σL(uf − uc) ∝ Rm − Rmc, and we obtain

〈|B|2〉 ∝ ρν

σL2
(Rm − Rmc). (2.31)

2.3.3. THE LAMINAR SCALING

We call (2.31) the “laminar scaling”, obtained forRe � 1 and characterized by the
fact thatB → 0 if ν → 0 with all the other parameters fixed.

For a Ponomarenko type flow, we obtained a supercritical bifurcation (Nuñezet al.,
2001). The leading order nonlinear effects tend to saturatethe growing magnetic
field because the Lorentz force slows down the motion and hence diminishes the
induction. We obtained for the magnetic field at saturationBsat,

Bsat = 2.82

√
ρν

σR2

√
Rm − Rmc Re {Bp} , (2.32)

whereBp is the neutral mode of the Ponomarenko dynamo.

The magnetic energy has the form of equation (2.31), what we called the laminar
scaling because the Lorentz force is balanced by the perturbation in velocity through
a viscous term. Close to onset, there is obviously no equipartition of energy because
the magnetic energy tends to zero withRm−Rmc while the kinetic energy is finite.
There is neither any simple balance between viscous dissipation and Joule dissipa-
tion. For Joule dissipation we havePj ∝

∫
|j|2dV ∝

∫
|∇×B|2dV ∝ (Rm−Rmc).

Concerning viscous dissipationPν , it is proportional to the square of the stress ten-
sor. This tensor is linear in the total velocity and is thus proportional tou(1) be-
cause the stress tensor ofuf is zero (solid body rotation and translation). Hence
Pν ∝ |u(1)|2 ∝ (Rm − Rmc)

2. In this particular case, with no viscous dissipation
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at onset, we observe that most of the input power is dissipated by Joule effect close
to the dynamo onset. In more complex laminar flows, Joule dissipation is of course
negligible compared to viscous dissipation just above the dynamo threshold.

More realistic helical flow geometries have been considered(Bassom & Gilbert,
1997) but the saturating magnetic field has been computed only in the limit Re �
Rm � 1 for which it is difficult to have controlled approximations.However, the
result also shares the main property of the laminar scaling,B → 0 if ν → 0 with all
the other parameters fixed.

2.4. SATURATION IN THE HIGH ReLIMIT

IN THE VICINITY OF THE DYNAMO

THRESHOLD

2.4.1. DIMENSIONAL ARGUMENTS

We show now that we can take advantage of the characteristicsof experimental
dynamos to find the correct scaling of the magnetic field abovethe dynamo threshold
(Pétrélis & Fauve, 2001). We have already mentioned thatPm � 1 for most fluids.
More precisely,Pm < 10−5 for all liquid metals. Thus, the Reynolds number is
larger than several millions at the dynamo threshold (Rmc is in the range10− 100).
In addition, the power needed to generate this turbulent flowincreases like the cubic
power of the driving velocity. Consequently, most experimental dynamos should:

- (i) bifurcate from a strongly turbulent flow regime,

- (ii) operate in the vicinity of their bifurcation threshold.

Although (i) makes almost impossible any realistic analytical calculation or direct
numerical simulation, the above two characteristics allowan estimation of the non-
linearly saturated magnetic field aboveRmc using dimensional analysis. Our goal
is thus to find the expression off in equation (2.2) in the limits (i)Re → ∞ and
(ii) Rm − Rmc → 0: (i) implies that the momentum is mostly transported by tur-
bulent fluctuations. Consequently, using the basic assumption of fully developed
turbulence, we can neglect the kinematic viscosity, thusRe. (ii) implies that the
dependence of〈B2〉 on Rm is proportional toRm − Rmc, as expected for a super-
critical bifurcation close to threshold. In other words,U = |u| is no longer a free
parameter, but should take approximately the value corresponding to the dynamo
threshold. Thus, (i) and (ii) reduce the number of parameters from 6 to 4, and the
saturated value of the magnetic field can be obtained using dimensional analysis, to
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give

〈|B|2〉 ∝ ρ

µ0(σL)2
(Rm − Rmc) . (2.33)

There is no paradox in the fact that the saturated magnetic field is inversely pro-
portional to the square of the electric conductivity and to the square of the typical
lengthscale of the flow. This does not mean that one should have σ andL small in
order to observe large values of|B| sinceRm = Rmc will be then achieved for a
larger flow velocity. Using the typical velocityUc = |u| at dynamo threshold, we
can write (2.33) in the form,〈|B|2〉/µ0ρU 2

c ∝ (Rm − Rmc)/Rm2
c , which shows

that the system is very far from equipartition of energy in the vicinity of the dynamo
threshold. We emphasize also that the interaction parameter, N = σL〈|B|2〉/ρ|u|,
is much smaller than one. It is such that

N ∝ Rm − Rmc . (2.34)

2.4.2. HIGH ReDYNAMOS CLOSE

TO THE BIFURCATION THRESHOLD

For Pm � 1 or Re � 1, we can recover the “turbulent scaling” (2.33) using the
structure of the perturbation analysis presented for laminar dynamos. The only dif-
ference is that ifRe � 1, we have to balance the Lorentz force with the inertial
instead of the viscous terms in (2.26). We thus get|Blaminar| ∝ |Bturbulent|Pm1/2;
consequently the two scalings strongly differ for experiments using liquid metals
(Pm < 10−5).

It may be instructive to replaceν by the turbulent viscosity,νT ∝ |u|L, in the
laminar scaling (2.31). Using|u| ≈ Rmc/µ0σL, we have

〈|B|2〉 ∝ ρνT

σL2
(Rm − Rmc) ∝

ρ

µ0(σL)2
(Rm − Rmc) . (2.35)

We thus recover the turbulent scaling. However, dimensional arguments of the pre-
vious section do not require any assumption about the turbulent viscosity expression
and are thus clearer.

The Karlsruhe (Stieglitz & Müller, 2001) and Riga (Gailitis et al., 2001) exper-
iments have recently reported values of the saturated mean magnetic field of or-
der 10 mT, roughly 10% above threshold. Both experiments used liquid sodium
(µ0σ ≈ 10 m−2 s , ρ ≈ 103 kg m−3). The inner diameter of the Riga experiment is
L = 0.25 m. The spatial periodicity of the flow used in the Karlsruhe experiment
is of the same order of magnitude, within a cylinder of radius0.85 m and height
0.7 m. The presence of two length scales in the Karlsruhe experiment makes the
comparison with our analysis more difficult, but we can easily compare the results
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of the Riga experiment with our “turbulent” (2.33) and “laminar” scalings (2.31),
that predict a saturated field of order10 mT (respectively10µT). Taking into ac-
count the qualitative nature of our analysis, we conclude that the “turbulent scaling”
is in agreement with the experimental observations whereasthe “laminar scaling”
predicts a field that is orders of magnitude too small. The “turbulent scaling” also
gives a correct order of magnitude for the Karlsruhe experiment if its spatial pe-
riod is taken as the relevant lengthscale in (2.33). We thus note that the above ex-
periments display a very interesting feature: turbulent fluctuations can be neglected
when computing the dynamo threshold; indeed, the observed thresholds are in rather
good agreement with those predicted by solving the kinematic dynamo problem for
the mean flow alone. However, the high value ofRe has a very strong effect on the
value of the saturated magnetic field above the dynamo threshold.

We emphasize that the correct identification of the dominanttransport mechanism of
momentum is essential to estimate the order of magnitude of the saturated magnetic
field above dynamo threshold. The reason is that it determines the flow distortion
by the Lorentz force and thus the saturation mechanism of thefield.

A laminar model of the flow thus generally leads to a wrong estimate of the magnetic
field amplitude although it sometimes correctly predicts the dynamo threshold. This
does not seem to have been fully understood in the early literature on dynamical
dynamo models. It is of course possible to recover correct orders of magnitude for
the field by using ad hoc turbulent transport coefficients. However, this is not very
useful and may even hide the simplicity of the result.

We have shown that a simple scaling law (2.33) for the mean magnetic field gen-
erated by laboratory dynamos can be found because they bifurcate from a high
Reynolds number flow and operate close to the dynamo onset (P´etrélis & Fauve,
2001). It would be interesting to test the validity of this scaling law in existing
laboratory experiments. This has not been done yet, but may be achieved both in
Karlsruhe and Riga experiments by varying the temperature of liquid sodium and
thus its conductivityσ.

2.5. EFFECT OF ROTATION

2.5.1. WEAK AND STRONG FIELD REGIMES

OF THE GEODYNAMO

We first recall some general features displayed by several geodynamo models (for a
detailed review, see Chapter 4 and Roberts, 1988). Rotationimposes a strong con-
straint on the flow that tends to become nearly two-dimensional. The length scale
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` of the flow in a direction perpendicular toΩ is thus much smaller than that along
Ω, ` � L. When convection is generated in a rotating sphere, the flow concentrates
in columns of diameter̀ ∝ L E1/3, whereE = ν/ΩL2 is the Ekman number (see
Chapter 3, and Roberts, 1968, Busse, 1970). This type of flow can generate a large
scale magnetic field on length scaleL via anα–effect (Busse, 1975). Plane layer
models (Childress & Soward, 1972; Soward, 1974) display most of the important
features of spherical geometries: increasing the rotationrate too much delays the
linear instability onset of self-generation because more and more power is neces-
sary to overcome dissipation at small scale`. However, for finite amplitude mag-
netic fields, the Lorentz force suppresses the rotational constraint and allows large
scale motions, leading to much smaller viscous and ohmic dissipation. A subcritical
“strong field” branch thus exists below the linear stabilityonset (St. Pierre, 1993) in
addition to the “weak field” branch that bifurcates continuously at the linear dynamo
threshold.

Only the weak field branch has been computed analytically, with different models
(Childress & Soward, 1972; Soward, 1974; Busse, 1975, 1976). These computa-
tions assume the flow to be laminar with a simple geometry. Consequently, the
saturated magnetic field is governed by the low Reynolds number scaling (2.31),
thus 〈|B|2〉weak ∝ ρν/σL2. The weak field regime may be stable above the lin-
ear threshold (depending on the model) but it becomes unstable for an order one
Chandrasekhar number (Q = N Re).

The system then jumps to the strong field regime. It is belivedthat its scaling cor-
responds to a balance between the Coriolis and the Lorentz forces (known as the
magnetostrophic balance), thus

〈|B|2〉strong ∝ ρΩ/σ . (2.36)

For the Earth, takingρ ≈ 104 kg m−3, σ ≈ 3 105 S m−1 andL ≈ 3 106 m, gives
Bweak ≈ 5 × 10−2 nT (0.5 µG). This is orders of magnitude too small, whereas the
strong field scaling,

√
ρΩ/σ ≈ 1 mT (10 G), looks better.

A very interesting feature of dynamos generated by rapidly rotating flows is thus
the subcritical nature of the bifurcation. Consequently, the questions related to the
effect of rotation on the linear dynamo threshold are of secondary importance. The
mean magnetic energy of finite amplitude dynamo solutions deserves more attention
and is strongly affected by rotation.
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2.5.2. FURTHER COMMENTS ON WEAK AND STRONG FIELD

REGIMES

We first note that the form of|Bweak| given above is oversimplified. The important
aspect is that|Bweak| → 0 if ν → 0 with all other parameters fixed. However, the
length scale in the expression of|Bweak| is likely to involve bothL and` ∝ LE1/3,
and thus to be a function of the rotation rateΩ. But, note that even if we replaceL
by `, we obtain

〈|B|2〉weak ∝ ρν

σL2
E−2/3 , (2.37)

thus changing the field by a factor105. This gives5 µT (50 mG), which is still too
small for the mean field value in the core of the Earth.

As a second step, we may try to incorporate the effect of turbulence since we have
already emphasized that it strongly affects the mean magnetic energy. This can
be done phenomenologically, starting from the laminar scaling with length scale
` ∝ LE1/3, and then replacingν by the turbulent viscosityνT ∝ |uT|`T, where|uT|
is the typical velocity scale on length̀T. In the vicinity of the dynamo threshold, we
haveRmc ≈ µ0σ|uT|`T, and we get the turbulent scaling for the magnetic energy
with a length scale

`T ≈ `

(
Rmc

Pm

)1/3

=

(
L

µ0σΩ
Rmc

)1/3

. (2.38)

This gives a more realistic length scale for the diameter of the columns than the
laminar one (a few tenth of kilometers rather than a few tenthof meters). We thus
obtain a third possible scaling of the magnetic energy

〈|B|2〉turb ∝ ρν

σL2

(
Rmc

Pm E2

)1/3

= ρ

(
Ω2

µ0σ4L2
Rmc

)1/3

, (2.39)

giving a more realistic value of the order of a gauss for the mean field.

