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Decay rates of magnetic modes below the threshold of a turbulent dynamo
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We measure the decay rates of magnetic field modes in a turbulent flow of liquid sodium below the dynamo
threshold. We observe that turbulent fluctuations induce energy transfers between modes with different symmetries
(dipolar and quadrupolar). Using symmetry properties, we show how to measure the decay rate of each mode with-
out being restricted to the one with the smallest damping rate. We observe that the respective values of the decay
rates of these modes depend on the shape of the propellers driving the flow. Dynamical regimes, including field re-
versals, are observed only when the modes are both nearly marginal. This is in line with a recently proposed model.
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The generation of magnetic field by the flow of an electri-
cally conducting fluid through the dynamo process has been
primarily studied in order to understand planetary and stellar
magnetic fields [1]. This phenomenon also provides a canon-
ical example of an instability that occurs on a fully turbulent
flow. Instabilities occurring on turbulent flows involve several
fundamental open questions, such as the characterization of
growing or decaying eigenmodes in the linear regime or the
possibly anomalous scaling of the moments of the magnetic
field amplitude versus the distance to instability threshold in
the nonlinear regime [2,3]. We present here an experimental
study related to the former aspect.

The threshold of a linear instability of a stationary or
time-periodic state is reached when the largest growth rate
(eigenvalue) of the eigenmodes of the evolution equation for
the perturbations vanishes. Below this threshold, small pertur-
bations decay exponentially with a decay rate proportional to
the corresponding eigenvalue. The value of the decay rate thus
measures the distance to the threshold of linear instability
of the corresponding eigenmode. Measurements of growth
and decay rates are commonly performed to characterize
instabilities. Eigenmodes with different symmetries are not
linearly coupled, and depending on the symmetries of the ini-
tial conditions, their decay rate can be measured. The problem
is more complex for an instability generated by a turbulent
flow. First, although growth and decay can be characterized
by a Lyapunov exponent, eigenmodes cannot be defined in
the usual way. In the limit of small turbulent fluctuations
about the mean flow, one can consider the eigenmodes of
the mean flow as a first approximation, as done in the past
for the dynamo problem [4]. However, it has been shown both
experimentally [5] and from numerical simulations [6] that
the magnetic field generated by a turbulent flow can strongly
differ from a prediction based on the mean flow alone. In
addition, even if some modes are defined in an appropriate
way, turbulent fluctuations can transfer energy from one mode
to the other, thus contaminating decay rate measurements. We
report an experimental procedure to define these modes and
avoid this bias by independently measuring the decay rate of
the two less damped modes with different symmetries. We
then show how their difference in decay rates can be related to
the dynamics observed above instability threshold.

The experiment concerns the generation of a magnetic field
by a von Karman flow of liquid sodium (VKS experiment) that
has been already reported in detail elsewhere [7]. The flow is

driven by two counter-rotating coaxial propellers in a cylinder
containing roughly 160 liters of liquid sodium maintained
at a temperature around 120◦ C for which the electrical
conductivity σ is close to 107 (�m)−1 (See Fig. 1). The
propellers are soft iron disks fitted with curved (resp. straight)
iron blades. When they counter rotate with the same speed,
the dynamo threshold is reached for F1 = F2 = 13 Hz (resp.
19 Hz). This corresponds to a magnetic Reynolds number,
Rm = 2πμ0σR2F around 24 (resp. 35) where R = 154.5 mm
is the radius of the disks. The time-averaged magnetic
field is roughly an axial dipole whose amplitude displays
a slightly imperfect bifurcation because of the remanent
magnetization of the disks. When the disks counter rotate at
different frequencies, a mode of quadrupolar symmetry is also
generated [5]. The dipole and the quadrupole have opposite
symmetries with respect to a rotation of π around the z axis
in the midplane between the disks (Rπ as sketched in Fig. 1).
For a large enough frequency difference, dynamical regimes
can be observed such as periodic or random reversals of the
magnetic field [5,8] that involve energy transfers between the
dipole and the quadrupole [9].

From now on, we restrict to measurements performed
for exact counter rotation F1 = F2 = F . Below the onset of
instability, we apply a magnetic field generated by two axial
coils. Each coil carries an equal electric current flowing in the
same (resp. opposite) direction, thus providing a Helmholtz
(resp. anti-Helmholtz) configuration generating an axial field
of dipolar (resp. quadrupolar) symmetry, i.e., odd (resp. even)
under Rπ . The magnetic field is measured with two probes
located close to the disks, 109 mm away from the midplane.
Each probe measures the three components of the magnetic
field at ten positions (the deepest probe is 103 mm away from
the cylinder axis and the distance between probes is 28 mm).