We finally note that we obtain the strong field scaling from theweak one by replacing
ν by ΩL2. This only means that, instead of the Stokes term, we have to balance the
additional Coriolis term,2Ω×u(1), in (2.26) with the Lorentz force. However, such
a scaling does not seem to require a subcritical bifurcation. If the Coriolis term is
the dominant one, weakly nonlinear perturbation theory will lead to

|u(1)| ∝ |B(0)|2
µ0ρΩL

. (2.40)

This gives 〈|B|2〉 ∝ ρΩ

σ
(Rm − Rmc) . (2.41)
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We obtain the strong field scaling, but without assuming thatthere is a balance be-
tween the Lorentz force and the total Coriolis force. Only the Coriolis force related
to the velocity perturbation balances the Lorentz force; this gives the additional term
Rm−Rmc in the expression of the mean magnetic energy. Although thislooks fine,
it is not obvious that a perturbative analysis can be worked out that way and we
should be cautious in the absence of an explicit analytical example leading to the
strong field scaling.

2.5.3. SCALINGS OF MAGNETIC ENERGY

USING DIMENSIONAL CONSIDERATIONS

The weak field scaling (2.37) gives too small field values but the turbulent (2.39) and
the strong field (2.36) ones only differ by roughly an order ofmagnitude in the case
of the Earth. Although their expressions are different, both give possible values of
the field for the Earth if we take into account the qualitativenature of our analysis.

It may be interesting to understand the strong field scaling as follows: we already
noticed that altough magnetic fields exist in a wide range of scales in astrophysics,
their values do not seem to be primarily determined by the size L of astrophysical
objects. As a very rough approximation, assume that〈|B|2〉 does not depend onL
and also neglectν since the flow is turbulent (at least at small enough scales).We
are then left with6 parameters,B = |B|, ρ, µ0, σ, U = |u|, Ω, from which we
can construct two dimensionless numbers, for instanceB2/µ0ρU 2 andRm Ro =
µ0σU2/Ω. We thus get

B2 = µ0ρU 2 g(Rm Ro) . (2.42)

Close to the dynamo threshold,g bifurcates from0 and behaves likeRm Ro −
(Rm Ro)c, with (Rm Ro)c = µ0σU2

c /Ω. Consequently we obtain

B2 ∝ ρΩ

σ
[Rm Ro − (Rm Ro)c] , (2.43)

and we recover the strong field scaling. Note that we expect itto be valid ifRo � 1
(dominant rotation) but forRm Ro large enough to generate the dynamo. We do not
expectL to be the relevant length scale for the strong field regime butthe smaller
scaleUc/Ω. We observe that the flow is turbulent on this scale at dynamo onset
(U 2

c /νΩ � 1 sinceRe Ro � Rm Ro).
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2.6. SCALING LAWS IN THE LIMIT

OF LARGE Rm AND Re

Finally, we will consider the case of astrophysical flows where bothRm andRe are
very large. No laboratory experiments, neither direct numerical simulations being
possible in this range ofRm andRe, the only way is to try to guess scaling laws
for the magnetic field using some simple hypothesis. We thus consider again the
minimum set of parameters,U , L, ρ, ν, µ0, σ. We note that discarding global
rotation is certainly invalid for most astrophysical objects. However, even in the
simplest case of a homogeneous isotropic turbulent flow, with an integral velocity
U in a domain of sizeL, no clear-cut result exists neither for the dynamo threshold,
nor for the scaling of the magnetic energy. We will shortly review the problem of
the dynamo threshold of a turbulent flow and then discuss possible scalings for the
magnetic energy.

2.6.1. EFFECT OF TURBULENCE

ON THE DYNAMO THRESHOLD

Taking into account the minimum set of parameters,U , L, ρ, ν, µ0, σ, dimensional
analysis gives for the dynamo thresholdRmc

Rmc = F (Re). (2.44)

For given geometry and large scale flow, the unknown functionF represents how
Rmc depends on the fluid properties. Finding the behaviour ofF in the limit of
largeRe will show how turbulent fluctuations affect the dynamo threshold. This is
still an open problem, even in the case of a homogeneous isotropic turbulent flow
with zero mean and without helicity. Recent direct numerical simulations show
that Rmc keeps increasing withRe at the highest possible resolution without any
indication of a possible saturation (Schekochihinet al., 2004). However, if one
assumes that the magnetic field is a large scale quantity, i.e. is not affected by the
value of viscosity in the limit of largeRe according to the usual phenomenology
of turbulence, we immediately get that, if dynamo action is possible in the limit of
largeRe, its threshold is given byRmc → constant in this limit.

A lot of work has been performed on the determination ofRmc as a function ofRe
for turbulent dynamos in the limit of largeRe (or smallPm). EDQNM closures have
predictedRmc ≈ 30 for non helical flows (Léoratet al., 1981). The agreement with
the above simple argument is not really surprising since these closures keep only the
large scales. A lot of analytical studies have been also performed, mostly following
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Kazanstev’s model (Kazanstev, 1968). Kazanstev considered a random homoge-
neous and isotropic velocity field,δ-correlated in time and with a wave number
spectrum of the formk−p. He showed that forp large enough, generation of a ho-
mogeneous isotropic magnetic field with zero mean value, takes place. This is a nice
model but its validity is limited to largePm for which the magnetic field has a much
larger time scale than the velocity field. In this case, assuming that the velocity field
is δ-correlated in time is probably a reasonable approximation. However, Kazant-
sev’s model has been also extrapolated to largeRe. Various predictions,Rmc ∝ Re
(Novikov et al., 1983),Rmc → constant ≈ 400 for steep enough velocity spectra
(p > 3/2) and no dynamo otherwise (Rogachevskii and Kleorin, 1997),or dynamo
for all possible slope of the velocity spectrum in the range1 < p < 3 (Boldyrev and
Cattaneo, 2004) have been found. These discrepancies result from non rigorous ex-
trapolation of Kazanstev’s model to largeRe. The calculation is possible only in the
case of aδ–correlated velocity field in time, andδ(t − t′), which has the dimension
of time, should then be replaced by a finite eddy turn-over time in order to describe
largeRe effects.

A different problem about turbulent dynamos has been considered more recently.
It concerns the effect of turbulent fluctuations on a dynamo generated by a mean
flow. The problem is to estimate to which extent the dynamo threshold computed
as if the mean flow were acting alone, is shifted by turbulent fluctuations. This
question has been addressed only recently (Fauve and Pétr´elis, 2003) and should not
be confused with dynamo generated by random flows with zero mean. It has been
shown that weak turbulent fluctuations do not shift the dynamo threshold of the
mean flow at first order. In addition, in the case of small scalefluctuations, there is
no shift at second order either, if the fluctuations have no helicity. This explains why
the observed dynamo threshold in Karlsruhe and Riga experiments has been found
in good agreement with the one computed as if the mean flow wereacting alone, i.e.
neglecting turbulent fluctuations. Recent numerical simulations have shown that in
the presence of a mean flow,Rmc increases withRe at moderateRe but then seems
to saturate at largerRe (Pontyet al., 2005).

2.6.2. BATCHELOR ’ S PREDICTIONS

FOR TURBULENT DYNAMO THRESHOLD

AND SATURATION

It may be instructive at this stage to consider the first studyon turbulent dynamos
made more than half a century ago by Batchelor (1950). Using aquestionable anal-
ogy between the induction and the vorticity equations, he claimed that the dynamo
threshold corresponds toPm = 1, i.e. Rmc ∝ Re, using our choice of dimension-
less parameters. Pushing the analogy further, he observed that the magnetic field
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should be generated mostly at the Kolmogorov scale,`K = LRe−3/4, where the ve-
locity gradients are the strongest. He then assumed that saturation of the magnetic
field takes place for〈B2〉/µ0 ∝ ρv2

K = ρU 2/
√

Re, wherevK is the velocity incre-
ment at the Kolmogorov scale,v2

K =
√

νε. ε = U 3/L is the power per unit mass,
cascading fromL to `K in the Kolmogorov description of turbulence.

It is now often claimed that Batchelor’s criterionPm > 1 for the growth of mag-
netic energy in turbulent flows is incorrect. However, it should be noted that for
homogeneous isotropic turbulence without mean flow and helicity, the weaker cri-
terionPm > constant or Rmc ∝ Re, is still considered to be a possible scenario
(Schekochihinet al., 2004). It is thus of interest to determine the minimal hypoth-
esis for which Batchelor’s predictions for dynamo onset andsaturation are obtained
using dimensional arguments.

First, ε = U 3/L being the power per unit mass available to feed the dynamo, it
may be a wise choice to keep it, instead ofU in our minimal set of parameters,
thus becomingB, ρ, ε, L, ν, µ0 and σ. Then, the predictions of Batchelor can
be found using the following simple requirement: let us consider only the dynamo
eigenmodes that do not depend onL. This is a reasonable requirement, since we
may hope that in a large domain, there exist some class of small scale magnetic
fields which are insensitive to the details of boundary conditions. Then, forgettingL
in our set of parameters, dimensional analysis gives at oncePm = Pmc = constant
for the dynamo threshold, i.e.

Rmc ∝ Re . (2.45)

We also obtain for the mean magnetic energy density

〈B2〉
µ0

= ρ
√

νεG(Pm) =
ρU 2

√
Re

G(Pm) , (2.46)

whereG(Pm) is an arbitrary function ofPm. Close to dynamo threshold, we ex-
pectG(Pm) ∝ Pm − Pmc if the bifurcation is supercritical. Only the prefactor
ρU 2/

√
Re of (2.46), which is the kinetic energy at Kolmogorov scale, was consid-

ered by Batchelor and assumed to be in equipartition with magnetic energy. This
class of dynamos being small scale ones, it is not surprisingthat the inertial range
of turbulence screens the magnetic field from the influence ofintegral size, thusL
can be forgotten. We emphasize that a necessary condition for Batchelor’s scenario
is that the magnetic field can grow below the Kolmogorov scale, i.e. its dissipative
length`σ should be smaller thaǹK , thusPm > 1.
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2.6.3. A KOLMOGOROV TYPE SCALING

IN THE LIMIT Re � Rm � Rmc

The simplest argument in the limit where bothRm andRe are very large is, as usual,
to assume that the transport coefficientsν andσ become negligible. We are left with
one dimensionless parameter and

〈B2〉
µ0

∝ ρU 2 . (2.47)

We thus obtain equipartition of energy, an assumption oftenmade in the early dy-
namo literature. The scaling of the mean square magnetic field does not involve
the sizeL without any further assumption. Note however that this result will not
subsist if global rotation is important. The right hand sideof (2.47) will then in-
volve an a priori arbitrary function of the Rossby number, thus leading to a possible
dependence ofB onΩ andL.

Assuming that the above argument is correct means that the magnetic field is a large
scale quantity in the phenomenology of turbulence. There isobviously a strong
discrepancy between (2.47) and (2.46). These two laws are the upper and lower
limits of a continuous family of scalings that are obtained by balancing the magnetic
energy with the kinetic energy at one particular length scale within the Kolmogorov
spectrum. It is not known if one of them is selected by turbulent dynamos.

We finally consider the casePm � 1 i.e. Re � Rm. We known from the Karlsruhe
and Riga experiments that dynamo action is possible in this range above a moderate
value ofRmc provided that the mean flow is appropriately chosen. As said above,
the problem is still open in the absence of mean flow, althoughsome models predict
a much larger but finiteRmc in the limit of largeRe.

Assuming that a dynamo is generated, we want to give a possible guess for the
power spectrum|B̂|2 of the magnetic field as a function of the wave numberk and
the parametersρ, ε, L, ν, µ0 andσ. SinceRe � Rm � Rmc, the dissipative
lengths are such that`K � `σ � L. Fork in the inertial range, i.e.k`σ � 1 � kL,
we may use a Kolmogorov type argument and discardL, σ andν. Then, only one
dimensionless parameter is left, and not too surprisingly,we get

|B̂|2 ∝ µ0ρ ε
2

3 k−
5

3 . (2.48)

This is only one possibility among many others proposed for MHD turbulent spectra
within the inertial range, but it is the simplest. Integrating overk obviously gives
equipartition law (2.47) for the magnetic energy. It is now interesting to evaluate
Ohmic dissipation. Its dominant part comes from the currentdensity at scalèσ. We
have

j2

σ
=

1

σ

∫
|̂j|2 dk ∝ 1

µ2
0σ

∫
k2|B̂|2 dk ∝ ρ

µ0σ
ε

2

3 `
2

3

σ ∝ ρ
U 3

L
. (2.49)
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We thus find that Ohmic dissipation is proportional to the total available power
which corresponds to some kind of optimum scaling law for Ohmic dissipation.
However, this does not give any indication that this regime is achieved. The dis-
crepancies between plausible laws given in this section show that the problem of
turbulent dynamos still deserves a lot of studies.

2.7. NONLINEAR EFFECTS

IN MEAN FIELD DYNAMO THEORY

Let us now consider the limit of large magnetic Reynolds number Rm. The ma-
jority of research into astrophysical dynamos (see Chapter6 and Chapter 7) has
been performed within the framework of mean field electrodynamics. It can also
be a useful approach in geodynamo models (see Section 4.5.1), but here there has
also been much recent work on solving the full three dimensional equations (see
Section 4.5.3). Mean field electrodynamics, conceived in the 1960’s by Steenbeck,
Krause and Rädler (see Krause & Rädler, 1980 for full references), is an extremely
elegant theory — and is, in many ways, extremely successful.By judicious choice of
the various parameters in the theory, it is possible to modela vast range of dynamo-
generated magnetic fields (see, for example, the review by Rosner, 2000). It should
however always be borne in mind that mean field electrodynamics is a theory of
MHD turbulence, and, as in all theories of turbulence (magnetic or non-magnetic),
it involves approximations and assumptions. The aim of thischapter is to discuss
the various approaches that have been taken towards understanding the nonlinear
behaviour of mean field dynamos, concentrating mainly on astrophysical modelling
(i.e. high values of the Reynolds numbersRm andRe). Of particular significance
is that the power of present-day computers is now allowing realistic simulations of
turbulence — though by no means at the extreme parameter values that pertain in
astrophysical situations — and that it is therefore becoming possible to compare
theoretical predictions with results from numerical simulations.

The aim of mean field electrodynamics is to provide a mathematical theory for the
evolution of magnetic fields on scales large compared with that of the driving turbu-
lent velocity field. Its formulation has already been described in depth in Section 1.5,
and so will not be reproduced in detail here. There are thoughtwo key points to note,
namely:

(i) that the formulation is essentially linear — being basedon the induction equa-
tion for given flow statistics, and

(ii) that, often, progress is possible only for the case of low Rm. Only in this case
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is it possible to make any rigorous statement about the relationship between
the fluctuating and mean magnetic fields.

Typically though, astrophysical plasmas are both nonlinear in their behaviour and
possess extremely high values ofRm [O(1011) in the solar convection zone, for
example. See Table IV]. We therefore need to examine just howfar the formulation
and attendant consequences of mean field electrodynamics can be carried over into
the regime of astrophysical relevance.

There are essentially three ways of making progress with understanding the nonlin-
ear evolution of a large-scale magnetic field in a turbulent flow:

(i) through the incorporation into the mean field formalism of plausible nonlin-
earities, based on physical arguments;

(ii) via other MHD turbulence theories, which put the induction equation and mo-
mentum equation on an equal footing;

(iii) via direct numerical simulations of the full governing MHD equations.

In this section, we shall consider each of these areas in turn, and try to give a picture
of just where the subject stands at present — to discuss whichare the areas of agree-
ment, and which are those of contention. It is intended as an introductory text; it is,
deliberately, far from exhaustive, and the work we shall describe has been chosen
for illustrative purposes. A much fuller list of referencescan be found, for example,
in the review of galactic magnetic fields by Becket al. (1996) and the recent review
of the solar dynamo by Ossendrijver (2003).

For turbulent MHD flows there are two important nonlinearities in the momentum
equation. One is the inertial(u · ∇)u term — the crucial nonlinearity in hydrody-
namic turbulence, responsible for energy transfer betweendifferent spatial scales;
the other is the Lorentz force (j×B), which provides the back-reaction of the mag-
netic field on the velocity field. In the following sections, we shall explain how these
nonlinearities are accounted for in the three approaches outlined above.

2.7.1. NONLINEAR EFFECTS IN THE MEAN FIELD FORMALISM

THE INCORPORATION OF PLAUSIBLE NONLINEARITIES

As described in Section 1.5, the standard formulation of mean field electrodynamics
leads to a mean induction equation in which the large-scale field evolves under the
influence of the tensorsαij andβijk, and a large-scale flow (or differential rotation,



84 David HUGHES

ω). The simplest means of introducing nonlinear effects intothe theory — which
are, of course, necessary to prevent unlimited growth of themagnetic field — is to
modify one or more ofαij, βijk or ω in a manner that reflects the underlying physics.
It is though important to point out that such modifications typically do not arise from
some self-consistent theory, but are merely physicallyplausible.

For simplicity, let us for the moment consider the case whenαij andβijk are isotropic
tensors, namelyαij = αδij andβijk = βεijk; we need then concern ourselves only
with the pseudo-scalarα and the scalarβ. The induction equation for the mean
magnetic fieldB0 then takes the form (see Section 1.5.2):

∂tB0 = ∇× (U× B0) + ∇× (αB0) + ∇× [(η + β)∇×B0] . (2.50)

At low values ofRm one may interpret theα–effect in terms of the physical picture
first put forward by Parker (1955), of rising and twisting loops of field giving rise to a
mean current anti-parallel to the large-scale field. On physical grounds it is entirely
reasonable to argue that this process becomes less effective as the field strength
increases — the Lorentz force resisting the tendency to twist field lines — and that
thereforeα should be a monotonically decreasing function of the large-scale field
B0. The most widely used formulation is that proposed by Jepps (1975), withα
taking the form

α =
α0

1 + B2
0/B2

, (2.51)

whereα0 represents the kinematic value ofα andB2 represents some reference
magnetic energy. At high values ofRm there is no clear physical picture of even the
kinematic (linear)α–effect, and thus it is not at all surprising that the precisenature
of the Lorentz force is much harder to understand. Formulae of the form (2.51) are
commonly advanced, but there is considerable controversy over which value ofB is
appropriate.

If α is “quenched” in the manner suggested by (2.51) one may arguethat the tur-
bulent diffusivityβ should be similarly reduced, the general argument being that a
stronger field resists shredding and hence that the process of turbulent diffusion is
inhibited. Dynamo models therefore sometimes adopt a prescription for β of the
form

β =
β0

1 + B2
0/B2

, (2.52)

where the reference energyB2 in (2.52) may — or may not — take the same value
as in (2.51). There is, of course, a tremendous amount of physics hidden away in
the formulae (2.51) and (2.52), and we shall return to this issue in later sections; the
aim here however is simply to discuss the general nature of the nonlinearities that
are typically incorporated into mean field electrodynamics, and to examine their
consequences.
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An alternative to (2.51) is to formulate a separate equationfor α — a so-called
dynamicα–effect. Schmalz & Stix (1991) postulate thatα may be expressed as the
difference between a kinematic and dynamic component,α = αk − αd, whereαd

obeys the relation
∂tαd = D(αd) + F(AB) , (2.53)

whereD represents a damping term and the functionF(AB) is chosen to represent
the quenching of theα–effect by the Lorentz force, whilst maintaining the pseudo-
scalar nature ofα. Yet another possible approach is that of Yoshimura (1978),who
argues that the reaction of the field on the driving flow does not occur instanta-
neously, but only after a certain timetd has elapsed. This is built into his formulation
of the mean field equations through specifying thatα dependsnot on the magnetic
field at the present timet, but instead on the magnetic field at an earlier timet − td.
Such formulations, of either a dynamicα–effect or anα–effect that depends on the
field at an earlier time, can be justified through rather non-specific physical argu-
ments, as indeed can (2.51); they are though all somewhat arbitrary.

The Lorentz force, via the momentum equation, of course actsnot only on the small-
scale turbulence — and hence influences the transport coefficientsα andβ — but
also on the large-scale flow (i.e. on the differential rotation). This can be taken into
account through a simpleω–quenching model of the form

ω =
ω0

1 + B2
0/B2

, (2.54)

based on fairly non-specific arguments that the stress exerted by the small-scale
magnetic field inhibits the differential rotation. The large-scale magnetic field also
has adirectdynamic effect on the large-scale flow; this process, first investigated by
Malkus & Proctor (1975), is accounted for by an additional equation for the large-
scale velocity.

A third, and rather different, mechanism of dynamo saturation is that due to loss
of flux from the region of field generation. This is typically ascribed to an upward
escape of flux via magnetic buoyancy, a consequence of the magnetic pressure sup-
porting more gas than would be possible in its absence (see, for example, the review
by Hughes & Proctor, 1988). The process is independent of thesign of the magnetic
field, and so the simplest prescription is to add a term of the form−B3 to the right
hand side of the mean induction equation (2.50). Again it should be stressed that
although this is a reasonable parametrisation, the true physics of magnetic buoy-
ancy instabilities is considerably more complex (see, for example, Hughes, 1991).
Indeed, the real picture may be quite subtle; magnetic buoyancy instabilities in a
rotating frame — which can lead to an upward transport of magnetic flux — yield
helical motions which may, through anα–effect, be conducive to field generation
(see Moffatt, 1978; Thelen, 2000a,b). So magnetic buoyancymay play arôle not
only in the loss of field, but also, indirectly, in its generation.
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NONLINEAR MODELS

In modelling a stellar dynamo, the obvious interpretation of the averaging process in
the mean-field formulation is as an azimuthal average, leading, in spherical geom-
etry, to equations dependent on radiusr, meridional angleθ and timet. Although
less daunting than the full, three-dimensional MHD equations, solution of the ax-
isymmetric mean field equations is still a non-trivial task.It can often therefore
be instructive to consider further simplifications. The most drastic is to reduce the
governing partial differential equations inr, θ andt to a low-order set of ordinary
differential equations int. One of the earliest such models is that of Weiss, Catta-
neo & Jones (1984) who, via a severe truncation of a modal expansion of the mean
induction and momentum equations, derived the following seventh order system,
which may be regarded as a complex generalisation of the Lorenz equations:

Ȧ = 2D(1 + κ|B|2)−1B − A , (2.55a)

Ḃ = i(1 + ω0)A − 1
2
i A∗ω − (1 + λ|B|2)B , (2.55b)

ω̇0 = 1
2
i (A∗B − AB∗) − ν0ω0 , (2.55c)

ω̇ = −iAB − νω , (2.55d)

whereA andB represent the (complex) poloidal flux function and toroidalfield, ω0

(real) andω (complex) represent the spatially uniform and spatially varying com-
ponents of the differential rotation,ν andν0 are real constants related to an eddy
viscosity. There are three forms of nonlinearity in the above set of equations;α–
quenching in theA equation, represented through a term of the form (2.51) (κ being
a positive real constant), a buoyancy loss term in theB equation (λ a positive real
constant), and the feedback of the Lorentz force on the differential rotation in theω0

andω equations.

Weisset al. (1984) concentrated on the case ofκ = λ = 0, for which the nonlin-
ear feedback acts only on the differential rotation, and found that solutions of the
seventh order system fall into two classes, depending on whether the nonlinear sat-
uration is dominated byω0 or ω. The former can be accommodated within the fifth
order system obtained by lettingν → ∞, the latter within the sixth order system
formed by lettingν0 → ∞. For D > 1 there is an exact nonlinear solution of the
seventh order system, corresponding to dynamo waves. For the fifth order system
this solution remains stable for allD; for the sixth order system, however, it loses
stability and more mathematically interesting behaviour ensues. AsD increases,
successive Hopf bifurcations, leading to quasi-periodic behaviour, are followed by
a period-doubling cascade to chaos. The magnetic field in thechaotic regime has
epochs of cyclic activity interspersed with quiescent episodes during which the field
amplitude is reduced and varies on a much slower timescale (see Figure 2.1); such
behaviour is, of course, suggestive of the time trace of the Sun’s magnetic field
measured, for example, by the sunspot number.
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Figure 2.1 - Aperiodic oscillations of the sixth-order system (derived from (2.55a)
– (2.55d) withν0 → ∞), modulated to give episodes of reduced activity;B1(t) (the
real part ofB) for (a) D = 8 and(b) D = 16 (from Weisset al., 1984).
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The natural extension to low-order ODE models — which are local in nature — is to
incorporate full spatial variation in one dimension, the most astrophysically relevant
way of achieving this being to consider thin-shell dynamos,in which averaging over
the radial direction leads to a set of PDEs inθ andt. Such models naturally allow,
for example, interactions between the fields in each hemisphere. This approach was
adopted by Belvedere, Pidatella & Proctor (1990) who considered a model in which
the only manifestation of the Lorentz force is to modify the large-scale velocity. In-
creases in the dynamo number lead to solutions of increasingspatial and temporal
complexity, from simple periodic solutions to quasi-periodic and “pulsed” solutions
in which relatively long periods of stasis are interrupted by interludes of cyclic be-
haviour. The model of Belvedereet al. (1990) also allows for the possibility of
multiple stable solutions for the same parameter values.