We apply a time-periodic magnetic field with a square
wave shape in order to measure the decay rate of the
magnetic response below the dynamo threshold as performed
in Refs. [10] and [11]. Experiments typically involve 20
periods of duration 10 s. When the external magnetic field is on,
we observe a field induced by the flow of liquid sodium. When
the external field is switched off, the induced magnetic field
decays and reaches a small value that results from the ambient
field. A first way to evaluate the amplitude of the excited
magnetic mode is to calculate its energy density defined as the
sum over the probes of the local energy density B2

i averaged
over the different realizations. This method is accurate when
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J. HERAULT, F. PÉTRÉLIS, AND S. FAUVE PHYSICAL REVIEW E 89, 043004 (2014)

FIG. 1. (Color online) Sketch of the experiment: two impellers
counter rotate at frequencies F1 and F2. When F1 = F2 the setup
is invariant to Rπ rotation. The vertical thick lines indicate the
locations of the two arrays of three-axis Hall probes which measure
the magnetic field close to each disk.

the field is dominated by a single mode. In Fig. 2, the time
series is displayed for an applied field in the anti-Helmholtz
configuration such that one may expect to measure the decay
rate of the quadrupolar mode. The decay of the magnetic
energy is not exponential (black curve) and as will be made
clear below, the time recording actually transitions between
two different exponential behaviors. In this case, the decay rate
is not correctly measured from the evolution of the magnetic
energy. The method that we present now solves this problem.

We note B1(t) [resp. B2(t)] as the vectors defined using the
30 values measured by the 10 probes close to disk 1 (resp.
2). In order to extract the decay of the amplitude of unstable
modes, we define two reference geometries noted Br

1 and Br
2,

which are the time averages of the vectors B1 and B2 when
the dynamo is operating. The spatial structure given by Br

1 and
Br

2 is a dipole, and it does not change significantly above the
dynamo onset. Note that below the onset and for a field applied
in the Helmholtz configuration the geometry of the induced
magnetic field is quite similar to the dipole geometry Br

1 and
Br

2. Thus we could take indifferently either the spatial structure
of the unstable mode or the one of the induced field to measure
the decay rates. Therefore, this method can be applied even
when the dynamo threshold has not been reached. The dipole
and quadrupole amplitudes D(t) and Q(t) are defined by

D(t) = 1

2

(
B1 · Br

1∣∣Br
1

∣∣ + B2 · Br
2∣∣Br

2

∣∣
)

,

(1)

Q(t) = 1

2

(
B1 · Br

1∣∣Br
1

∣∣ − B2 · Br
2∣∣Br

2

∣∣
)

,

where |Br
i | = (Br

i .B
r
i )1/2. This amounts to a projection of the

measured magnetic field on a reference spatial structure.
We show in Fig. 3 different realizations of the decay of

D(t) (in gray) for F = 11 Hz (the applied magnetic field is
shut down at t = 0). The average over the different realizations
D̄(t) (black curve) exhibits an exponential decay. D̄ is fitted
with an exponential function A exp(−t/τ ) + D̄0, where τ−1 is
the decay rate and D̄0 is the amplitude of the dipole without
applied magnetic field. Indeed, because of the imperfectness
of the bifurcation, D̄0 is not exactly zero. It is created by
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FIG. 2. (Color online) For an anti-Helmholtz applied magnetic
field, time series of 〈|B1|2 + |B2|2〉/2 (in black). Two behaviors are
observed. The decay rate measured at initial time is the same as the
one obtained from the quadrupolar projection (in red). At long time,
it is the same as the one obtained from the dipolar projection (in
blue). The gray curve represents the total amount of energy in the
quadrupolar and dipolar modes. Top: lin-lin scale; bottom: log-lin
scale, the long time value is subtracted so that exponential decays
appear as straight lines.

the different sources of applied field (Earth’s magnetic field,
remanent magnetization of the disks, etc.).

The measured value of the decay rate is quite robust. As is
displayed in the inset of Fig. 3, using the projection method,
the same results are obtained for the decay rate of the dipole
in the Helmholtz (resp. anti-Helmholtz) configuration. We
now understand the behavior of the total energy displayed
in Fig. 2 for an anti-Helmholtz applied field. At short time,
the quadrupolar component is much larger than the dipolar
one. The quadrupolar decay rate being larger than the dipolar
one, after an initial phase (here of around 0.2 s), the energy
of the quadrupolar component is drastically reduced and the
dipolar component gives the main contribution to the energy.
We note that the dipolar and the quadrupolar energy add up to
nearly 80 percent of the total energy. All together, this explains
why the time recording of the total energy crossovers between
two different exponential behaviors. We also point out that a
single configuration of applied field allows us to extract both
decay rates because the projection disentangles the relative
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FIG. 3. (Color online) Decay of the amplitude of the dipolar pro-
jection for F = 11 Hz (applied field in the Helmholtz configuration).
The thick black line is the average over the different realizations
(displayed as thin gray lines). Inset: decay rate 1/τ of the dipole
as a function of the disk rotation frequency for an applied field in
Helmholtz (�) or anti-Helmholtz (�) configuration.

contribution of each mode. This is mostly achievable with
an applied field in the anti-Helmholtz configuration. Then a
dominant part of the energy is initially injected in the most
damped mode so that the slowest decaying mode is ultimately
observed even though it has a small initial energy mostly due
to imperfection in the experimental setup or in the symmetry
of the applied field.