Jennings & Weiss (1991) also considered a one-dimensional model, “flattened” into
Cartesian geometry (θ → x), governed by the equations

∂tA =
Dcos x

1 + τB2
B + ∂xxA , ∂tB =

sinx

1 + κB2
∂xA + ∂xxB − λB3 , (2.56a,b)

which may be regarded as a nonlinear modification to (1.114a,b). Their model dif-
fers from that of Belvedereet al. (1990) not just in the geometry, but also through
a different choice of nonlinearities; equations (2.56a,b)contain terms representing
α- andω–quenching and flux loss by magnetic buoyancy, but no direct feedback
on the large-scale velocity. Jennings & Weiss (1991) were particularly interested
in the phenomenon of symmetry-breaking between the northern and southern hemi-
spheres; via a fairly low-order truncation of equations (2.56a,b), which enabled them
to locate both stable and unstable solutions, they were ableto construct the bifurca-
tion diagram demonstrating the transitions between dipole, quadrupole and mixed
modes. Figure 2.2 shows the bifurcation diagram for the caseof κ = λ, τ = 0.
Of significance is the existence of different types of stablesolution (e.g. dipole and
quadrupole) at the same value of the dynamo numberD.

Two-dimensional models, in which the variables depend onr andθ (and time) have
also received considerable attention, with investigationof all the different types of
nonlinearity discussed above (see, for example, Covaset al., 1998, who performed
a comparison between algebraic and dynamicα–quenching). Just as for the models
with zero or one spatial dimension a wide variety of behaviour can be found through
the incorporation of different nonlinearities.

Equation (2.50), withU, α, β andη dependent on (at most)r, θ andt, clearly sup-
ports non-axisymmetric solutions — withB proportional toexp(imφ) in the linear
regime. Furthermore it may even be the case that the mode of maximum growth rate
is non-axisymmetric. However, one has to exercise a certainamount of caution over
the interpretation of non-axisymmetric solutions of (2.50). If the mean-field proce-
dure is that of averaging over the azimuthal angle then — for logical consistency
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— the magnetic field in (2.50) must also be axisymmetric. Similarly, an ensemble
average — itself somewhat hard to justify for any isolated stellar object — leads to
a reduction in the number of spatial dimensions. One other interpretation is that the
average represents a filtering between large scales (m < m∗, say, for somem∗) and
small scales (m ≥ m∗) — this allows for the possibility of non-axisymmetric modes
of (2.50), but begs the question as to whyα etc. should, in this case, not depend on
all m < m∗. Consequently the most consistent interpretation of three-dimensional
(non-axisymmetric) solutions of (2.50) is as some sort of temporal average, where
∂t represents the rate of change over time scales long comparedto that involved in
the averaging procedure.

THE ROBUSTNESS OF NONLINEAR MODELS

Through the choice of the various nonlinearities discussedabove, it is possible to
obtain a considerable range of solutions to the mean induction equation (2.50), with
differing spatial symmetries and a range of temporal complexity, an excellent agree-
ment being possible with observed cosmical fields. The different types of possible
solution and their relation to stellar magnetic fields are discussed further in Chap-
ter 6. However, one has to exercise a certain degree of caution in interpreting the
results of mean field models. It is well known that the dynamics of low-order sys-
tems may be critically dependent on the severe truncation performed to obtain them,
and that, for example, chaotic behaviour may disappear in corresponding higher-
order systems. Schmalz & Stix (1991) found such a phenomenonin their dynamic
α models. Furthermore, the qualitative behaviour may be sensitively dependent on
the precise form of the nonlinearity chosen. Covaset al. (1997) re-examined the
Schmalz & Stix model by considering different functional forms of the driving term
for αd in (2.53), and found that significant changes in the chaotic nature of the so-
lutions could result. Tobias (1998) has examined the dependence of dynamo cycle
periods on the various nonlinearities that may be included in an interface dynamo
model (described in more detail in Section 6.4) and, from thetime series of the
various models, concluded that it is difficult to discriminate between different non-
linearities.

2.7.2. MHD TURBULENCE THEORIES

The essential principle behind the models discussed in Section 2.7.1 is that the mean
induction equation (2.50) is pre-eminent, and that nonlinear effects can be incorpo-
rated either through parametrisations of the form (2.51) orthrough auxiliary equa-
tions forα or ω. There are clearly advantages to such an approach; the full horrors
of the momentum equation are avoided and, importantly, it appears that most astro-
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physical dynamos can, at some level, be modelled in this way.Clearly though, there
is always the worry that some of the essential physics of the problem, contained in
the momentum equation, is missing. The aim of this section therefore is to review
some of the attempts that have been made to model the turbulent dynamo problem
through treating the induction and momentum equations on a more equal footing.

One approach is to apply the ideas of mean field averaging not just to the induction
equation but also to the momentum equation, on the grounds that the same turbu-
lence occurs in both. On neglecting the magnetic field for themoment, and splitting
the velocity field into its mean and fluctuating components,U = U0 + u, the (di-
mensionless) mean momentum equation for an incompressibleflow may be written
as

∂tU0 + (U0 · ∇)U0 = −∇P − ∇ · 〈uu〉 + Re−1∆U0, (2.57)

where the effects of the turbulence are contained in the Reynolds stress tensor

Qij = 〈uiuj〉. (2.58)

Just as in classical mean field electrodynamics, in which theaim is to express the
mean e.m.f.E = 〈u × b〉 in terms simply of the mean magnetic field, the aim here
is to express the tensorQij in terms of the mean velocity field. This is, however, an
even more daunting task than for the induction equation; whereas, at least for weak
fields, the latter represents a problem linear in the magnetic field, the momentum
equation for fully turbulent flows is inherently nonlinear in the velocity field. The
closure of equation (2.57) is thus fraught with even more uncertainties than that of
(2.50).

If, however, the assumption is made thatQij depends only linearly on the mean part
of the velocity field and its first spatial derivatives, then the hydrodynamic analogue
of equation (1.103) of Section 1.5.2 may be expressed as

Qij = Lijk U0k − Nijkl ∂lU0k. (2.59)

Furthermore, if the mean flow takes the form solely of a differential rotation, i.e.
U0 = sωeφ, then (2.59) takes the form

Qij = Λijk ωk − Nijkl ∂l(ωeφ × er)k. (2.60)

The tensorΛijk must be symmetric ini andj, and hence anisotropic; the first term
on the right hand side of (2.60) — the so-calledΛ–effect — therefore represents the
contribution towards the differential rotation arising from the interaction between
global rotation and anisotropic turbulence (Rüdiger, 1989). The second term denotes
the contribution stemming from turbulent diffusivity (analogous toβ for the mean
induction equation). Of course, just as forα andβ, there are no rigorous theories
available to calculateΛijk andNijkl; these must come from physically plausible,
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though to some degree arbitrary, considerations. Mean fielddynamos involving the
Λ–effect, but with the only nonlinearity that of the large-scale magnetic field on
the differential rotation, have been considered by, for example, Brandenburget al.
(1991).

The magnetic field though may also influence the differentialrotation through mod-
ifying, or quenching, theΛ–effect, the turbulent driver of the differential rotation. In
the presence of a small-scale magnetic fieldb the total stress tensor becomes

Qtot
ij = 〈uiuj〉 − 〈bibj〉. (2.61)

Formal expressions forQtot
ij have been calculated, for a particular turbulence model,

by Kitchatinov, Rüdiger & Küker (1994), who also considerthe consequences of
such a nonlinearΛ–effect for a simple one-dimensional dynamo model. Küker,Arlt
& Rüdiger (1999) considered an axisymmetric dynamo model with three different
manifestations of the Lorentz force; the Malkus-Proctor mechanism,α–quenching
andΛ–quenching. They found thatα–quenching leads to temporally periodic solu-
tions, whereas the Malkus-Proctor mechanism andΛ–quenching both yield compli-
cated time series with irregular grand minima.

The approach above, couched solely in terms of mean quantities, may be thought of
as a one-point closure model. To study small-scale properties for which correlation
functions are of crucial importance it is however necessaryto consider higher-order
moments of the governing equations. Suppose the system of governing equations is
written symbolically as

dui

dt
+ νiui =

∑

jk

Mijkujuk , (2.62)

where the{ui} represent the variables of the system (e.g.{U,B} for incompressible
MHD), the νi are the dissipation coefficients, andMijk are the nonlinear coupling
coefficients (no implicit summation convention is used here). Then, the equation for
the two–point correlation function takes the form

d

dt
〈uiuj〉 + νi〈uiuj〉 =

∑

mn

(Mimn〈ujumun〉 + Mjmn〈uiumun〉) , (2.63)

which clearly involves the triple-correlation function. Continuing in this vein leads
to an infinite hierarchy of moment equations; to make progress it is therefore nec-
essary somehow to close the system. One of the infinite numberof ways in which
this may be done — leading to the only MHD turbulence model that has been used
to address the dynamo problem — is to adopt what is known as theeddy–damped
quasi–normal Markovian approximation (EDQNM), formulated for hydrodynam-
ics by Orszag (1970) and extended to MHD by Pouquet, Frisch & Léorat (1976).
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Roughly speaking, closure is achieved by assuming that the joint probability distri-
butions are close to normal, allowing the neglect of all cumulants of order greater
than three. An eddy damping, the choice of which allows considerable freedom, is
then introduced to determine the decay of the triple correlation, and hence close the
system.

From the point of view of mean field dynamo theory, the key result of Pouquetet al.
(1976) is the derivation of an expression forα of the form

α = −τc

3

(
〈u · ∇ × u〉 − 〈j · b〉

ρ

)
, (2.64)

whereτc is a typical coherence time of the hydrodynamic turbulence.The result
(2.64) provides an extremely appealing description of the saturation of theα–effect,
suggesting that the generation of field through kinetic helicity (〈u · ∇ × u〉) is nul-
lified through the manifestation of the Lorentz force through small scale current
helicity (〈j · b〉); as such it has been widely used in studies of nonlinear dynamo
action. It is however worth bearing in mind that this is a result born of a number
of approximations and assumptions, and it is therefore important to discuss the im-
plications of these. The result may be regarded, in some sense, as the nonlinear
extension of the quasi-linear result (1.108), a result thatfollows from approximating
integrals of the form

∫
∞

0

〈u(x, t) · ∇ × u(x, t − τ)〉 dτ by τc〈u · ∇ × u〉. (2.65)

However, the nature of the correlation time in MHD turbulence, including its depen-
dence onRm andB0, remains an important unanswered question (discussed further
in the following section). The fact that it is essentially a free parameter of the prob-
lem is thus a weakness of the model.

It is also important to consider how the result (2.64) fits in with the classicalα–effect
picture, as described in Section 1.5.2. The quasi-linear approximation leads, solely
from the induction equation for the fluctuating field, to the expression (1.108) forα:

α = −τc

3
〈u · ∇ × u〉. (2.66)

However, as discussed by Proctor (2003), the fact that the induction equation re-
mains linear in the magnetic field — even though in the dynamicregime the flow is
of course affected by the field — leads formally — even in the nonlinear regime —
again to the result (2.66). Any non-linearity will simply bemanifested in a change
to the kinetic helicity distribution. So what is the origin of the second term in (2.64)?
If, instead of the classical picture ofb being solely dependent onB0, we consider
the introduction of a large-scale fieldB0 into apre-existingstate of MHD turbulence



94 David HUGHES

with a small-scale velocityu and a small-scale fieldb — leading to further pertur-
bationsu′ andb′ — then, under the quasi-linear approximation, the e.m.f. may be
approximated by

E ≈ 〈u × b′〉 + 〈u′ × b〉. (2.67)

Now, using both the inductionand momentum equations for the fluctuating quan-
tities, the result (2.64) follows (Pouquetet al. 1976; Kleeorin & Ruzmaikin, 1982;
Gruzinov & Diamond 1994, 1996; Proctor, 2003). It is though vitally important to
be clear about the exact meanings ofu andb in this formula.

To obtain a further insight into theα–effect it is instructive to writeB = ∇ × A

and to consider the ideal topological invariantχ = 〈A · B〉, the magnetic helicity
(Gruzinov & Diamond, 1994, 1996). From the induction equation, the equations for
a andb, the small-scale fluctuations of the vector potential and the magnetic field,
are

∂ta = (u × B0) + (u × b) − ∇χ − η∇ × b , (2.68a)

∂tb = ∇ × (u ×B0) + ∇ × (u × b) + η∆b . (2.68b)

Forming the scalar product of (2.68a) withb = ∇ × a, (2.68b) witha, adding, and
adopting boundary conditions such that the ensuing surfaceterms vanish, yields the
following equation:

1

2

d

dt
〈a · b〉 = −B0 · E − η 〈b · ∇ × b〉 (2.69)

[see (1.111)], where the angle brackets denote a spatial average andE = 〈u × b〉.
For the case of stationary turbulence we may average over time to obtain

B0 · E = −η µ0 〈j · b〉 . (2.70)

Consequently we have theexactresult, dependent only on stationarity and suitable
boundary conditions, that, for isotropic turbulence

α = − η µ0

3 B2
0

〈j · b〉 , (2.71)

[cf. (1.112)], whereb is theentiresmall-scale magnetic field and where angle brack-
ets here are to be understood as denoting a spaceandtime average. The result (2.71)
though involves the small-scale field and current, whereas atrue mean field theory
must involve only large-scale variables. One approach to eliminating the small-scale
behaviour is to equate the two expressions for〈j · b〉 from (2.64) and (2.71) (Gruzi-
nov & Diamond, 1994), thereby leading to what is known as the formula for strong
(or even “catastrophic”) suppression,

α =
α0

1 + Rm (B2
0/µ0 ρ)/〈u2〉 . (2.72)
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It is though worth reiterating the different natures of the expressions (2.71) and
(2.64). In expression (2.71) — which isexact— b refers to the total small-scale
field, whereas in (2.64) — which is only an approximate result— it refers to a
pre-existing small-scale field.

The astrophysical consequences of (2.72), if it is correct,are highly significant in
that it implies that theα–effect ceases to be effective at an extremely low value
of the large-scale magnetic field (see Vainshtein & Cattaneo, 1992). This issue,
which remains very controversial, is now also being addressed through numerical
simulations, described in the following section. We shall therefore delay further
discussion of (2.72) to the following section.

2.7.3. DIRECT NUMERICAL SIMULATIONS

It is worth stating, from the outset, that direct numerical simulations cannot provide
a complete answer to the astrophysical dynamo problem; it issimply not possible to
solve the governing equations at the extreme parameter values (Re � 1, Rm � 1)
that pertain astrophysically. With the most powerful computational facilities now
available, it is feasible to simulate flows withRe ≈ Rm ≈ 103 and that possess
a reasonable scale separation between that of the driving flow and the largest scale
available to the magnetic field. However, given that spatialresolution increases, in
each direction, as the inverse square root of the dissipation, and also that the time
step decreases in inverse proportion to the resolution, a comparable calculation with
Re ≈ Rm ≈ 109 requires1012 times as many operations. Even with a doubling
in computer speed every few years we are clearly nowhere nearbeing able to solve
the full problem merely by what Roberts & Soward (1992) term the “brute force”
approach. Indeed, even a truly realisticsimulationof a physical process does not,
of itself, constitute a trueunderstandingof the process. That said, a computational
approach, properly used, can help us to gain an understanding of nonlinear MHD
processes, can verify — or refute — existing theories, and can help point the way to
new theoretical approaches.

The most ambitious global models of stellar dynamos remain those of Glatzmaier
(1985a,b), who investigated self-consistent (i.e. nonlinear) dynamo action driven by
thermal convection in a rotating spherical shell. Glatzmaier considered the case of
an anelastic gas, thereby filtering out short time scale sound waves whilst retain-
ing the effects of a large density stratification, followingon from earlier Boussi-
nesq models of Gilman & Miller (1981) and Gilman (1983). Glatzmaier’s models
employed subgrid-scale eddy diffusivities, but otherwisecontained essentially no
parametrisation. In particular, there was no freedom to specify α or ω; these simply
emerged, as properties of the convective motions, through aself-consistent solution
of the governing equations. Glatzmaier (1985a) consideredthe case of an every-
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where superadiabatic atmosphere; for the parameter valuesadopted he found that
the convection took the form of north-south rolls, as suggested by the Proudman–
Taylor theorem for rapidly rotating fluids, with the angularvelocity decreasing with
increasing latitude at the surface. The magnetic field was antisymmetric about the
equator (as for the Sun) but, unlike the Sun, was found to propagate towards the
poles. This is sometimes viewed as a failure of the model, in that it differs in this
respect from the observed solar field. It is though, as discussed earlier, not practica-
ble to model the Sun in terms of adopting realistic parametervalues, and it is (even
now) premature to expect self-consistent models that reproduce solar features. The
simulations of Glatzmaier represent an extremely important success, demonstrating
conclusively the feasibility of a nonlinear dynamowith minimum parametrisation
(see also the discussion in Section 4.5). Glatzmaier (1985b) did address the ques-
tion of the direction of propagation of the field, by undertaking a further calculation
with a different convective stratification, with the outer two thirds (in radius) su-
peradiabatic and the inner third subadiabatic, the premisebeing that the helicity and
differential rotation in the region of overshooting convection would be such as to
drive the dynamo waves towards the equator. The results suggested that this may be
the case, but were inconclusive, suffering from the lack of numerical resolution in
the inner half of the shell.

Since the studies by Glatzmaier — and in contrast to the path pursued in mod-
elling the geodynamo — attention has shifted away from direct numerical simula-
tions of the entire global dynamo process in a spherical geometry, either towards
local, Cartesian models of nonlinear dynamos, or towards “stripped down” simu-
lations aimed at understanding isolated specific aspects ofthe dynamo mechanism.
The former avenue has been pursued by Brandenburg and his co-workers, who have
investigated both convectively driven dynamos (Brandenburg et al. 1996) and dy-
namos driven by helical forcing (Brandenburg 2001). The latter approach has been
aimed principally at obtaining a more complete understanding of the nonlinear be-
haviour of the transport coefficientsα andβ in a turbulent flow at highRm; for
example, does formula (2.51) correctly describe the saturation of α and, if so, what
is the appropriate value forB2 at which the energy of the large-scale field becomes
significant? Cattaneo & Vainshtein (1991) considered the (guaranteed) decay of a
co-planar, large-scale field in two-dimensional turbulence, in order to calculate the
dependence of the turbulent diffusivity on the strength of the large-scale fieldB0.
With Rm = O(102), and by varyingB0, they found that the decay of the field could
be considered to be kinematic only for extremely weak fields,with B2

0
<∼〈u2〉/Rm,

and that the turbulent magnetic diffusion time for a large-scale field of characteristic
lengthL is well-represented by the formula

τT

(
= L2/β

)
=

L2

η

(
1

Rm
+

1

M 2 + 1

)
, (2.73)
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whereM is the Alfvénic Mach number, the ratio of the flow speed to theAlfvén
speed of the large-scale field. The key physical process behind the suppression of
turbulent diffusion is that the field becomes strong (i.e. ofequipartition strength) on
the scale of the flow whilst remaining weak at large scale, with 〈|B|2〉 ≈ RmB2

0 .
The strong small-scale field resists the rapid deformation necessary for turbulent
diffusion, which is thus inhibited. Alternatively, one mayconsider the problem from
a Lagrangian perspective, based on the ideas of Taylor (1921). Turbulent diffusion
is achieved by the exponential separation of fluid particle trajectories; the presence
of a strong small-scale field provides the fluid particle witha long-term “memory”
— their separation is inhibited and the diffusion reduced (Cattaneo, 1994). Clearly
any correlation time will be dependent on the magnetic field,and this needs to be
brought out in models of MHD turbulence.

The two-dimensional diffusion problem is though rather special, for a number of rea-
sons. Geometrically, there is no possibility of interchange motions, which can bring
together oppositely directed field lines without bending them — this suggests that
any suppression of diffusion for three-dimensional flows should be weaker. Further-
more, in two dimensions, field decay is guaranteed (Zeldovich’s (1957) theorem),
following from the fact that the one component of the magnetic potential satisfies
the heat equation. The question of the suppression (if any) of the turbulent magnetic
diffusivity for general, three-dimensional flows remains completely open. It is an
extremely difficult question to attack numerically, for tworeasons. One is simply a
question of computational resources, in that one needs to accommodate a magnetic
field that varies on a large scale whilst still resolving the small-scale turbulence. The
second, and more difficult, problem is conceptual, arising from the fact that turbu-
lent three-dimensional flows are almost certainly small-scale dynamos at sufficiently
highRm and, for flows lacking reflectional symmetry, may be large-scale dynamos
also. It is thus not a straightforward matter to determine how therôleof β should be
disentangled from that of field amplification.

Calculating theα–effect numerically is more clear-cut since it can be determined
unambiguously by measuring the correlation in a turbulent flow between an imposed
uniformmagnetic field and the resulting e.m.f.,〈u × b〉. Such calculations are not
dynamo simulations — since they have an imposed field with non-zero mean —
but are aimed at addressing the one particular issue of the nonlinear nature of the
α–effect. Cattaneo & Hughes (1996) and Cattaneo, Hughes & Thelen (2002) have
investigated forced helical, incompressible turbulence,in the presence of an imposed
mean fieldB0, in order to measure the dependence ofα on Rm andB0. As for the
case ofβ in two dimensions,α is quenched at very weak values ofB0, the results
being approximated by a formula of the form

α =
α0

1 + Rmγ (B2
0/µ0 ρ)/〈u2〉 , (2.74)
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for someO(1) constantγ (see Figure 2.3). The physics behind the suppression ofα
can be understood, at least in a rather general manner, in an analogous fashion to the
suppression ofβ; namely that a weak large-scale field gives rise, for largeRm, to a
very strong small-scale field which inhibitsα. It should be pointed out that this is
a more subtle issue than simply a reduction in kinetic helicity; Cattaneo & Hughes
(1996) showed that a suppression ofα by a factor of orderRm is achieved with only
a halving of the kinetic helicity. Clearly — as for diffusion— it must be tied to the
ideas of the fluid particles becoming imbued with a “memory”.However, the micro-
physics underlyingα at highRm is not at all well understood, even in the kinematic
regime. A formal analysis of the case of perfect electrical conductivity (Rm infinite)
leads to the following expression forα in terms of the Lagrangian displacementξ

(Moffatt, 1974):

α = − d

dt
〈ξ · ∇ × ξ〉, (2.75)

and one may speculate that a reduction in the separation of fluid trajectories will lead
to a reduction in the average in (2.75). There are though doubts as to the validity
of (2.75) even in the kinematic regime for large but finiteRm and certainly, at the
moment, there is no proper theory of the suppression ofα whenRm is large. The
whole issue of the nonlinear behaviour of the transport coefficients of mean field
theory is discussed at much greater length in the recent review by Diamond, Hughes
& Kim (2004).

As mentioned above, the result (2.74), assuming that it carries through to the as-
trophysicalRm regime, poses a severe problem for the generation of large-scale
fields, in that it implies that theα–effect ceases to be effective once the energy of
the large-scale field becomes comparable to the equipartition energy divided byRm.
As such, the result has been criticised, although in a somewhat time-dependent and
self-contradictory fashion. Field, Blackman & Chou (1999)claimed that the strong
suppression result (2.74) was incorrect, despite its excellent agreement with numer-
ical experiments, but gave no indication as to where they thought the error lay. In
a later work, Blackman & Field (2000) underwent an abrupt change of direction,
arguing instead that the result was, after all, correct, butwas inapplicable to astro-
physical situations, their argument being that the dynamics would be dominated by
the flux of magnetic helicity through the boundaries, a quantity that is of course
zero in periodic domains, such as used by Cattaneo & Hughes (1996). It is indeed
true that a formal derivation of theα–effect, via manipulation of equations (2.68a)
and (2.68b), leads to the presence of surface terms in the expression forα (i.e. extra
surface terms in equations (2.69) and (2.70)) — terms which vanish not only for
periodic boundary conditions but also for a number of choices of reasonable bound-
ary conditions. What is totally unclear though is the importance of such terms in an
astrophysical context. The issue ofα-suppression therefore remains a controversial
and important topic.
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Figure 2.3 - The results of numerical simulations (diamonds) determining α in a
forced, helical, chaotic flow, and their relation to two competing theoretical results
(from Cattaneo & Hughes, 1996).