Trajectories in phase space also display the two successive
behaviors, as shown in Fig. 4. When a field is applied in the
anti-Helmholtz configuration, the trajectories wander around
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FIG. 4. (Color online) Phase space for the induced field (D,Q)
for F = 11 Hz. The gray set contains the trajectories when a field
is applied in the anti-Helmholtz configuration. The (colored online,
thin) continuous curves are individual trajectories that start when the
field is set to zero. The thick black curve is the average over the
realizations.
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FIG. 5. (Color online) Decay rate of the dipolar mode (blue
square) and of the quadrupolar mode (red circle) as a function of
the rotation frequency. Upper panel: the flow is driven by disks with
curved blades. Lower panel: the flow is driven by disks with straight
blades.

a wide spot (in gray). Indeed turbulent fluctuations transfer en-
ergy between the modes. When the applied field is set to zero,
the trajectories relax toward the origin. Turbulent fluctuations
are also responsible for the observed large variability between
the realizations. In contrast, the average over the realizations
(thick black line) is simpler and is made of an evolution toward
the Q = 0 axis followed by the evolution toward D = Q = 0.
Despite the fluctuations, we thus can observe in phase space
the two successive behaviors (decrease of the quadrupolar
component followed by the decrease of the dipolar one).

We compare the decay rates for the dipolar and quadrupolar
mode in Fig. 5. For disks fitted with curved blades (upper
panel), we observe that at the onset (F = 13 Hz), the decay
rate of the dipole has been reduced by a factor of 2.6 compared
to its value at F = 8 Hz. The finite value of the decay rate
measured at F = 13 Hz is probably biased by the imperfection
of the bifurcation (see the discussion in Ref. [11]). We note
that the decay rate of the quadrupolar mode has also been
reduced from 5 s−1 to nearly 3 s−1 at the threshold. Within
the accuracy of the measurements, the variations of the decay
rates are linear in F in the range 8–13 Hz [12]. Both curves
intersect the 1/τ = 0 line at comparable rotation frequencies
close to 17 and 20 Hz, respectively.
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FIG. 6. (Color online) Standard deviation of the decay rate of the
quadrupolar (red circle) and dipolar mode (blue square). In the inset,
standard deviation over the mean.

A second set of experiments was performed with disks
fitted with straight blades. In exact counter rotation, the onset
takes place at a larger value F = 19 Hz. Between F = 8 Hz
and the onset, the dipolar decay rate is reduced by a factor
of 2.5. The amplitude of the variation is similar to the one
observed in the case of disks fitted with curved blades. In
contrast, the quadrupolar decay rate only varies from 4.8 s−1

to 3.6 s−1. The linear fits of these curves cross the 1/τ = 0
line at F = 27 Hz for the dipolar mode and at F larger than
70 Hz for the quadrupolar one. We note that the estimated
decay rates display strong fluctuations close to the dynamo
threshold and thus can be sensitive to the fitting parameters.
However, it is clear that the quadrupolar decay rate displays a
stronger variation with F in the case of curved blades. Thus,
at dynamo threshold, the quadrupolar mode is closer to its
instability threshold when the flow is driven by curved blades.

These observations agree with the mechanism proposed
to explain the dynamical regimes observed in the experi-

ments [13]. The dynamical regimes (e.g., random or periodic
reversals) take place when both the dipolar and the quadrupolar
modes are close to their onset of instability. Then breaking
the forcing symmetry, i.e., rotating with F1 different from
F2, couples the two modes that can achieve a saddle-node
bifurcation. Above this bifurcation, periodic reversals are
observed while close to the threshold of the saddle-node
bifurcation, turbulent fluctuations trigger random reversals.
Reversals are observed when the effect of the symmetry
breaking is comparable to the difference between the growth
rates of the two modes. In the case of disks fitted with curved
blades, the difference in values F at which 1/τ reaches 0
is equal to �F � 3 Hz. Dynamical regimes of the magnetic
field can be observed provided that |F1 − F2| is larger than
3.25 Hz. In the case of disks fitted with straight blades, we
have concluded from Fig. 5 that the difference between the
growth rates is quite large. We thus expect that the breaking
of symmetry will not be efficient enough to generate the
saddle-node bifurcation. Indeed, this is confirmed by the
experimental results since no dynamical regimes are actually
observed with these disks. In other words, the flow driven by
these disks generates modes with strongly different thresholds.
Breaking the symmetry by rotating the disks at different speeds
does not result in a strong enough coupling between the two
modes so that no field reversals can be generated.

Finally, we discuss some statistical properties of the decay
rate measured by the projection method. The decay rate τ

varies from one realization to the other, as displayed in Fig. 3.
The standard deviation σ of τ is displayed in Fig. 6. It increases
in the vicinity of the onset of the dynamo instability. Values
of up to 50 percent are achieved for the fluctuations over the
mean, στ−1. This explains why large samples are required to
converge the decay rate close to the dynamo onset.

We acknowledge our colleagues of the VKS team with
whom the experimental data used here have been obtained.
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