The aim of this section has been to give an introduction to what, broadly speaking,
are the three possible approaches to understanding the behaviour of nonlinear large-
scale dynamo action. (The issue of the nonlinear evolution of small-scale dynamos,
in which the field exists on scales comparable with or smallerthan that of the driving
velocity, is also a fascinating and relevant topic, though beyond the scope of this re-
view.) Each has its strengths and weaknesses. Parametrisations of mean field theory,
of the sort discussed in Section 2.7.1, are computationallytractable and thus allow an
in-depth study of the dependence of a particular model on thegoverning parameters.
Signatures of stellar magnetic fields — such as the solar butterfly diagram — can
be faithfully reproduced through parametrised mean field models. The drawback of
such models comes though from the somewhat arbitrary choiceof parametrisation
and the difficulties in assigning particular behaviour to specific physical causes. As
such, one must be very careful in asserting that astrophysical magnetic fields can
really beunderstoodon the basis of such models, and even more careful before
making predictions about future magnetic behaviour. Theories of MHD turbulence
(such as the EDQNM model discussed above) have their roots more firmly attached
to the Navier-Stokes equation, but still rely on a number of assumptions in order
to obtain a tractable set of governing equations. It is in formulating these assump-
tions that all the difficulties arise. Numerical approaches, on the other hand, are
able to solve the full nonlinear governing equations, without approximation, but —
even with the most powerful computational facilities currently available — only in



100 Raymond HIDE & Irene MOROZ

parameter regimes still far removed from those that describe most astrophysical phe-
nomena. Given all these drawbacks, what is the best hope for progress? Probably
the most promising avenue is to improve our understanding ofspecific, rather nar-
rowly defined questions — such as, for example, the dependence onRm andB0 of
α andβ — via bespoke computational models, and then to incorporatethese find-
ings into improved turbulence theories. Today’s massivelyparallel computers are
able to model turbulent flows at moderate (from an astrophysical view) values of the
Reynolds numbers; from such models we must seek scalings andother information
to lead us into the true astrophysical regime. It is a fascinating though formidable
challenge.

2.8. PHYSICALLY -REALISTIC FARADAY -DISK

SELF-EXCITED DYNAMOS

In this final section we will highlight how nonlinearities can yield a chaotic dynami-
cal behavior of dynamo action by returning to the matter of disk dynamos introduced
in Section 1.2.1.

Self-excited dynamos are nonlinear electro-mechanical engineering devices or naturally-
occurring magnetohydrodynamic (MHD) fluid systems such as the “geodynamo”
operating within the Earth’s liquid metallic outer core (see Chapter 4), that through
the action of motional induction convert mechanical energyinto magnetic energy
without the involvement of permanent magnets. Owing to the intractablity of the
governing nonlinearpartial differential equations (PDEs) in four independent vari-
ables (space and time) in the investigation of generic nonlinear processes in such
dynamos it is not yet possible to exploit numerical models ofMHD systems now
being developed by various groups. As a research strategy these processes are better
studied in the first instance by analysing the more tractablenonlinearordinary dif-
ferential equations (ODEs) in just one independent variable (time) that govern the
behaviour of simpler systems, such as electro-mechanical devices based, for exam-
ple, on a steadily forced Faraday disk dynamo.

In this section we summarise the main findings of recent mathematical investiga-
tions of the simplest imaginable Faraday disk dynamo systems that are both phys-
ically realistic and provide a basis for investigating generic nonlinear effects MHD
dynamos.

Unlike most systems discussed in the extensive literature on disk dynamos, the gov-
erning equations take into account the re-distribution of kinetic energy within the
system by Lorentz forces, and the equations are “structurally stable” because they
include, in addition to terms representing dissipation dueto ohmic heating equally-
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crucial terms representing mechanical friction. Over wideranges of conditions these
forces give rise to “nonlinear quenching” of dynamo fluctuations, a process which
has already been invoked by one of us (RH) as the basis for explaining possibly
the most striking feature of the long-term behaviour of the main geomagnetic field,
namely “superchron” intervals as long as30 Ma when the polarity reversals disap-
pear from the palaeomagnetic record (see Chapter 4).

2.8.1. HISTORICAL SURVEY

In the 1860’s, three decades after Faraday’s invention of a dynamo incorporating a
stationary permanent magnet, Varley, Wheatstone and von Siemens independently
conceived and applied the self-excitation principle, replacing the permanent mag-
net of the Faraday dynamo with a stationary coil through which the dynamo cur-
rent could be diverted. Mathematical models of self-excited homopolar dynamos,
which came much later, have been analysed (mainly) by theoretical geophysicists
and astrophysicists interested in low-dimensional analogues of MHD self-excited
dynamos.

These mathematical investigations began in the 1950’s withthe pioneering work
of Bullard and Rikitake. Bullard treated the simplest-imaginable case of all (as
introduced in Section 1.2.1), when (see below for full explanations of the various
parameters):

(a) there is no motor in the system [corresponding toH = 0, so that theω together
with (2.77d) are therefore redundant];

(b) the disk resistancêR is infinite (so that̂I and equation (2.77b) are redundant);

(c) mechanical friction retarding the motion of the disk is negligible [so that
K = 0 in (2.77c)].

By coupling two Bullard–type systems together, Rikitake introduced the much-
studied two-disk dynamo system governed by an autonomous set of three nonlinear
ODEs, the minimum number for chaotic solutions to be possible.

The neglect of mechanical friction seemed at the time to be a reasonable assumption
to make, but it is now known that the assumption has the unfortunate consequence of
rendering the equations governing the original Bullard andRikitake systems struc-
turally unstable and their solutions, except as transients, physically unrealistic (see
Hide, 1995, and Morozet al., 1998a).

In the original Bullard (1955) dynamǒα is the only non-zero control parameter, for
there is no series motor, the disk conductance is zero and thesliding contacts at the
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rim and axle of the disk are assumed to be frictionless. Persistent solutions are found
with characteristics that depend onα̌ and the initial conditions. They represent peri-
odic (but non-harmonic) relaxation oscillations in which the dimensionless electric
current generated in the system,x, never changes sign.

The long-held view (see Rikitake, 1966) that the addition ofmechanical friction
[in our notation (2.81b),̌κ 6= 0] would make no qualitatitive difference to this be-
haviour is untenable. Hide (1995) has shown that the mathematical equations gov-
erning the Bullard single-disk system, as well as all other friction-free multiple-disk
dynamo systems based upon it [including the influential Rikitake (1958) double-
disk system], are “structurally unstable”. In the presenceof mechanical friction the
Bullard system eventually becomes steady after initial transients have died away (see
also Morozet al., 1998). When friction is weak these transients certainly resemble
‘friction-free’ fluctuations, notably periodic Bullard-type non-reversing fluctuations
in the single-disk case and Rikitake-type chaotic fluctuations with reversals, but they
die away. It is noteworthy however that persistent chaotic fluctuations with reversals
can occur in a Rikitake system consisting of two coupled identical Bullard dynamos
when mechanical friction is added, provided that the two coefficients of mechanical
friction are not the same (Ershovet al., 1989; see also Hide, 1997a, and Morozet
al., 1998).

Noting that dynamo action is impossible in the limiting casewhen the electrical re-
sistance of the disk vanishes (for the magnetic flux linkage of a perfect conductor
cannot change) Moffatt (1979) extended the Bullard (friction-free) model by consid-
ering the case of non-zero disk conductance, thereby allowing eddy currents to flow.
This is the case when, in addition tǒα, the control parametersξ, χ andν̌ required to
specify the electrical properties of the disk are also non-zero.

When mechanical friction in the disk is also taken into account, so thatλ̌ 6= 0,
we have the case analysed in detail by Knobloch (1981) and later by Plunianet al.
(1998), who also treated a double-disk system, thereby extending the Ershov study
to cases of non-zero disk conductance.

In the Knobloch (1981) case, the governing equations are transformable into the
celebrated Lorenz set, which can of course have chaotic solutions. We note here that
Malkus (1972; see also Robbins, 1976) realised that by adding an electrical shunt
to the Bullard system and taking mechanical friction into account he could obtain
governing equations of the Lorenz type.

Hide et al. (1996) extended the Bullard system by placing a capacitor inseries with
the coil and including mechanical friction in the disk and then demonstrated the
mathematical equivalence of this system to one obtained by replacing the capacitor
with a linear motor, with (unavoidable) mechanical friction in the motor equivalent
to (unavoidable) leakage resistance in the capacitor.
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2.8.2. CHARACTERISTICS OF SELF -EXCITED DYNAMOS

The salient characteristics of all self-excited dynamos can be summarised as follows
(Hide, 2000):

(a) the mechanical-to-magnetic energy conversion processis due to motional in-
duction (represented in the equations governing MHD dynamos by the nonlin-
ear motional induction termu×B, whereu denotes the Eulerian flow velocity
at a general point andB the magnetic field), and it starts with the amplification
of any infinitesimally weak adventitious magnetic field;

(b) for the amplification process to work, motional induction must overcome ohmic
losses, implying that the electrical resistance of the system must be sufficiently
low (in MHD dynamos this means a sufficiently high magnetic Reynolds
number-defined as the product of a characteristic flow speed,a characteristic
length, the magnetic permeability of the fluid, and its electrical conductivity);

(c) for the magnetic field to diffuse into the surrounding medium, the electrical
resistance must not betoo low and this sets anupper limit on the magnetic
Reynolds number in MHD dynamos;

(d) ponderomotive (Lorentz) forces (as represented by the nonlinear termj × B

in MHD dynamos, wherej is the electric current density) re-distribute kinetic
energy within the system (thereby retarding the buoyancy-driven eddies in
typical MHD dynamos such as the geodynamo and accelerating motions in
other parts of the eddy spectrum);

(e) no matter how weak, mechanical friction viscosity in MHDdynamos, which
inter alia dissipates kinetic energy, is never negligible;

(f) internal coupling and feedback (as represented by the termsu×B andj×B in
MHD dynamos) give rise to behaviour characteristic of nonlinear systems, i.e.
sensitivity to initial conditions leading to non-uniqueness (sometimes called
“multiple solutions”), large amplitude fluctuations (including “deterministic
chaos”), hysteresis, nonlinear stability, etc.

A strategy advocated in Hide (2000) for discovering genericprocesses in self-excited
dynamos is to start by investigating the temporal behaviourof simple (but not over-
simplified) systems, such as Faraday disk homopolar generators, governed by tractable
ordinary differential equations (ODE’s) in the single independent variable time,T
(say), and then, in the light of the results thus obtained, formulating and executing
suitable diagnostic tests of less tractable MHD systems governed by nonlinearpar-
tial differential equations (PDE’s), in four independent space-time variables. Apart
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from the undoubted mathematical interest of the solutions of the governing ODE’s,
the findings of those investigations that treat physically-realistic systems –and we
must emphasise here this requirement excludes all the friction-free systems that have
been treated in the literature (Hide, 1995) including the much-discussed pioneering
studies of Bullard (1955) and Rikitake (1958),cf. characteristic (e) above– provide
general insights into the likely behaviour of the more complex MHD systems, such
as the geodynamo operating within the Earth’s liquid metallic outer core.

In hydrodynamics the governing mathematical equations express the laws of me-
chanics and thermodynamics, to which the laws of electrodynamics must be added
in the case of MHD. The equations owe their nonlinearity largely to advective terms
such as(u · ∇)u, (u · ∇)B, (B · ∇)u, (B · ∇)B, etc., which can in some circum-
stances promote order and stability, as in the case of solitons and in others disorder,
instability and sensitivity to initial conditions.

In mathematical analyses, such sensitivity can give rise tomultiple solutions asso-
ciated with “unfoldings” in phase space near co-dimension-two bifurcations, so that
steady solutions are able to co-exist at the same point in “control parameter” space
with oscillatory and chaotic solutions. In laboratory (andnumerical) work sensi-
tivity to initial conditions is manifested as non-uniqueness, chaos, and hysteresis
at regime transitions found, for example, in experiments onsloping convection (see
e.g. Hideet al., 1994) and Taylor-Couette flow (see e.g. Fenstermacheret al., 1979).

2.8.3. GOVERNING EQUATIONS IN DIMENSIONAL FORM

A Faraday disk homopolar dynamo system which satisfies all the criteria listed
above comprises a single disk and coil arrangement with a crucial additional ele-
ment in the circuit, namely an electric motor with torque characteristics that are not
necessarily linear connected in series with the coil (Hide,1997a,1997b), see Fig-
ure 2.4. The motor enables Lorentz forces to re-distribute kinetic energy within the
system, where feedback and coupling also contribute to its nonlinear characteristics.

The disk is driven into rotation with angular speedΩ(T ) by a steady applied cou-
ple G, where for the rest of this chapterT denotes dimensional time. Retarding
the motion of the disk is a frictional couple−K(T ) as well as a Lorentz couple
−I(MI + L̂Î). HereI = I(T ) is the main electric current generated by the dynamo
and Î(T ) is the eddy current circulating azimuthally in the plane of the disk (here-
after just “eddy current”), that is induced whendI/dT 6= 0. The factor(MI + L̂Î)
thus represents the magnetic flux linkage of the disk if2πM is the mutual induc-
tance between the disk and coil and2πL̂ is the self inductance of the disk. In the
absence of Lorentz forces, friction alone retards the motion of the disk, and when
G is steady –the case of interest here– the disk rotates with steady angular speed
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Figure 2.4 - Single-disk dynamo with nonlinear series motor (cf. Hide, 1997a,b).

Ω = G/K.

The armature of the motor is driven into rotation with angular speedω relative to the
stationary ambient magnetic field within the motor by a Lorentz coupleHIf(I), in
general a quadratic function ofI, produced by the dynamo current, and it is retarded
by a linear frictional couple−Dω. HereH is such thatHf(I)ω is the back e.m.f.
due to the presence of the motor in the dynamo circuit [see equation (2.77a) below],
where

f(I) = (1 − ε) + εSI, (2.76)

and0 ≤ ε ≤ 1 . f(I) specifies the stationary ambient magnetic field within the motor
and depends on the design of the motor. The parameterε measures the nonlinearity
of the motor’s electro-mechanical characteristics, whichvanishes only in the special
case whenε = 0. The contribution to the stationary field∝ εSI is produced by
diverting the dynamo current through stationary field windings (S being a measure
of the mutual inductance between the armature and the field windings). This is
complemented by the contribution proportional to(1 − ε) provided by an “outside
source”.

From a geophysical and astrophysical point of view it is important here to note that
this outside source need not necessarily be a permanent magnet, for the magnetic
field produced by the current in the coil of a second dynamo would do just as well
(see Hide, 2000).

It will be convenient in this section to use the term “linear motor” whenε = 0 and
“nonlinear motor” when0 < ε ≤ 1 (unless otherwise stated), and also to distinguish
two sub-classes of nonlinear motor, namely “quadratic motor” when 0 < ε < 1 and
“square motor” whenε = 1.

The governing 4–mode dimensional set of nonlinear ODE’s in the (I, Ω, ω, Î) is
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given by (see Hide, 1998)

L
dI

dT
+ M

dÎ

dT
+ RI + Hf(I)ω = Ω(MI + L̂Î) , (2.77a)

L
dÎ

dT
+ M

dI

dT
+ R̂Î = 0 , (2.77b)

A
dΩ

dT
= G − I(MI + L̂Î) − KΩ , (2.77c)

B
dω

dT
= HIf(I) − Dω , (2.77d)

where2πL is the self-inductance of the coil,R is the total resistance of the dynamo
circuit (including the coil and the armature of the motor),A is the moment of inertia
of the disk andB that of the armature of the motor.

Equations (2.77a,b) respectively express Kirchhoff’s laws applied to the dynamo
current,I, flowing in the main circuit and to the eddy current,Î, in the disk,R̂ be-
ing the azimuthal resistance of the disk (hereafter “disk resistance”, the reciprocal
of “disk conductance”). Equations (2.77c,d) express angular momentum considera-
tions applied to the motion of the disk and to the motion of thearmature of the motor
respectively.

The equations can be studied by standard methods involving stability and bifurcation
analysis and direct numerical integration. We note here in passing that if(I, Ω, ω, Î)

is a solution to (2.77b) then so is(−I, Ω,−ω,−Î) whenε = 0 and(−I, Ω, ω,−Î)
whenε = 1. However exact reversal is not a property of any of the solutions when
0 < ε < 1. This does not imply that cases whenε 6= 1 can have no geophysical
or astrophysical significance. On the contrary, for the “external” contribution to the
stationary ambient magnetic field within the motor could be due solely to the current
in the coil of a second self-excited dynamo. It is readily shown that the combined
system has the requisite symmetry properties.

2.8.4. ENERGETICS AND EQUILIBRIUM SOLUTIONS .

Before introducing dimensionless variables and control parameters (see Section 2.8.5)
and thereby abandoning a physically clear but mathematically cumbersome notation,
it is instructive to discuss both the energetics of the system and equilibrium solutions
on the basis of the dimensional equations (2.76) & (2.77). From these equations it
is readily shown that the time rates-of-change of the total magnetic energy and the
total mechanical energy of the system satisfy

d

dT

[
1
2

(
LI2 + 2MIÎ + L̂Î2

)]
= −RI2−R̂Î2+

{
ΩI
(
MI + L̂Î

)
− ωHIf(I)

}
,

(2.78a)
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d

dT

[
1
2

(
AΩ2 + Bω2

)]
= GΩ − KΩ2 − Dω2 −

{
ΩI
(
MI + L̂Î

)
− ωHIf(I)

}
.

(2.78b)
These equations have an obvious physical interpretation interms of rates of working
of mechanical and Lorentz forces and rates of dissipation byohmic resistance to the
flow of currents and by mechanical friction in the disk and motor. The nonlinear
feedback and coupling terms in curly brackets represent there-distribution of kinetic
energy within the system brought about by Lorentz forces, and they cancel out when
the equations are added together to give the equation for therate of change of the
total energy of the whole system.

Because we are considering the (important) special case when the applied couple,
G, driving the system is steady, there are steady equilibriumsolutions —albeit not
always stable, as we shall see below in Section 2.8.6— for which the energy equa-
tions are given by equations (2.78) with their left hand sides equal to zero. The
governing equations (2.76) & (2.77) are then autonomous andhave steady equilib-
rium solutions satisfying

I

[(
MG

K
− R

)
−
(

M 2I2

K
+

H2f(I)2

D

)]
= 0 , (2.79a)

Ω =
G − MI

K
, ω = HIf(I), Î = 0 . (2.79b,c,d)

These equations always possess one “trivial” equilibrium solution

(I, Ω, ω, Î) = (0, G/K, 0, 0), (2.80)

and this is the only possible equilibrium solution when the dimensionless quantity
GM/KR [see (2.82a) below] –which is analogous to the magnetic Reynolds number
in MHD dynamos– is so small that the term in square brackets in(2.79a) is negative
for all real values ofI. Otherwise, whenGM/KR is sufficiently large, there are
two further equilibrium solutions withI 6= 0, obtained by substituting (2.79b) and
(2.79c) into (2.79a). [cf. equations (2.84e) below].

2.8.5. DIMENSIONLESS EQUATIONS

The electro-mechanical characteristics of the system can be specified in terms of a
set of dimensionless control parameters. Various combinations are possible, depend-
ing on the choice of scaling of the dependent and independentvariables. Following
Hide (1997a,1997b) (see also Hide & Moroz, 1999, and Hide, 2000) we take

α̌ =
GLM

AR2
, κ̌ =

KL

AR
, ξ =

M

L
, (2.81a,b,c)
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χ =
RL̂

R̂L
, ν̌ =

L̂

M
, (2.81d,e)

to specify the characteristics of the disk, and

β̌ =
H2L

R2B
, λ̌ =

DL

RB
, σ̌ = S(G/M)1/2 (2.81f,g,h)

to specify the characteristics of the series motor. Parameters (2.81a-h) as others in
this section are noted with ǎ. These variables will be used in the remaining of this
chapter to describe the characteristics of the disk-motor setup. They should not be
confused with MHD variables(α, β, κ, λ, µ, ν, ρ, σ) used elsewhere in the book.

It is convenient to make use of certain combinations of thesebasic control parame-
ters, namely

α =
α̌

κ̌
=

GM

KR
, β =

β̌

λ̌
=

H2

RD
, (2.82a,b)

µ̌ =
(ξ/ν̌)

(1 − ξ/ν̌)
=

M 2

LL̂ − M 2
. (2.82c)

These control parameters are all essentially non-negative(including µ̌, sinceLL̂ >
M 2) in systems of direct physical interest, but there may, of course, be mathematical
interest in solutions of the governing equations in cases when some of the parameters
are negative.

We introduce the dimensionless independent variablet and the dimensionless de-
pendent variables(x(t), y(t), z(t), w(t)) where

T = (L/R)t, I = (G/M)1/2x , Ω = (R/M)y , (2.83a,b,c)

ω = (LH/RB)(G/M)1/2z , Î = (G/M)1/2w. (2.83d,e)

Then using equations (2.81)–(2.83) in equations (2.76) and(2.77) gives4

ẋ + ξẇ = −x − β̌ f(x) z + y(x + ν̌ w) , (2.84a)

ẇ + ẋ/ν̌ = −w/χ , (2.84b)

ẏ = α̌(1 − x (x + ν̌ w)) − κ̌ y , (2.84c)

ż = xf(x) − λ̌ z , (2.84d)

where f(x) = 1 − ε + ε σ̌ x . (2.84e)

This formulation is identical to that given in Hide & Moroz (1999) and Moroz &
Hide (2000), with a slight redefinition of the control parameters.

4 We use a dot to denote differentiation with respect tot.
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The nontrivial equilibrium states are now given by

(y, z, w) = (α (1−x2), x f(x)/λ̌, 0) , α−1−(α x2+β f(x)2) = 0 , (2.85a,b)

while the trivial equilibrium state becomes(x, y, z, w) = (0, α, 0, 0).

Equations (2.84a-e) can be transformed into other sets of equations, some mathe-
matically more convenient (see Hide & Moroz, 1999 and Moroz &Hide, 2000).
One such reformulation not considered previously is obtainable by introducingX =
x + ν̌ w, thereby eliminating the parameterν̌. If, in addition, one introduces the
variableY = x + χ w, then one recovers the 4–mode dynamo model investigated
by Hide & Moroz (1999) and Moroz & Hide (2000). The two new variablesX and
Y are identifiable as flux variables. The reader is referred to those papers for further
details. All of the numerical integrations described in thelater subsections of this
section are based upon this alternative Moroz & Hide reformulation.

2.8.6. GENERIC SOLUTIONS

Nonlinearity means that the solutions in which we are mainlyinterested, namely
those that persist after transients have died away, can be very sensitive to the initial
conditions and/or parameter choices. A comprehensive investigation of the 4–mode
dynamo equations is not feasible because of the large numbers of parameters in-
volved. While the control parameters in any given case represent one point in an
eight-dimensional parameter space, for many purposes a two-dimensional regime
diagram withβ as abscissa andα as the ordinate was established at an early stage of
the investigations reviewed here.

Figure 2.6 shows but one possibility amongst a wide variety of different regime
diagrams that have been obtained in studies of the transformed version of equations
(2.84a-e) (see Hide & Moroz, 1999, and Moroz & Hide, 2000).

The trivial equilibrium state(x, y, z, w) = (0, α, 0, 0) is the only stable equilibrium
state within those regionŝN (say) of parameter space for whichα < α∗, whereα∗

is determined from whichever bifurcation curve forms that segment of the stability
boundary (see, for example, Figure 1 of Hide & Moroz, 1999, orFigure 7 of Moroz
& Hide, 2000). Persistent dynamo action cannot occur withinN. It is throughout the
rest of parameter space, in regionsY , say, whereα > α∗ that the trivial solution is
unstable, that persistent dynamo action takes place.

Within theseY regions there are two general possibilities, namelysteadydynamo
action andfluctuatingdynamo action.

The first occurs within regions labelled asŜ andŝ in Figure 2.6, or in the explicitly
labelled ’STEADY’ regions in Figures 1-3 of Hide & Moroz (1999) and in Figures 5-
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 F̂

 Ŝ

 N̂

ŝ

ŝ

 f̂

 f̂

steady dynamo action

no dynamo action

fluctuating dynamo action

−α

−
β

Figure 2.6- Typical schematic regime diagram in the(β, α)) plane (figure 1 of Hide
(2000), reproduced by kind permission of the Royal Society). Within the region
labelledN̂ , the parameterα (the effective “magnetic Reynolds number”) is too small
for dynamo action to occur. At higher values ofα, steady dynamo action occurs
within the main region̂S and sub-regionŝs; fluctuating dynamo action occurs within
the main regionF̂ and the sub-regionŝf . The sub-regions disappear when the
electrical properties of the disk are such that the azimuthal component of the current
in the disk is negligible.

7 and Figure 9 of Moroz & Hide (2000). The initial conditions determine which of
the two nontrivial equilibria obtain.

Fluctuating dynamo action occurs throughout the rest ofY , within regions labelled
F̂ andf̂ in Figure 2.6 (or in the more explicitly labelled regime diagrams of Hide &
Moroz, 1999, and Moroz & Hide, 2000), where the non-trivial equilibrium solutions
lose their stability to large amplitude fluctuations of varying degrees of complexity,
including multiple solutions and chaos (see below).

Self-excited dynamos, be they disk or MHD dynamos, satisfy essentially nonlinear
equations, with generic solutions that are multiple and much more varied and inter-
esting than just reflectionally- symmetric pairs [in MHD cases(u,B) and(u,−B)],
corresponding to an unaltered velocity field and a completely reversed magnetic
field. We note here in passing (see below) that when0 < ε < 1, bias is auto-
matically introduced into the fluctuating time series, regardless of its length. When
ε = 0 or ε = 1, the symmetry properties of the governing equations suggest that one
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can define the length of timẽT taken for any bias in the time series to vanish.T̃ is
clearly infinite in the case of stable steady persistent solutions. On the other hand,
for fluctuating persistent solutions̃T can of course be finite. Time series exhibiting
these asymmetry/symmetry characteristics are presented in a later subsection.

2.8.7. SURVEY OF BEHAVIOUR

VARIATIONS ON A THEME

Hide et al. (1996) extended the Bullard system by placing a capacitor inseries with
the coil and including mechanical friction in the disk and then demonstrated the
mathematical equivalence of this system to one obtained by replacing the capacitor
with a linear motor, with (unavoidable) mechanical friction in the motor equivalent
to (unavoidable) leakage resistance in the capacitor. In this case the only non-zero
parameters arěα, β̌, κ̌ andλ̌.

We find it useful to employ the notation used in Section 2.8.5 above to summarise the
results of extensions to the Hideet al. (1996) dynamo, including the one described
by (2.84a-e).

(a) a linear motor (ε = 0) and no disk eddy currents (χ = 0);
Case (a) is the original Hideet al.(1996) study in which the nonlinear dynam-
ics was found to be controlled by the presence of a codimension-two Takens-
Bogdanov double-zero bifurcation. The linear stability curves for steady and
oscillatory dynamo action for both the trivial and the non-trivial states all
emerge from one bifurcation point in(β, α)–space. Steady and fluctuating
(periodic and chaotic) solutions are possible, with chaotic dynamics being
confined to a small region of parameter space, near the (subcritical) Hopf
stability boundary for the onset of oscillatory solutions associated with the
nontrivial equilibria, provideďλ > κ̌. Whenκ̌ > λ̌, no chaotic solutions were
observed.

(b) a square motor (ε = 1) and no disk eddy currents (χ = 0);
Hide (1997b) considered the case of a square series motor so thatε = 1 and
found parameter space to be dominated by steady dynamo action. He termed
this phenomenon ’nonlinear quenching’.
According to Hide (2000), nonlinear quenching is associated with the re-
distribution of kinetic energy within the system by Lorentzforces (see item
(d) of Section 2.8.2 above), and if, as seems likely, the process is generic and
therefore occurs in MHD dynamos, it could provide the basis of testable the-
ory of geomagnetic polarity reversals, the most striking property of which is
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theabsenceof reversals during very long intervals of time, the so-called “po-
larity superchrons”.
Mathematically, nonlinear quenching arises because, as noted by Moroz (2002),
the Takens-Bogdanov double-zero bifurcation, responsible for the oscillatory
solutions in the Hideet al. (1996) dynamo, now occurs at infinity.

(c) a linear motor (ε = 0) with azimuthal eddy currents (χ 6= 0);
The extent to which this picture is changed when eddy currents are allowed to
flow in the disk has been considered by treating systems for which the control
parametersχ, ξ andν̌ are no longer zero (Hide & Moroz, 1999). For a linear
motor, the dynamics of the system is much richer than in the absence of eddy
currents

ρ̌ =
ν̌

χ(ν̌ − ξ)
, µ̌ =

ξ

ν̌ − ξ
, (2.86a,b)

then four scenarios are possible:

(i) when ρ̌ < λ̌(1 + µ̌), only steady solutions are possible and nonlinear
quenching occurs;

(ii) when λ̌(1 + µ̌) < ρ̌ < ρ̌L (whereρ̌L denotes the critical value of̌ρ for
the existence of the Lorenz subcritical Hopf bifurcation for β̌ = 0), the
scenario resembles that of Hideet al. (1996);

(iii) when ρ̌ > ρ̌L, parameter space is dominated by fluctuating solutions, ei-
ther periodic or chaotic, wth steady states occupying only asmall region;

(iv) when λ̌(1 + µ̌) > ρ̌ > ρ̌L, no double-zero bifurcation is possible and
partial nonlinear quenching occurs. Oscillatory solutions are confined to
small values of̌β and large values of̌α and emanate from the subcritical
Lorenz bifurcation point on thěβ = 0 axis.

(d) a square motor (ε = 1) with azimuthal eddy currents (χ 6= 0);
In the cases when the motor is square (i.e. e=1) and eddy currents are allowed
to flow in the disk, nonlinear quenching is still a key process, but it is again
partial rather than complete in the sense defined in (c) above(Hide & Moroz,
1999).

(e) a quadratic motor (0 < ε < 1) with no azimuthal eddy currents (χ = 0);
Moroz (2002) extended the analyses of Hideet al. (1996) and Hide (1997a,b)
to the case of a nonlinear series motor with0 < ε < 1 in the absence of eddy
currents. The double-zero bifurcations for the trivial andthe nontrivial equi-
libria no longer coincide. There are multiple steady state bifurcation curves, as
well as an additional Hopf bifurcation curve, which result in additional (non-
degenerate) codimension-two Hopf-steady bifurcations. This yields a much
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richer range of behaviour. The continuous range of chaotic solutions, a fea-
ture of case (a), now fragments and gives rise to a structure of interleaving
chaotic and periodic behaviour of differing oscillatory patterns.

(f) a quadratic motor (0 < ε < 1) with azimuthal eddy currents (χ 6= 0);
When 0 < ε < 1 and in the presence of eddy currents, the two double-
zero bifurcations again become non-coincident and multiple steady and Hopf
bifurcation curves generate a greater diversity of nonlinear behaviour than
that found in case (e). Depending upon the parameter values,Moroz & Hide
(2000) also found chaos occurring not far above the transitional curve for the
onset of nontrivial dynamo action. Multiple solutions are possible and the
nonlinear and linear stability thresholds are subject to hysteresis effects (see
also the following subsection).

OTHER EXTENSIONS

Since the seminal work of Hideet al. (1996), other extensions to the basic dynamo
systems have been investigated. Morozet al. (1998a,b) investigated the behaviour
of two coupled dynamo units with linear motors and in the absence of eddy currents.
The first study confirmed the work of Hide (1995) on the structural instability of the
Rikitake dynamo in the presence of even a small amount of friction, while the second
study focused upon establishing general criteria for the existence of phase locked
states. Moroz (2001) extended this study of synchronisation to a three dynamo
configuration. The general problem of two coupled dynamos with nonlinear series
motors was addressed in Moroz (2002), who also reviewed the research to date on
the Hide family of dynamos to which the interested reader is also referred.

A start was made by Goldbrumet al. (2000) to analyse dynamo models, biased by
immersion in a background magnetic field and/or by connecting a battery in series
with the motor and coil (cf. the so-called “Biermann” battery of astrophysics), as
given in Hide (1997a). The initial study was for the battery only, while Moroz
(2001) investigated both the battery and magnetic field.

Finally, Moroz (2003, 2004) returned to the original Malkus–Robbins dynamo, ex-
tended to incorporate both a linear and a quadratic series motor, but in the absence
of azimuthal eddy currents, to find different types of regimediagrams and different
transition sequences between nonlinear states.

2.8.8. SOME NUMERICAL INTEGRATIONS

In addition to the regime diagrams and behaviours describedin Hide & Moroz
(1999) and Moroz & Hide (2000), we present a selection of phase portraits, time
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Figure 2.7 - Time series ofX for ε = 0 andβ̌ = 5. The other parameters are given
in the text.

series and bifurcation diagrams, which represent slices ofparameter space for spe-
cific choices of the various parameters of the four-mode dynamo of Section 2.8.5
when re-written in the flux-formulation of Hide & Moroz (1999). In all of our inte-
grations we chosěα = 100, κ̌ = 1, λ̌ = 1.2, µ̌ = 0.5 andρ̌ = 16, whereµ̌ and ρ̌
are defined in equation (2.86a,b). In so doing we shall demonstrate the existence of
multiple solutions, as well as bias in the time series when0 < ε < 1.

ε = 0 AND ε = 1

The two cases reported in this subsection should be viewed inconjunction with
Figures 1 & 2 of Hide & Moroz (1999).

Whenε = 0, we have found that chaotic solutions persist for the range of β̌ that
we investigated, namely0 ≤ β̌ ≤ 25. Figure 2.7 shows the time series ofX and
Figure 2.8 shows that corresponding phase portrait in the(X, w)–plane forβ̌ = 5.

Whenε = 1 and as described above, chaotic solutions are confined to much smaller
regions of parameter space. Figure 2.9 shows a section of theX(t) time series and
Figure 2.10 the phase portrait in(X, w)-space, forβ̌ = 0.4 which is close to the
transition from chaotic to steady dynamo action, whenβ̌ is increased.
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Figure 2.8 - The phase portrait in the(X, w)–plane for the same parameter values
as in Figure 2.7.
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Figure 2.9 - Times series ofX for ε = 1 andβ̌ = 0.4.
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Figure 2.10- The phase portrait in the(X, w)–plane for the same parameter values
as in Figure 2.9.

0 < ε < 1

We now amplify the results depicted in Figure 8 of Moroz & Hide(2000). Fig-
ure 2.11 shows the plot of local maximum values ofX as a function of̌β for ε = 0.4
as β̌ is increased, while Figure 2.12 shows the corresponding plot when β̌ is de-
creased. The procedure is as follows. The initial value ofβ̌ is chosen and the
maximum values ofX are recorded after transients have decayed. Thenβ̌ is in-
creased/decreased and the final state is used as the initial condition for the next in-
tegration. This results in a bifurcation diagram, as a slicein parameter space, which
affords a direct and simple way of identifying where different types of oscillatory
behaviour may be found. Note the presence of windows of periodic solutions, sep-
arated by bands of chaotic solutions before the solution loses stability to a simple
periodic solution wheňβ ≈ 10.3.

Figure 2.13 shows part of a time series forX when β̌ = 6 andε = 0.4 (cf. Fig-
ure 2.11(a)), while Figure 2.14 shows the corresponding phase portrait in the(X, w)–
plane. Immediately apparent is the bias, introduced whenε differs from0 or 1. The
system spends more time oscillating (irregularly) around one of the (unstable) equi-
librium states than it does around the other. A reversal in the time series occurs after
a gradual build up in the maximum and minimum amplitudes.
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Figure 2.11- Plot of the local maximum value ofX whenε = 0.4, as a function of
β, for β̌ increasing.
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Figure 2.12- As in Figure 2.11, but fořβ decreasing.



2.8 – PHYSICALLY-REALISTIC FARADAY-DISK SELF-EXCITED DYNAMOS 119

3

2

1

0

_
1

_
2

_
3
200 210 220 230 240 250 260 270 280 290 300

t

X

Figure 2.13- A section of the time series forX whenε = 0.4 andβ̌ = 6.
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Figure 2.14- The phase portrait in the(X, w)–plane for the same parameter values
as in Figure 2.13.



Whenε = 0.535 [cf. Figure 2.11(c)], chaotic solutions persist untilβ̌ ≈ 4, when
the system loses stability to a simple periodic limit cycle.This also persists until
β̌ ≈ 5.2, when steady dynamo action obtains. Figure 2.11(c) of Moroz& Hide
(2000) suggests that the disappearance of oscillatory solutions could be caused by
the presence of the branchH3 of periodic solutions.

In conclusion, this last section has presented a brief survey of some recent work
which the authors and their collaborators have conducted onself-excited dynamos.
As well as placing our own investigations into a historical context, we have made
an effort to identify some key features of naturally-occurring MHD systems with
their counterparts in the much lower-dimensional (and moretractable) Faraday-disk
dynamos. Moreover care has been taken to ensure that the dynamo models studied
exhibit structural stability, in contrast to the Bullard and Rikitake models.

In Section 2.8.6, we saw that features, generic to this classof dynamo are regions
of parameter space in which no dynamo action, steady dynamo action and fluc-
tuating dynamo action occur. The precise details as to whereand which type of
persistent behaviour dominates is, however, model and parameter dependent (see
Section 2.8.7). Bifurcation transition sequences betweendifferent finite amplitude
states are possible, in which chaotic and simple periodic behaviour interleave (see,
for example, Figure 2.11). In addition, the nonlinear regime exhibits hysteresis with
multiple solutions possible (see Section 2.8.8).

Other studies, referenced in Section 2.8.7, have introduced terms into the basic
model, such as the effects of an external battery, which break the symmetry of the fi-
nite amplitude steady state solutions, as well as creating additional codimension-two
bifurcations (Moroz, 2001b).

It is clear that this class of low order dynamo is capable of producing a rich range
behaviours, depending upon both the parameters and the specific dynamo model
chosen. What is required is some way of distinguishing between the whole gamut of
possibilities. One such approach involves the identification of the underlying basis
of unstable periodic orbits (UPOs), specific to a given model. Further investigations
along these lines should prove rewarding.


